
Sharon Persinger

Fall 2019

Day 8 September 23

CSI33 Data Structures

More list methods

_delete(self, position):

private method to delete item at location position from the

list

Used in definitions of

delete and pop

Insert

def insert(self, i, x):

'''inserts x at position i in the list

Copy

Copy method makes a shallow copy of the LInkedList

Iterator

We can move down a LinkedList easily:

my = LList(list(range(10)))

node = my.head

while node is not None:

print (node.item)

node = node.link

Iterator

 An iterator is an object that know how to step-through the items in a

container object.

 Python provides an iterator for its built-in container objects. You use

and iterator when you do a loop through the items in a sequence or

dictionary.

 Make a list l1.

 Create an iterator with the iter function

 It = iter(l1)

 The iter object it has a next function. Call it a few times.

Add an iterator to the LList class

 Create a class LListIterator.

Define a constructor and a next method.

 Use this class to define the __iter__ method for

the Llist class.

 Now we can iterate through the items of a linked

list - for each in …..

Which is better – Python array-based list

or linked list?

 Memory? Array-based uses less memory, but both are Θ(𝑛)

 Time – depends on the types of operations

 With a linked list, recopying data is not necessary when inserting and deleting a

known locations. Adding a node at the head, deleting the node at the head both

take constant time. Adding a node at the end takes constant time when there is a

tail variable.

 Think about what types of insertions will be done to chose which implementation

to use.

Linked List assignment

 Assignment 2 on the webpage.

