CSI133 Data Structures

Sharon Persinger
Fall 2019
Day 11 October 2

General problem solving method: Divide-and-
conquer

« Using Divide and conquer, you solve a problem by
- Breaking it into some smaller problems.

- Solving each of the smaller problems.

- Reassembling the solutions of the smaller problems into a solution to the big
problem.

Recursion, a specific type of divide-and-counquer

n factorial or n! = n(n-1)(n-2) ---(2)(1

A formal recursive definition of n! = fact(n)
- If n=20, fact(n) =1
- Else fact(n) = n - fact(n-1)

o This is a recursive definition. The function is used in the definition of
the function.

« How is is not a circular definition?

« Each successive function call has a smaller number as the argument to
the function. Eventually we will get to fact(0) = 1

Write a recursive implementation of fact(n).

Easy!

Defining functions recursively

« A properly defined recursive function must have one or
more base cases where the function can be computed
without a recursive call to the function.

« Every chain of recursive calls must eventually
terminate at a base case.

Find all the anagrams (permutations) of a string of letters.

« Think recursively!

« To find all the permutations
of the letters in ‘cat’, you
could

— First find all the permutations of the
letters in ‘at’

- Then insert the letter ‘c’ into every
possible position in each of those
strings.

Write a recursive definition of an anagrams function

« Think recursively!

« Specification:

def anagrams(word):

“pre: word is a string, possibly

empty” « What to use as the base
“post: return value is the list of case?

all permutations of the characters

in the string word”

Binary search is a divide-and-conquer algorithm.

« Compare the earlier version to a recursive implementation
« Chapter 1 bsearch
« Chapter 6 bsearch

Exponentiation

« Usual version of exponentiation uses a counting loop

« Write a function loopPower(a, n) that uses a counting loop to raise the
base a to the integer power n.

. Easy, but time is ©(n)

Faster version of exponentiation using recursion

« Compute 2"16 = (2"8)"2
e 2"8=(2"4)"2 and 2”4 =(2"2)"2
e 5S02"2=4,4"2=16,16"2 =256, 256”2 = 56,536

« 4 operations of repeated squaring, not 15 multiplications as
with the loop method

Recursive version of exponentiation

. aAn =
e a™(n//2)-a”(n//2)if nis even
- a™(n//2) - a*(n//2) - aif nis odd

Base case a”0 =1

Time analysis?

Fibonacci numbers Fib(n)

o Write a recursive function definition for
1 Fib(n) and use it.

1

Fib(1)
. Fib(2)

« Write a definition that uses a loop.

« Fib(n) = Fib(n-1) + Fib(n-2) forn>2 ' \which is more efficient? Why?

« Calculate by hand
« Fib(3)
« Fib(4)
« Fib(6)

Review the time analysis of recursive function
examples

Factorial
Anagrams/permutations
Binary search
Exponentiation
Fibonacci numbers

True/False assignment

