
Sharon Persinger

Fall 2019

Day 5

CSI33 Data Structures

Finishing the chapter on container

classes

Deck class
 A Deck object is a collection of cards – another container class.

 Methods: constructor, size, deal, shuffle

 shuffle method is interesting.

Storing and retrieving data

 Computer memory is a sequence of storage locations.

 Each storage location has an address.

 A data item is stored in a storage location or in several neighboring storage

locations.

 To retrieve data, we need to know its address.

How can we store a collection of data so

we can operate on it efficiently?

 A data structure called an array is used to store a collection of data all of the

same data type.

 An array is a collection of neighboring or contiguous memory locations. Array

elements are usually retrieved by indexing as with Python’s lists: A[0], A[1],

A[2], and so on. It is common to start the indexing at 0.

 To store a collection of 100 4-byte integers, allocate an array A of 400 bytes.

Suppose the address of the beginning of this array is 1024. The initial

element A[0] of the array takes up bytes 1024, 1025, 1026, and 1027, and

nest element starts at address 1028 = 1024 + 4. Generally, the ith element is

1024 + 4*i.

Good and Bad about Arrays

 Good: Arrays allow for efficient random access. The address of A[i] is address

of A[0] + i*(size of A’s data type). This takes constant time.

 Bad: To do this, the data elements must all be of the same size. Usually this

is enforced by requiring that elements are all of the same type.

 Bad: The size of an array is determined when the array is allocated. Arrays

are static. Programmers write classes for dynamic arrays that resize when

needed.

Python lists are

 Heterogeneous – They can store objects of a mix of types.

 Dynamic - They can grow and shrink using the built-in methods.

 So Python lists have advantages over arrays.

How are Python lists implemented?

 A Python list is an array of references to Python objects. A reference is a

memory address, and all references are the same length – 32 bits or 64 bits

depending on the operating system.

 Suppose we have a 32-bit operating system and suppose A is a Python list that

begins at memory address 1024. To find the list element A[0], go to memory

locations 1024 through 1024+31 and get the reference (address) stored there.

Look at that memory location and you will find A[0]. To find the list element

A[i], get the reference that is stored in locations 1024 + 32*i through 1024

+32*i +31, and go to that memory location to find A[i].

 The memory for the array will be increased when needed. The underlying

array of references has dynamic memory allocation.

Time analysis of list operations

 Python lists are dynamically allocated arrays of references

 how are Python list operations carried out?

 retrieving an element based on its index Time?

 changing the element at an index Time?

 appending an element? Time?

 uses dynamic memory allocation when needed

 inserting a new element into the middle of the list? Time?

 Lots of recopying here

 deleting an element from the middle of a list? Time?

 Recopying here too

Python dictionaries

 Python dictionaries are mappings or functions

 A list is a mapping of a certain type:

 domain is set of indices {0, 1, 2, 3, ..., n}

 A dictionary is a collection of key- value pairs

 Do example suits = {'c':"Clubs", 'd':"Diamonds", "h":"Hearts"}

 Add the spades pair

 Look for values associated with keys- either indexing or get

 Look for entry not present

 Change some values

 List the keys, values, items

 Loop over keys

 in operator

Dictionary ADT

 dictionary is a function table with methods - a useful ADT, built-in in Python

 Create - returns an empty dictionary

 put(key, value) - post: value is associated with key in the function

 get(key): pre: there is X with (key, X) in dictionary, post: returns X

 delete(key): pre: There is X with)key, X) in dictionary, post (key, X) is

removed from dictionary

How is the Python dictionary implemented?

 Ideas? Could you do it as a list of key-value pairs? That's what we do with a
function table in a math class. How would the operations be implemented? Time
analysis?

 Better implementation: Python uses a hashing function to create a hash table for
the dictionary.

 A hashing function takes a key - a piece of data - and computes from it a number
for the memory location to store the data.

 hash examples:

 can hash only immutable data. hash is based on the underlying representation of
the object, can't change that

 Hash table is stored in an indexed list. (key, value) pairs are stored in the list.
hash(key) determines the index.

 Actually hash(key)%length of list so we get a valid index. Good hash functions
distribute the keys uniformly among the indices.

 As long as there are no collisions, retrieval is efficient. There are ways to deal
with collisions.

How is the Python dictionary implemented?

 Look up a value for a key: Compute hash(key). If something is stored at the

location, grab it. If nothing is there, report that the pair doesn't exist.

 Insert a (key, value) pair: Compute hash(key). Record the (key, value) pair at

that location in the list.

 Change the pair (key, value1) to (key, value2).

