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⚫ Using Divide and conquer, you solve a problem by

− Breaking it into some smaller problems.

− Solving each of the smaller problems.

− Reassembling the solutions of the smaller problems into a solution to the big 

problem.

General problem solving method: Divide-and-
conquer



Recursion, a specific type of divide-and-counquer

⚫ n factorial or n! = n(n-1)(n-2) ···(2)(1

⚫ A formal recursive definition of n! = fact(n)

− If n = 0, fact(n) = 1

− Else fact(n) = n · fact(n-1)

⚫ This is a recursive definition.  The function is used in the definition of 

the function.

⚫ How is is not a circular definition?

⚫ Each successive function call has a smaller number as the argument to 

the function.  Eventually we will get to fact(0) = 1



Write a recursive implementation of fact(n).

⚫ Easy!



Defining functions recursively

⚫ A properly defined recursive function must have one or 

more base cases where the function can be computed 

without a recursive call to the function.

⚫ Every chain of recursive calls must eventually 

terminate at a base case.



Find all the anagrams (permutations) of a string of letters.

⚫ Think recursively!

⚫ To find all the permutations 

of the letters in ‘cat’, you 

could

− First find all the permutations of the 

letters in ‘at’

− Then insert the letter ‘c’ into every 

possible position in each of those 

strings.



Write a recursive definition of an anagrams function

⚫ Think recursively!

⚫ Specification:

def anagrams(word):

“pre: word is a string, possibly 

empty”

“post:  return value is the list of 

all permutations of the characters 

in the string word”

⚫ What to use as the base 

case?



Binary search is a divide-and-conquer algorithm.

⚫ Compare the earlier version to a recursive implementation

⚫ Chapter 1 bsearch

⚫ Chapter 6 bsearch



Exponentiation

⚫ Usual version of exponentiation uses a counting loop

⚫ Write a function loopPower(a, n)  that uses a counting loop to raise the 

base a to the integer power n.

⚫ Easy, but time is Θ(𝑛)



Faster version of exponentiation using recursion

⚫ Compute 2^16  = (2^8)^2

⚫ 2^8 = (2^4)^2   and 2^4 = (2^2)^2

⚫ So 2^2 = 4, 4^2 = 16, 16^2 = 256, 256^2 = 56,536

⚫ 4 operations of repeated squaring, not 15 multiplications as 

with the loop method



Recursive version of exponentiation

⚫ a^n = 

⚫ a^(n//2) · a^(n//2) if n is even 

− a^(n//2) · a^(n//2) · a if n is odd

⚫ Base case a^0 = 1

⚫

⚫ Time analysis?



Fibonacci numbers  Fib(n)

⚫ Fib(1) = 1

⚫ Fib(2) = 1

⚫ Fib(n) = Fib(n-1) + Fib(n-2) for n > 2

⚫ Calculate by hand

⚫ Fib(3)

⚫ Fib(4)

⚫ Fib(6)

⚫ Write a recursive function definition for 

Fib(n) and use it. 

⚫ Write a definition that uses a loop.

⚫ Which is more efficient? Why?



Review the time analysis of recursive function 
examples

• Factorial
• Anagrams/permutations
• Binary search
• Exponentiation
• Fibonacci numbers



True/False assignment


