CSI33 Data Structures

Sharon Persinger
Fall 2019
Day 7 September 18

Python hook methods

» Python allows a programmer to write her own definitions for built-in Python
functions and operations. You’ve already seen overloading of __lt__in the
Card class that allowed two Card objects to be compared using <. Other
operators were also overloaded. The len function can be overloaded using
__len__ and indexing with [] can be overloaded by defining __ getitem__ nad
__setitem__

» These new definitions for familiar syntax are called hook methods.

» They allow the syntax of using a newly defined class to look like familiar
Python syntax. They allow Python’s built-in methods like sort and max to
work on newly defined classes.

Linked List ADT

» Write Python class that has the functionality of a Python list but using a
linked list implementation.

» Implement the methods needed for a Python list:
» append

len

get item at an index

set item at an index

insert new item at an index

vV v v v Vv

delete item at an index

» pop item at an index

» We will need to count our way through the ListNodes to do this.

Use the LList2 class.

» Revised LList class definition in LList2.py posted.

» Let’s experiment with it a bit to create some LinkedLists and use them like a
Python list.

List Node class

» We will use the ListNode class as developed previously. We could add
methods to it - accessors and mutators - but we won’t since we will not

interact with a ListNode directly, only by using methods of the LinkedList
class.

class ListNode(object):

def __init__(self, item = None, link = None):
"creates a ListNode with the specified data value and link

post: creates a ListNode with the specified data value and link™

self.item = item
self.link = link

LinkedList class invariant

1. The list has two instance variables - self.head and self.size.

2. self.size is the number of nodes in the list.

3. If self.size = 0, then the list is empty, and self.head is None. If the list is non-
empty, self.head is a reference to the first or head ListNode object in the
list.

4. The last ListNode object in the list, at position self.size -1, has it’s link set to
None. For every other ListNode in the list, the link refers to the next
ListNode in the list.

» |t is usual to manage a LinkedList through a reference to the head node
object. Keeping an instance variable for the length makes a few methods
easier.

LinkedList specification

LList.py

from ListNode import ListNode def append(self, x):

“appends x onto end of the list
class LList(object): post: x is appended onto the end of the list™
def __getitem__(self, position):

------ create an LList “return data item at location position
post: creates a list containing items in seq"" pre: 0 <= position < size
e e post: returns data item at the specified
def __len__(self): position
"post: returns number of items in the list™

def __init__(self, seq=()):

def __setitem__(self, position, value):
“set data item at location position to value
pre: 0 <= position < self.size

post: sets the data item at the specified
position to value™

def _find(self, position):
"private method that returns node that is at
location position in the list (0 is first item,
size-1 is last item)

pre: 0 <= position < self.size Ffommmmsmnmmsesnnos oo oo

post: returns the ListNode at the specified
position in the list"

LinkedList specification, continued

def __delitem__(self, position):
"delete item at location position from the
list
pre: 0 <= position < self.size

post: the item at the specified position is
removed from the list™

def pop(self, i=None):
“returns and removes at position i from list;

the default is to return and remove the last
item

pre: self.size > 0 and ((i is None or (0 <=1 <
self.size))

post: if i is None, the last item in the list is
removed and returned; otherwise the item
at position i is removed and returned™

def insert(self, i, x):
“inserts x at position i in the list
pre: 0 <=1 <= self.size

post: x is inserted into the list at position i
and old elements from position i..oldsize-1
are at positions i+1..newsize-1"

def __copy__(self):

“post: returns a new LList object that is a
shallow copy of self™

Implementation of constructor

>

Let’s write a constructor that uses
a procedure like the one we
demonstrated in class with the
example LinkedList that was built
by linking together individual
ListNode objects.

That LinkedList was built by
inserting ListNodes at the
beginning or head of the list.

We can traverse the parameter seq
starting at the last element of the
sequence instead of the first.

» First, let’s write a helper function -
» Here’s the specification:
def insertathead(self, data):

» "creates a new ListNode with item
data, and inserts it at the head of
the LList

» post: new ListNode with data
added at head of LList™

Implementation of insertathead

def insertathead(self, data):

“post: new ListNode with data

added at head of LList" » Make a new ListNode with the data

n = ListNode(data, self.head) and link it to the current head of
the list.

» Change the head of the list to be
this new ListNode.

self.head = n

Constructor -

» Build the list up from seq by starting from the final item in seq and working to
the first item.

len

» Return the value of the member variable

_find(self, position):

assert 0 <= position < self.size

node = self.head

move forward until we reach
the specified node

for i in range(position):
node = node.link

return node

Basically counting our way along
the ListNodes.

What is the meaning of

» node = node.link ?

This is an important LinkedList
statement or operation.

Use _find(self, position) to write other
methods

» def append(self, x):

» def __getitem__(self, position): » Used to return an element by
indexing.

» Used to change an element by

» def __ setitem__(self, position, . .
indexing.

value):

_delete, delete, pop

