
Sharon Persinger

Fall 2019

Day 7 September 18

CSI33 Data Structures

Python hook methods
 Python allows a programmer to write her own definitions for built-in Python

functions and operations. You’ve already seen overloading of __lt__ in the

Card class that allowed two Card objects to be compared using <. Other

operators were also overloaded. The len function can be overloaded using

__len__ and indexing with [] can be overloaded by defining __getitem__ nad

__setitem__

 These new definitions for familiar syntax are called hook methods.

 They allow the syntax of using a newly defined class to look like familiar

Python syntax. They allow Python’s built-in methods like sort and max to

work on newly defined classes.

Linked List ADT

 Write Python class that has the functionality of a Python list but using a

linked list implementation.

 Implement the methods needed for a Python list:

 append

 len

 get item at an index

 set item at an index

 insert new item at an index

 delete item at an index

 pop item at an index

 We will need to count our way through the ListNodes to do this.

Use the LList2 class.

 Revised LList class definition in LList2.py posted.

 Let’s experiment with it a bit to create some LinkedLists and use them like a

Python list.

List Node class

 We will use the ListNode class as developed previously. We could add

methods to it – accessors and mutators – but we won’t since we will not

interact with a ListNode directly, only by using methods of the LInkedList

class.

class ListNode(object):

def __init__(self, item = None, link = None):

'''creates a ListNode with the specified data value and link

post: creates a ListNode with the specified data value and link'''

self.item = item

self.link = link

LinkedList class invariant

1. The list has two instance variables – self.head and self.size.

2. self.size is the number of nodes in the list.

3. If self.size = 0, then the list is empty, and self.head is None. If the list is non-

empty, self.head is a reference to the first or head ListNode object in the

list.

4. The last ListNode object in the list, at position self.size -1, has it’s link set to

None. For every other ListNode in the list, the link refers to the next

ListNode in the list.

 It is usual to manage a LinkedList through a reference to the head node

object. Keeping an instance variable for the length makes a few methods

easier.

LinkedList specification

LList.py

from ListNode import ListNode

class LList(object):

#--

def __init__(self, seq=()):

"""create an LList

post: creates a list containing items in seq"""

#--

def __len__(self):

'''post: returns number of items in the list'''

#--

def _find(self, position):

'''private method that returns node that is at

location position in the list (0 is first item,

size-1 is last item)

pre: 0 <= position < self.size

post: returns the ListNode at the specified

position in the list'''

#--

#--

def append(self, x):

'''appends x onto end of the list

post: x is appended onto the end of the list'''

#--

def __getitem__(self, position):

'''return data item at location position

pre: 0 <= position < size

post: returns data item at the specified

position'''

#--

def __setitem__(self, position, value):

'''set data item at location position to value

pre: 0 <= position < self.size

post: sets the data item at the specified

position to value'''

#--

LinkedList specification, continued

#---

def __delitem__(self, position):

'''delete item at location position from the

list

pre: 0 <= position < self.size

post: the item at the specified position is

removed from the list'''

#--

def pop(self, i=None):

'''returns and removes at position i from list;

the default is to return and remove the last

item

pre: self.size > 0 and ((i is None or (0 <= i <

self.size))

post: if i is None, the last item in the list is

removed and returned; otherwise the item

at position i is removed and returned'''

#---

def insert(self, i, x):

'''inserts x at position i in the list

pre: 0 <= i <= self.size

post: x is inserted into the list at position i
and old elements from position i..oldsize-1
are at positions i+1..newsize-1'''

#---

def __copy__(self):

'''post: returns a new LList object that is a
shallow copy of self'''

#---

Implementation of constructor

 Let’s write a constructor that uses

a procedure like the one we

demonstrated in class with the

example LinkedList that was built

by linking together individual

ListNode objects.

 That LinkedList was built by

inserting ListNodes at the

beginning or head of the list.

 We can traverse the parameter seq

starting at the last element of the

sequence instead of the first.

 First, let’s write a helper function -

 Here’s the specification:

def insertathead(self, data):

 '''creates a new ListNode with item

data, and inserts it at the head of

the LList

 post: new ListNode with data

added at head of LList'''

Implementation of insertathead

def insertathead(self, data):

'''post: new ListNode with data

added at head of LList'''

n = ListNode(data, self.head)

self.head = n

 Make a new ListNode with the data

and link it to the current head of

the list.

 Change the head of the list to be

this new ListNode.

Constructor -

 Build the list up from seq by starting from the final item in seq and working to

the first item.

__len__

 Return the value of the member variable

_find(self, position):

assert 0 <= position < self.size

node = self.head

move forward until we reach

the specified node

for i in range(position):

node = node.link

return node

 Basically counting our way along

the ListNodes.

 What is the meaning of

 node = node.link ?

 This is an important LinkedList

statement or operation.

Use _find(self, position) to write other

methods

 def append(self, x):

 def __getitem__(self, position):

 def __setitem__(self, position,

value):

 Used to return an element by

indexing.

 Used to change an element by

indexing.

_delete, delete, pop

