
Sharon Persinger

Fall 2019

Day 10 October 2

CSI33 Data Structures

Queues

 First in, first out data structure

- FIFO

 Items are added at the end -

enqueue

 Items are removed from the

front or head – dequeue

 Familiar situation – bus line,

checkout line, ticket line …

Queue ADT – implemented using Python

list

#--

class Queue:

#--

def __init__(self):

'''create an empty FIFO queue'''

#--

def size(self):

'''return number of items in the queue

post: returns number of items in the queue'‘’

#--

def enqueue(self, x):

'''insert x at end of queue

post: x is added to the queue'''

#--

def front(self):

'''return first item in queue

pre: queue is not empty; IndexError is

raised if empty

post: returns first item in the queue'''

#--

def dequeue(self):

'''remove and return first item in queue

pre: queue is not empty; IndexError is

raised if empty

post: removes and returns first item in the

queue'''

#--

Analysis of queue implementation using

Python list

 enqueue using insert at position 0

 Recopy the entire queue with every insertion - so Θ 𝑛 where n is the number of

elements in the queue

 dequeue using pop

 Constant time

 What if we decided to enqueue at the end using append and dequeue by

deleting at the beginning position 0?

 Still have the recopying issue, now to move very element up each time there is a

dequeue

 Easy to implement

Applications

 Operating systems - Manage shared resources, such as a printer

 Determine whether a string is a palindrome

 Queue to read the string forward

 Stack to read the string backward

 Module palindrome.py

Analysis of queue implementation using

Linked List

 enqueue using insert at tail or append

 Keep a tail reference so this is constant time

 Dequeue using remove at head

 Again constant time

 Why do it this way instead of dequeue at the tail?

 Need a Linked List with tail implementation

Implementation using a circular array

Circular array implementation of a

queue

 Invariant:

 Array/list items large enough to

hold the entire queue

 Variable capacity for the fixed

size of the array

 Variable size that tells how many

items are in the queue

 So 0 is less than or equal to size

is less than or equal to capacity

 Variable head is the index of the

front of the queue

 tail == (head+size-1)%capacity

 If size > 0, the queue items are at
locations items[head] through
items[head+size-

1)%capacity]

 If size ==0, head == (tail +

1)%capacity

Simulation using a queue

 Modelling the behavior of a

real-word queue -

supermarket, ticket line, bank,

restaurant, car wash

 Example – small grocery store

with only one register. Use a

simulation to find out

 How long customers wait on

average? How long does the

line get? What is the

maximum wait?

 Simulate the check out process.

 Customers arrive with a

number of items and are served

in the order they arrive.

 There is a randomness to the

times at which they arrive and

to the number of items they

have.

 The time to check out depends

on the number of items.

Simulation using a queue

 Some abstractions to simplify

 The simulation will be
controlled by “clock ticks” or
counting. Think of a “clock
tick” as representing a second.

 A customer consists of an
arrival time and a number of
items. The numbers are
generated randomly subject to
some conditions and stored in a
file.

 See simulation.py for
genTestData

 If the store serves 30 customers
per hour, then one customer
arrive on average every 2
minutes or 120 seconds.

 So each second there is a 1/120
probability of a customer
arriving.

 Generate a random number in
[0, 1) and if that number is <
1/arrivaltime, create a
customer.

Simulation using a queue

 Create a class for Customer

 Read the file into a queue of

Customer objects.

 Simulate using CheckerSim object.

 CheckerSim object takes a queue

of Customers and an average

processing time for one item as

parameters and computes a

number of statistics.

 averageWait

 maximumWait

 maximumLineLength

 Run method sets the clock ticking-

time driven

 At each clock tick, any customer in

the queue arriving at that time is

move into the checkout line.

 If the checker is processing another

Customer, this Customer has to

wait to be processed – decrease

the serviceTime variable

 Once the serviceTime variable is 0,

if there is a Customer waiting,

process them and update the

statistics

