
Sharon Persinger

Fall 2019

September 4, 2019 Day 2

CSI33 Data Structures

Analysis of Algorithms - terminology

 The size of a problem is n - a natural number. Usually n is the number of

pieces of data for the problem.

 There is some algorithm that solves the problem.

 T(n) is a function of n defined as maximum number of steps needed for this

algorithm to solve the problem for any set of data with n elements – the worst

case situation.

 We want to find bounds on T(n) for large values of n.

𝑂(𝑓 𝑛) – Big O

 An algorithm is called 𝑂 𝑓 𝑛 – Big

O of 𝑓 𝑛 if its number of steps

function T(n) is bounded above by

some constant multiple of f(n) for

large enough values of n. Formally

–

 If there is some constant c and

some natural number n0 such that

for all 𝑛 > 𝑛0 , T(n) < cf(n)

Big O bounds aren’t tight

 Any algorithm that is 𝑂(𝑛) is also 𝑂 𝑛2 .

 Explain. A Big O bound just gives an upper bound.

Big Theta - Θ 𝑓 𝑛 bounds

 An algorithm is called Θ 𝑓 𝑛 – Big

Theta of 𝑓 𝑛 if its number of steps

function T(n) is bounded above and

below by some constant multiples

of f(n) for large enough values of

n. Formally –

 If there are some constants 𝑐1 and

𝑐2 and some natural number n0

such that for all 𝑛 > 𝑛0 , 𝑐1𝑓 𝑛 <
𝑇 𝑛 < 𝑐2𝑓 𝑛

Some familiar f(n)

Estimating time for solving problems

 If a Θ(𝑛2) algorithm takes 4 seconds to execute on an input of 1,000,000 data

points, about how long should it take on an input of 3,000,000 data points?

 If a Θ(n) algorithm takes 4 seconds to execute on an input of 1,000,000 data

points, about how long should it take on an input of 3,000,000 data points?

 If a Θ(𝑙𝑜𝑔2(𝑛) algorithm takes 4 seconds to execute on an input of 1,000,000

data points, about how long should it take on an input of 2,000,000 data

points?

 How does all this change if we know only Big O bounds?

Is the processor fast enough? What can

Big Θ analysis tell us?

 Current processors perform 2 to 5 billion operations per second – 2GHz to

5GHz.

 About how many seconds does it take to carry out a Θ(𝑛2) algorithm on a

million data points with a 2GHz processor?

 About how many seconds does it take to carry out a Θ(2𝑛) algorithm on a

hundred data points?

Program code and time analysis

 examples.py

Abstract Data Types

 Abstract Data type (ADT) is a type (or class) for objects whose

behavior is defined by a set of values and a set of operations.

 The definition of an ADT tells what operations are to be performed on

the data but not how these operations will be implemented. It does

not specify how data will be organized in memory and what

algorithms will be used for implementing the operations.

 Providing only the essentials and hiding the details is known as

abstraction.

 Python list – a sequence of data elements with these operations

list.append(x), list.extend(iterable), list.insert(i, x), list.remove(x),

list.pop([i]), list.clear(), list.index(x[, start[, end]]),

list.count(x),list.sort(key=None, reverse=False), list.reverse(),

list.copy()

ADT for a Playing Card – object oriented

version

 A playing card has a rank: Ace, Two, Three, Four, …, Ten, Jack, Queen, King;

and a Suit: Clubs, Diamonds, Hearts, Spades

 What operations do we need?

 Constructor, accessors – get functions for rank and suit, functions to present

rank and suit as strings, string representation function

 How to represent the data?

 Specification in module cardspec.py

One implementation of Card ADT

 Card.py

