
Sharon Persinger

Fall 2019

Day 12 October 15

CSI33 Data Structures

⚫ Another divide-and-conquer approach

⚫ Take a list of data – numbers or other data with a

defined order.

⚫ Put the list into increasing order by

⚫ Splitting the list into two (approximately) equal

pieces.

⚫ Sort each piece into increasing order.

⚫ Merge the two sorted lists into one list.

MergeSort, a recursive sorting algorithm

https://www.hackerearth.com/pr
actice/algorithms/sorting/merge-
sort/visualize/

Look at a visualization.

https://www.hackerearth.com/practice/algorithms/sorting/merge-sort/visualize/

Merging two sorted lists is easy.

• Compare the first item in one list to the first item in the
other list, and find the smaller one.

• Append that smaller item to the merged list.
• Continue doing this until one or other of the sorted lists is

empty.
• If the other list still has elements, append all of those

elements onto the merged list.
• We don’t actually remove the items from the lists, as that

would increase the time complexity of the algorithm. Just
keep track of the indices.

Look at the merge method.

So how do we sort the smaller
lists?

• Recursively, using mergeSort
• What’s a base case?
• A list with one element or no elements is in increasing order.

• Time complexity Θ(𝑛 log 𝑛), n is the number of
items

• Log n levels

• Merging n data items at each level

• Merge is Θ(𝑛)
• Uses Θ 𝑛 additional memory since the lists are

copied.
• Θ 𝑛 log 𝑛 is the best achievable time

complexity for comparison sorts.

Analysis

Tower of Hanoi

• Mathematical puzzle
• Move all the disks from one post

to another post, subject to
these rules:

• Move one disk at a time.

• Disk must be placed on a post.

• Larger disk cannot be placed on top of a smaller disk.

Animation of solution

http://cs.armstrong.edu/liang/anim
ation/web/TowerOfHanoi.html

http://cs.armstrong.edu/liang/animation/web/TowerOfHanoi.html

Problem: Write a program that writes
instructions for solving the Tower of
Hanoi problem for n disks.

We can see the recursion in the
animation.
Look again at the animation for n = 2.
To move the tower of two disks from A to B

Move the top disk from A to C.

Move the bottom disk from A to B.

Move the top disk from C to B.

To move the tower of 3 disks from A
to B
Move the top tower of two disks from A to C.

Move the bottom disk from A to B.

Move the top tower of two disks from C to B.

The solution for n = 3 uses the
solution for n = 2. That’s
recursion.

Look at the code. Really easy.
We need general labels for the posts – source, dest (for destination),
temp (for temporary) – so we can use the same algorithm no matter
which post is the source and which the destination.
The base case is moving one disk from the source to the destination.
Time complexity is Θ(2𝑛). Each case has two recursive calls and the
size of the problem is reduced by 1 each time.

How many operations would it take to solve the problem for 64 disks?

Problem: Write a program that writes
instructions for solving the to the Tower
of Hanoi problem for n disks.

True-False assignment

Programming assignment

Write a program that
finds the power set
of a set of n
elements.
Another 2𝑛problem.

