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Data Structures for  Binary Trees

 The nodes of a binary tree can be 
stored in a list and retrieved by 
indexing. 

 With a complete binary tree,  nodes 
can be labelled in order top to 
bottom, left to right.

 The nodes can be stored in an array 
indexed by this number. 

 If a node is a position i, its left child 
is at position 2*i +1 and its right child 
is at position 2*i + 2.

 The parent of a node at position i is 
at position (i-1)//2.

 We can generalize this for any binary 
tree by representing a missing node 
by None.



Linked Structure for Binary Tree

 See TreeNode.py for a class for a 

node for a binary tree.

 Construct a binary tree by linking 

up these nodes.

left =  TreeNode(1)

light = TreeNode(3)

root = TreeNode(2, left, right)

Give left a left child.

 We want to create a container 

class for the TreeNodes, as we  

created a LinkedList class.



Binary search tree – a container class for 

ordered sequences

 A binary search tree is a binary 

tree with this property:

 For every node, every element in 

the left subtree is less than the 

element at the node, and every 

element in the right subtree is 

greater than the element at the 

node. 

 This structure makes for efficient 

searching, as long as we can 

arrange that the height of the tree 

isn’t too large.

 Each item appears at most once.

 Example:



BST implementation

 Use TreeNode Class.

 Constructor for empty BST.

 Write methods to insert, search, 

and remove items.

 BST.py

 insert – places a new item as a leaf

 Similar to search – look for the 

location where the item should be, 

using the order relation.

 Can do this iteratively or 

recursively.

 Look at both versions in BST.py



Recursive version of insert

def insert_rec(self, item):

"""insert item into binary search tree

pre: item is not in self

post: item has been added to self"""

self.root = self._subtreeInsert(self.root, item)

 The recursive function _ _subtreeInsert moves down the 
tree until it finds the location to place the item as a new 
leaf. 

def _subtreeInsert(self, root, item):

if root is None:          # inserting into empty tree

return TreeNode(item) # the item becomes the new       
tree root

if item == root.item:

raise ValueError("Inserting duplicate item")

if item < root.item:                   # modify left subtree

root.left = self._subtreeInsert(root.left, item)

else:                                             # modify right subtree 

root.right = self._subtreeInsert(root.right, item)

return root # original root is root of modified tree



Search is similar

 Iterative version find 

 Look for the item using the order

 Keep moving through the nodes following 
the order.  

 Look at the driver for the while loop.

 Return the item since the item might be 
complex.  We could be searching on one 
part of it.

def find(self, item):

""" Search for item in BST

post: Returns item from BST if found, None otherwise"""

node = self.root

while node is not None and not(node.item == item):

if item < node.item:

node = node.left

else:

node = node.right

if node is None:

return None

else:

return node.item



Remove an item – How do we patch up the 

hole?
 Look at examples -

 Remove 13 - Easy if the item is at a 

leaf.

 Remove 14 - Easy if the item has 

only one child.

 Remove 3 - ?

 Find an item that can be used to 

patch the hole – replace the data in 

the node and preserve the BSP 

property.  We want the node whose 

data comes immediately before the 

data being removed (or 

immediately after).

 The predecessor is the largest 

value in the left subtree of the 

node.  So the predecessor has no 

right subtree. 



Look at delete

def delete(self, item):

"""remove item from binary search tree

post: item is removed from the tree"""

self.root = self._subtreeDelete(self.root, 
item)

def _subtreeDelete(self, root, item):

if root is None:   # Empty tree, nothing to do

return None

if item < root.item:                             # modify left

root.left = self._subtreeDelete(root.left, item)

elif item > root.item:                           # modify right

root.right = self._subtreeDelete(root.right, item)

else:                                            # delete root

if root.left is None:                        # promote right subtree

root =  root.right

elif root.right is None:                     # promote left subtree

root = root.left

else:

# root node can't be deleted, overwrite it with max of 

#    left subtree and delete max node from the subtree

root.item, root.left = self._subtreeDelMax(root.left)

return root



Find the max element

def _subtreeDelMax(self, root):

if root.right is None:  # root is the 
max 

return root.item, root.left # 
return max and promote left subtree

else:

# max is in right subtree, 
recursively find and delete it

maxVal, root.right = 
self._subtreeDelMax(root.right)

return maxVal, root 



Traversing a tree

 In-order traversal to create list of items in the BST in the proper order.

 Function asList

 Function visit that performs an in-order visit of the BST, performs some 

processing with  function f in-order at each node

 Important thing to notice – a function can be passed as a parameter to 

another function.  Functions are objects in Python



Run time analysis

 Traversal – visit each of n nodes one time, so Θ 𝑛 where there are n nodes.

 For search, insert, delete, only visit some of the nodes.  How many?

 For each  operation, take a path from the root to a leaf.  How long is this 

path?  In the worst case, this is the longest path.  So in the worst case the 

number of steps is the height of the tree. 

 The problem is that the height of the tree could be n – largest case - or it 

could be 𝑙𝑜𝑔2(𝑛).

 We would like to have a balanced tree, where about half of the items in any 

subtree are in the left side and half are in the right side.   We can guarantee 

this with some extra conditions that we will see later. 


