
Sharon Persinger

Fall 2019

Day 15 October 28

CSI33 Data Structures

Data Structures for Binary Trees

 The nodes of a binary tree can be
stored in a list and retrieved by
indexing.

 With a complete binary tree, nodes
can be labelled in order top to
bottom, left to right.

 The nodes can be stored in an array
indexed by this number.

 If a node is a position i, its left child
is at position 2*i +1 and its right child
is at position 2*i + 2.

 The parent of a node at position i is
at position (i-1)//2.

 We can generalize this for any binary
tree by representing a missing node
by None.

Linked Structure for Binary Tree

 See TreeNode.py for a class for a

node for a binary tree.

 Construct a binary tree by linking

up these nodes.

left = TreeNode(1)

light = TreeNode(3)

root = TreeNode(2, left, right)

Give left a left child.

 We want to create a container

class for the TreeNodes, as we

created a LinkedList class.

Binary search tree – a container class for

ordered sequences

 A binary search tree is a binary

tree with this property:

 For every node, every element in

the left subtree is less than the

element at the node, and every

element in the right subtree is

greater than the element at the

node.

 This structure makes for efficient

searching, as long as we can

arrange that the height of the tree

isn’t too large.

 Each item appears at most once.

 Example:

BST implementation

 Use TreeNode Class.

 Constructor for empty BST.

 Write methods to insert, search,

and remove items.

 BST.py

 insert – places a new item as a leaf

 Similar to search – look for the

location where the item should be,

using the order relation.

 Can do this iteratively or

recursively.

 Look at both versions in BST.py

Recursive version of insert

def insert_rec(self, item):

"""insert item into binary search tree

pre: item is not in self

post: item has been added to self"""

self.root = self._subtreeInsert(self.root, item)

 The recursive function _ _subtreeInsert moves down the
tree until it finds the location to place the item as a new
leaf.

def _subtreeInsert(self, root, item):

if root is None: # inserting into empty tree

return TreeNode(item) # the item becomes the new
tree root

if item == root.item:

raise ValueError("Inserting duplicate item")

if item < root.item: # modify left subtree

root.left = self._subtreeInsert(root.left, item)

else: # modify right subtree

root.right = self._subtreeInsert(root.right, item)

return root # original root is root of modified tree

Search is similar

 Iterative version find

 Look for the item using the order

 Keep moving through the nodes following
the order.

 Look at the driver for the while loop.

 Return the item since the item might be
complex. We could be searching on one
part of it.

def find(self, item):

""" Search for item in BST

post: Returns item from BST if found, None otherwise"""

node = self.root

while node is not None and not(node.item == item):

if item < node.item:

node = node.left

else:

node = node.right

if node is None:

return None

else:

return node.item

Remove an item – How do we patch up the

hole?
 Look at examples -

 Remove 13 - Easy if the item is at a

leaf.

 Remove 14 - Easy if the item has

only one child.

 Remove 3 - ?

 Find an item that can be used to

patch the hole – replace the data in

the node and preserve the BSP

property. We want the node whose

data comes immediately before the

data being removed (or

immediately after).

 The predecessor is the largest

value in the left subtree of the

node. So the predecessor has no

right subtree.

Look at delete

def delete(self, item):

"""remove item from binary search tree

post: item is removed from the tree"""

self.root = self._subtreeDelete(self.root,
item)

def _subtreeDelete(self, root, item):

if root is None: # Empty tree, nothing to do

return None

if item < root.item: # modify left

root.left = self._subtreeDelete(root.left, item)

elif item > root.item: # modify right

root.right = self._subtreeDelete(root.right, item)

else: # delete root

if root.left is None: # promote right subtree

root = root.right

elif root.right is None: # promote left subtree

root = root.left

else:

root node can't be deleted, overwrite it with max of

left subtree and delete max node from the subtree

root.item, root.left = self._subtreeDelMax(root.left)

return root

Find the max element

def _subtreeDelMax(self, root):

if root.right is None: # root is the
max

return root.item, root.left #
return max and promote left subtree

else:

max is in right subtree,
recursively find and delete it

maxVal, root.right =
self._subtreeDelMax(root.right)

return maxVal, root

Traversing a tree

 In-order traversal to create list of items in the BST in the proper order.

 Function asList

 Function visit that performs an in-order visit of the BST, performs some

processing with function f in-order at each node

 Important thing to notice – a function can be passed as a parameter to

another function. Functions are objects in Python

Run time analysis

 Traversal – visit each of n nodes one time, so Θ 𝑛 where there are n nodes.

 For search, insert, delete, only visit some of the nodes. How many?

 For each operation, take a path from the root to a leaf. How long is this

path? In the worst case, this is the longest path. So in the worst case the

number of steps is the height of the tree.

 The problem is that the height of the tree could be n – largest case - or it

could be 𝑙𝑜𝑔2(𝑛).

 We would like to have a balanced tree, where about half of the items in any

subtree are in the left side and half are in the right side. We can guarantee

this with some extra conditions that we will see later.

