CSI33 Data Structures

Sharon Persinger
Fall 2019

Rational ADT

» An ADT for rational numbers p/q, p and q integers, q not zero.

» Functions - overload all the arithmetic operators and comparison operators

Unit testing with the Python unittest
module

» See example test_Rational.py

Programming assignment 1: Complete
the Dataset ADT and test it

» Use the unit-testing module

» Test constructor, add method - for one element, two elements, three
elements, all the other methods

Python Llists

>

vV v v v v v v

Python list - list1, list2- a sequence
of data elements with operations

Access with []: list1[2]
Concatenate with +: list1 + list2
len(list1) function

Slicing - list1[2:5}
list1.append(x)

list1.index(x[, start[, end]]),

list1.extend(iterable)

vV vV vV vV v v v Y

list1
list1
list1
list1
list1
list1
list1
list1

.insert(i, x)
.remove(x)

-pop([i])
.count(x)

.reverse()

.copy()
.clear()

.sort(key=None, reverse=False)

Sequential Collection: Deck of cards

Deck.py

from random import randrange
from Card import Card

class Deck (object) :

def init (self):

"""post: Creates a 52 card deck in standard order"""

def size(self):

"""Cards left
post: Returns the number of cards in self"""

return

def deal (self):
"""Deal a single card
pre: self.size() > 0
post: Returns the next card in self, and removes it from self."""

return

def shuffle(self):

"""Shuffles the deck
post: randomizes the order of cards in self"""

Bridge Hand ADT

» We want to be able to represent a bridge hand in sorted order. Bridge
hands are arranged by suit in decreasing order, and then the cards in
each suit are arranged in decreasing order.

» First, modify and improve the Card ADT.
» In bridge, Aces are high.
» Overload the comparison operations for the Card class:
» Overload == by defining __eq__ (self, other)
» Overload < by defining __lt(self, other)
» Overload != by defining __ne__(self, other)
» Overload <= by defining __le__(self, other)

Look at the Hand specification

Hand.pyclass Hand (object) :

"""A labeled collection of cards that can be sorted"™"

def _ init (self, label=""):

"""Create an empty collection with the given label."""

def add(self, card):

""" Add card to the hand """

def sort(self):

""" Arrange the cards in descending bridge order."""

def dump (self):

""" Print out contents of the Hand."""

Somethings are easy for Hand because
Card class takes care of the work.

» We overloaded < so we can use the Python sorting function. It is very
efficient - O(n log n). That doesn’t really matter since bridge hands have
only 13 cards.

» We can print out a Hand, since Card has a string representation function.

