
Sharon Persinger

Fall 2019

Day 11 October 2

CSI33 Data Structures

⚫ Using Divide and conquer, you solve a problem by

− Breaking it into some smaller problems.

− Solving each of the smaller problems.

− Reassembling the solutions of the smaller problems into a solution to the big

problem.

General problem solving method: Divide-and-
conquer

Recursion, a specific type of divide-and-counquer

⚫ n factorial or n! = n(n-1)(n-2) ···(2)(1

⚫ A formal recursive definition of n! = fact(n)

− If n = 0, fact(n) = 1

− Else fact(n) = n · fact(n-1)

⚫ This is a recursive definition. The function is used in the definition of

the function.

⚫ How is is not a circular definition?

⚫ Each successive function call has a smaller number as the argument to

the function. Eventually we will get to fact(0) = 1

Write a recursive implementation of fact(n).

⚫ Easy!

Defining functions recursively

⚫ A properly defined recursive function must have one or

more base cases where the function can be computed

without a recursive call to the function.

⚫ Every chain of recursive calls must eventually

terminate at a base case.

Find all the anagrams (permutations) of a string of letters.

⚫ Think recursively!

⚫ To find all the permutations

of the letters in ‘cat’, you

could

− First find all the permutations of the

letters in ‘at’

− Then insert the letter ‘c’ into every

possible position in each of those

strings.

Write a recursive definition of an anagrams function

⚫ Think recursively!

⚫ Specification:

def anagrams(word):

“pre: word is a string, possibly

empty”

“post: return value is the list of

all permutations of the characters

in the string word”

⚫ What to use as the base

case?

Binary search is a divide-and-conquer algorithm.

⚫ Compare the earlier version to a recursive implementation

⚫ Chapter 1 bsearch

⚫ Chapter 6 bsearch

Exponentiation

⚫ Usual version of exponentiation uses a counting loop

⚫ Write a function loopPower(a, n) that uses a counting loop to raise the

base a to the integer power n.

⚫ Easy, but time is Θ(𝑛)

Faster version of exponentiation using recursion

⚫ Compute 2^16 = (2^8)^2

⚫ 2^8 = (2^4)^2 and 2^4 = (2^2)^2

⚫ So 2^2 = 4, 4^2 = 16, 16^2 = 256, 256^2 = 56,536

⚫ 4 operations of repeated squaring, not 15 multiplications as

with the loop method

Recursive version of exponentiation

⚫ a^n =

⚫ a^(n//2) · a^(n//2) if n is even

− a^(n//2) · a^(n//2) · a if n is odd

⚫ Base case a^0 = 1

⚫

⚫ Time analysis?

Fibonacci numbers Fib(n)

⚫ Fib(1) = 1

⚫ Fib(2) = 1

⚫ Fib(n) = Fib(n-1) + Fib(n-2) for n > 2

⚫ Calculate by hand

⚫ Fib(3)

⚫ Fib(4)

⚫ Fib(6)

⚫ Write a recursive function definition for

Fib(n) and use it.

⚫ Write a definition that uses a loop.

⚫ Which is more efficient? Why?

Review the time analysis of recursive function
examples

• Factorial
• Anagrams/permutations
• Binary search
• Exponentiation
• Fibonacci numbers

True/False assignment

