
Sharon Persinger

Fall 2019

Day 9 September 25

CSI33 Data Structures

Stacks
Stack ADT

last in, first out data structure

LIFO

Stacks
Stack ADT specification:

class Stack(object):

#---

def __init__(self):

'''post: creates an empty LIFO stack'''

#---

def push(self, item):

'''post: places x on top of the stack'''

#---

def pop(self):

''post: removes and returns the top element of

the stack'''

#---

def top(self):

'''post: returns the top element of the stack

without removing it'''

#---

def size(self):

'''post: returns the number of elements in the

stack'''

Stack implementation is straightforward

Use a list for the items

Use Python append function for push, and

pop for pop.

Use Python len function for size

Application of stacks

 Undo function in software applications

 Computer operating systems - managing function

calls

 Run-time stack – When a function is called, the values of

local variables and the return address of the point at which

the program was suspended are pushed on to the run-time

stack. When the function ends, this information is popped

from the stack and the return address is used to find the

location of the next instruction to execute.

 Analysis of syntax – mathematical expressions,

programming expressions

Evaluating arithmetic expressions

 Evaluate (7+2)*8-4+3*5

 You have to understand

 Precedence of operations

 Parentheses

Reverse Polish or postfix notation

 Expresses arithmetic operations without parentheses

 Evaluate (7+2)*8-4+3*5 = 83

 7 2 + 8 * 4 – 3 5 * +

 Use a stack and this procedure:

1. If a number appears next in the expression, push this value on to the stack.

2. If an operator appears next, pop two items from the top of the stack, place the

operator between them, perform the operation, and push the result of the

operation on to the stack.

3. When the stack contains only one number, that is the result.

 Developed by the Polish mathematician Jan Lukasiewicz

Changing infix notation to reverse Polish

notation
 Assume the regular infix expression has a syntactically correct form.

 First break the regular infix expression into tokens – numbers, parentheses,

operator symbols.

Changing infix notation to reverse Polish

notation Create an empty stack

 Create an empty list to represent the postfix

expression

 For each token in the expression:

 If token is a number:

 Append it to the postfix expression

 elif token is a left parenthesis:

 Push it onto the stack

 elif token is an operator:

 while(stack is not empty and the top

stack item is an operator with

precedence greater that or equal to

token):

 Pop and append the operator onto

the postfix expression

 Push the token onto the stack

 else token must be a right parenthesis

 While the top item on the stack is not a

left parenthesis:

 Pop item from the stack and

append it onto the postfix

expression

 Pop the left parenthesis

 While the stack is not empty:

 Pop an item from the stack and append it onto

the postfix expression

