
Sharon Persinger

Fall 2019

Day 5

CSI33 Data Structures

Finishing the chapter on container

classes

Deck class
 A Deck object is a collection of cards – another container class.

 Methods: constructor, size, deal, shuffle

 shuffle method is interesting.

Storing and retrieving data

 Computer memory is a sequence of storage locations.

 Each storage location has an address.

 A data item is stored in a storage location or in several neighboring storage

locations.

 To retrieve data, we need to know its address.

How can we store a collection of data so

we can operate on it efficiently?

 A data structure called an array is used to store a collection of data all of the

same data type.

 An array is a collection of neighboring or contiguous memory locations. Array

elements are usually retrieved by indexing as with Python’s lists: A[0], A[1],

A[2], and so on. It is common to start the indexing at 0.

 To store a collection of 100 4-byte integers, allocate an array A of 400 bytes.

Suppose the address of the beginning of this array is 1024. The initial

element A[0] of the array takes up bytes 1024, 1025, 1026, and 1027, and

nest element starts at address 1028 = 1024 + 4. Generally, the ith element is

1024 + 4*i.

Good and Bad about Arrays

 Good: Arrays allow for efficient random access. The address of A[i] is address

of A[0] + i*(size of A’s data type). This takes constant time.

 Bad: To do this, the data elements must all be of the same size. Usually this

is enforced by requiring that elements are all of the same type.

 Bad: The size of an array is determined when the array is allocated. Arrays

are static. Programmers write classes for dynamic arrays that resize when

needed.

Python lists are

 Heterogeneous – They can store objects of a mix of types.

 Dynamic - They can grow and shrink using the built-in methods.

 So Python lists have advantages over arrays.

How are Python lists implemented?

 A Python list is an array of references to Python objects. A reference is a

memory address, and all references are the same length – 32 bits or 64 bits

depending on the operating system.

 Suppose we have a 32-bit operating system and suppose A is a Python list that

begins at memory address 1024. To find the list element A[0], go to memory

locations 1024 through 1024+31 and get the reference (address) stored there.

Look at that memory location and you will find A[0]. To find the list element

A[i], get the reference that is stored in locations 1024 + 32*i through 1024

+32*i +31, and go to that memory location to find A[i].

 The memory for the array will be increased when needed. The underlying

array of references has dynamic memory allocation.

Time analysis of list operations

 Python lists are dynamically allocated arrays of references

 how are Python list operations carried out?

 retrieving an element based on its index Time?

 changing the element at an index Time?

 appending an element? Time?

 uses dynamic memory allocation when needed

 inserting a new element into the middle of the list? Time?

 Lots of recopying here

 deleting an element from the middle of a list? Time?

 Recopying here too

Python dictionaries

 Python dictionaries are mappings or functions

 A list is a mapping of a certain type:

 domain is set of indices {0, 1, 2, 3, ..., n}

 A dictionary is a collection of key- value pairs

 Do example suits = {'c':"Clubs", 'd':"Diamonds", "h":"Hearts"}

 Add the spades pair

 Look for values associated with keys- either indexing or get

 Look for entry not present

 Change some values

 List the keys, values, items

 Loop over keys

 in operator

Dictionary ADT

 dictionary is a function table with methods - a useful ADT, built-in in Python

 Create - returns an empty dictionary

 put(key, value) - post: value is associated with key in the function

 get(key): pre: there is X with (key, X) in dictionary, post: returns X

 delete(key): pre: There is X with)key, X) in dictionary, post (key, X) is

removed from dictionary

How is the Python dictionary implemented?

 Ideas? Could you do it as a list of key-value pairs? That's what we do with a
function table in a math class. How would the operations be implemented? Time
analysis?

 Better implementation: Python uses a hashing function to create a hash table for
the dictionary.

 A hashing function takes a key - a piece of data - and computes from it a number
for the memory location to store the data.

 hash examples:

 can hash only immutable data. hash is based on the underlying representation of
the object, can't change that

 Hash table is stored in an indexed list. (key, value) pairs are stored in the list.
hash(key) determines the index.

 Actually hash(key)%length of list so we get a valid index. Good hash functions
distribute the keys uniformly among the indices.

 As long as there are no collisions, retrieval is efficient. There are ways to deal
with collisions.

How is the Python dictionary implemented?

 Look up a value for a key: Compute hash(key). If something is stored at the

location, grab it. If nothing is there, report that the pair doesn't exist.

 Insert a (key, value) pair: Compute hash(key). Record the (key, value) pair at

that location in the list.

 Change the pair (key, value1) to (key, value2).

