
Bronx Community College
Department of Mathematics and Computer Science
Fall 2019 CSI33
Review for Midterm Exam

Chapter 1: Abstraction and Analysis
Function specification tells what a function does but
not how that is done. The function precondition tells
what is true before the function is called. The
function postcondition tells what is true after the
function finishes executing—the significance of the
return value or the effect of a function on some
argument. Functions should not produce
undocumented side effects.
Enforcing preconditions: raise an exception or use an
assert statement
Analysis of algorithms: how many steps are needed
to carry out an algorithm? how does the number of
steps needed to carry out the algorithm increase as
the size of the problem increases?
Big O bounds- Big O provides an upper bound
Big Theta bounds- Big Theta provides both an upper
and a lower bound
Estimating time to solve problems

Chapter 2 Data Abstraction
Abstract Data type (ADT) - type (or class) for objects
with behavior defined by a set of values and a set of
operations. ADT tells what operations are to be
performed, but not how operations will be
implemented, does not specify how data will be
represented or and what algorithms will be used for
operations
ADT examples: Dataset, Rational, Card
Class invariant is a set of properties that all objects
in the class must satisfy. It gives a criterion for the
object to be valid, must be fulfilled by the
constructor, must be maintained by the public
methods.
Unit-testing using Python’s unittest module,
TestCase class, assertEqual methods

Chapter 3: Container Classes
Python list methods
Deck of Cards, Hand of Cards using Python list
container
Overloading comparison operators for Card objects,
Python hook methods

Array data collection, Python list implementation by
dynamic arrays of references
implementation of list operations, time efficiency of
indexing, insert, append, delete, other operations
Python dictionary ADT, implementation using hash
table, hashing function

Chapter 4 Linked Structures and Iterators
Arrays: homogeneous, size determined statically
unless additional programming, efficient random
memory access
Python memory model, references to objects,
namespace dictionary, aliasing, shallow copy, deep
copy, parameter passing
Linked lists using List Node and links, head reference,
instance variable, size instance variable.
Implementation of methods needed to make a linked
list function as a Python list – indexing, insert, delete,
append, pop, others
Implementation of Python iterator
Time analysis of various operations
 Programming exercise: adding tail reference to
linked list, modifying method definitions to preserve
class invariant
Time analysis of linked list operations with tail
reference

Chapter 5 Stacks and Queues

Stack ADT: last in, first out ADT, methods - push to
place data, pop to remove data, top to examine data
Stack implemented with Python list, with linked list
Stack applications: evaluating Reverse Polish
expressions, changing infix expressions to reverse
Polish expressions
Queue ADT: first in, first out ADT, methods –
enqueue to add data, dequeue to remove and return
data, front to examine data
Queue implementation using python list, linked list
Queue applications in operating systems, simulations

Chapter 6 Recursion
Recursive function – a function can be defined using
the function itself in the definition. The definition
must have one or more base cases where the
function can be computed without a recursive call.
Every chain of recursive calls must terminate at a
base case.

Examples – factorial, string reversal, permutations,
exponentiations by repeated squaring, binary search
Time analysis of recursive algorithms, comparison to
other algorithms using loops
Recursive sorting algorithm – mergesort. Time and
space analysis of mergesort.
Recursive solution of Tower of Hanoi puzzle. Time
analysis of Tower of Hanoi

Exam structure:
Part I: paper and pencil, closed notes and book, no
use of computer, multiple choice, true-false, short
answer
Covering definitions and concepts, programming
techniques
Part II: open book, open notes, using computer,
programming exercises

