
Sharon Persinger

Fall 2019

Day 7 September 18

CSI33 Data Structures

Python hook methods
 Python allows a programmer to write her own definitions for built-in Python

functions and operations. You’ve already seen overloading of __lt__ in the

Card class that allowed two Card objects to be compared using <. Other

operators were also overloaded. The len function can be overloaded using

__len__ and indexing with [] can be overloaded by defining __getitem__ nad

__setitem__

 These new definitions for familiar syntax are called hook methods.

 They allow the syntax of using a newly defined class to look like familiar

Python syntax. They allow Python’s built-in methods like sort and max to

work on newly defined classes.

Linked List ADT

 Write Python class that has the functionality of a Python list but using a

linked list implementation.

 Implement the methods needed for a Python list:

 append

 len

 get item at an index

 set item at an index

 insert new item at an index

 delete item at an index

 pop item at an index

 We will need to count our way through the ListNodes to do this.

Use the LList2 class.

 Revised LList class definition in LList2.py posted.

 Let’s experiment with it a bit to create some LinkedLists and use them like a

Python list.

List Node class

 We will use the ListNode class as developed previously. We could add

methods to it – accessors and mutators – but we won’t since we will not

interact with a ListNode directly, only by using methods of the LInkedList

class.

class ListNode(object):

def __init__(self, item = None, link = None):

'''creates a ListNode with the specified data value and link

post: creates a ListNode with the specified data value and link'''

self.item = item

self.link = link

LinkedList class invariant

1. The list has two instance variables – self.head and self.size.

2. self.size is the number of nodes in the list.

3. If self.size = 0, then the list is empty, and self.head is None. If the list is non-

empty, self.head is a reference to the first or head ListNode object in the

list.

4. The last ListNode object in the list, at position self.size -1, has it’s link set to

None. For every other ListNode in the list, the link refers to the next

ListNode in the list.

 It is usual to manage a LinkedList through a reference to the head node

object. Keeping an instance variable for the length makes a few methods

easier.

LinkedList specification

LList.py

from ListNode import ListNode

class LList(object):

#--

def __init__(self, seq=()):

"""create an LList

post: creates a list containing items in seq"""

#--

def __len__(self):

'''post: returns number of items in the list'''

#--

def _find(self, position):

'''private method that returns node that is at

location position in the list (0 is first item,

size-1 is last item)

pre: 0 <= position < self.size

post: returns the ListNode at the specified

position in the list'''

#--

#--

def append(self, x):

'''appends x onto end of the list

post: x is appended onto the end of the list'''

#--

def __getitem__(self, position):

'''return data item at location position

pre: 0 <= position < size

post: returns data item at the specified

position'''

#--

def __setitem__(self, position, value):

'''set data item at location position to value

pre: 0 <= position < self.size

post: sets the data item at the specified

position to value'''

#--

LinkedList specification, continued

#---

def __delitem__(self, position):

'''delete item at location position from the

list

pre: 0 <= position < self.size

post: the item at the specified position is

removed from the list'''

#--

def pop(self, i=None):

'''returns and removes at position i from list;

the default is to return and remove the last

item

pre: self.size > 0 and ((i is None or (0 <= i <

self.size))

post: if i is None, the last item in the list is

removed and returned; otherwise the item

at position i is removed and returned'''

#---

def insert(self, i, x):

'''inserts x at position i in the list

pre: 0 <= i <= self.size

post: x is inserted into the list at position i
and old elements from position i..oldsize-1
are at positions i+1..newsize-1'''

#---

def __copy__(self):

'''post: returns a new LList object that is a
shallow copy of self'''

#---

Implementation of constructor

 Let’s write a constructor that uses

a procedure like the one we

demonstrated in class with the

example LinkedList that was built

by linking together individual

ListNode objects.

 That LinkedList was built by

inserting ListNodes at the

beginning or head of the list.

 We can traverse the parameter seq

starting at the last element of the

sequence instead of the first.

 First, let’s write a helper function -

 Here’s the specification:

def insertathead(self, data):

 '''creates a new ListNode with item

data, and inserts it at the head of

the LList

 post: new ListNode with data

added at head of LList'''

Implementation of insertathead

def insertathead(self, data):

'''post: new ListNode with data

added at head of LList'''

n = ListNode(data, self.head)

self.head = n

 Make a new ListNode with the data

and link it to the current head of

the list.

 Change the head of the list to be

this new ListNode.

Constructor -

 Build the list up from seq by starting from the final item in seq and working to

the first item.

__len__

 Return the value of the member variable

_find(self, position):

assert 0 <= position < self.size

node = self.head

move forward until we reach

the specified node

for i in range(position):

node = node.link

return node

 Basically counting our way along

the ListNodes.

 What is the meaning of

 node = node.link ?

 This is an important LinkedList

statement or operation.

Use _find(self, position) to write other

methods

 def append(self, x):

 def __getitem__(self, position):

 def __setitem__(self, position,

value):

 Used to return an element by

indexing.

 Used to change an element by

indexing.

_delete, delete, pop

