
Sharon Persinger

Fall 2019

Day 10 October 2

CSI33 Data Structures

Queues

 First in, first out data structure

- FIFO

 Items are added at the end -

enqueue

 Items are removed from the

front or head – dequeue

 Familiar situation – bus line,

checkout line, ticket line …

Queue ADT – implemented using Python

list

#--

class Queue:

#--

def __init__(self):

'''create an empty FIFO queue'''

#--

def size(self):

'''return number of items in the queue

post: returns number of items in the queue'‘’

#--

def enqueue(self, x):

'''insert x at end of queue

post: x is added to the queue'''

#--

def front(self):

'''return first item in queue

pre: queue is not empty; IndexError is

raised if empty

post: returns first item in the queue'''

#--

def dequeue(self):

'''remove and return first item in queue

pre: queue is not empty; IndexError is

raised if empty

post: removes and returns first item in the

queue'''

#--

Analysis of queue implementation using

Python list

 enqueue using insert at position 0

 Recopy the entire queue with every insertion - so Θ 𝑛 where n is the number of

elements in the queue

 dequeue using pop

 Constant time

 What if we decided to enqueue at the end using append and dequeue by

deleting at the beginning position 0?

 Still have the recopying issue, now to move very element up each time there is a

dequeue

 Easy to implement

Applications

 Operating systems - Manage shared resources, such as a printer

 Determine whether a string is a palindrome

 Queue to read the string forward

 Stack to read the string backward

 Module palindrome.py

Analysis of queue implementation using

Linked List

 enqueue using insert at tail or append

 Keep a tail reference so this is constant time

 Dequeue using remove at head

 Again constant time

 Why do it this way instead of dequeue at the tail?

 Need a Linked List with tail implementation

Implementation using a circular array

Circular array implementation of a

queue

 Invariant:

 Array/list items large enough to

hold the entire queue

 Variable capacity for the fixed

size of the array

 Variable size that tells how many

items are in the queue

 So 0 is less than or equal to size

is less than or equal to capacity

 Variable head is the index of the

front of the queue

 tail == (head+size-1)%capacity

 If size > 0, the queue items are at
locations items[head] through
items[head+size-

1)%capacity]

 If size ==0, head == (tail +

1)%capacity

Simulation using a queue

 Modelling the behavior of a

real-word queue -

supermarket, ticket line, bank,

restaurant, car wash

 Example – small grocery store

with only one register. Use a

simulation to find out

 How long customers wait on

average? How long does the

line get? What is the

maximum wait?

 Simulate the check out process.

 Customers arrive with a

number of items and are served

in the order they arrive.

 There is a randomness to the

times at which they arrive and

to the number of items they

have.

 The time to check out depends

on the number of items.

Simulation using a queue

 Some abstractions to simplify

 The simulation will be
controlled by “clock ticks” or
counting. Think of a “clock
tick” as representing a second.

 A customer consists of an
arrival time and a number of
items. The numbers are
generated randomly subject to
some conditions and stored in a
file.

 See simulation.py for
genTestData

 If the store serves 30 customers
per hour, then one customer
arrive on average every 2
minutes or 120 seconds.

 So each second there is a 1/120
probability of a customer
arriving.

 Generate a random number in
[0, 1) and if that number is <
1/arrivaltime, create a
customer.

Simulation using a queue

 Create a class for Customer

 Read the file into a queue of

Customer objects.

 Simulate using CheckerSim object.

 CheckerSim object takes a queue

of Customers and an average

processing time for one item as

parameters and computes a

number of statistics.

 averageWait

 maximumWait

 maximumLineLength

 Run method sets the clock ticking-

time driven

 At each clock tick, any customer in

the queue arriving at that time is

move into the checkout line.

 If the checker is processing another

Customer, this Customer has to

wait to be processed – decrease

the serviceTime variable

 Once the serviceTime variable is 0,

if there is a Customer waiting,

process them and update the

statistics

