CSI33 Data Structures

Sharon Persinger
Fall 2019
Day 10 October 2

First in, first out data structure
- FIFO

ltems are added at the end -
enqueue

Items are removed from the
front or head - dequeue

Familiar situation - bus line,
checkout line, ticket line ...

Queue ADT - implemented using Python
list ’

def front(self):
B e “return first item in queue
class Queue: pre: queue is not empty; IndexError is
B e

raised if empty

def _init__(self): post: returns first item in the queue™
“create an empty FIFO queue™

B e e e e
B e
def size(self): def dequeue(self):
"return number of items in the queue “remove and return first item in queue
post: returns number of items in the queue'’ pre: queue is not empty; IndexError is
B e e

raised if empty

def enqueue(self, x): post: removes and returns first item in the
"insert x at end of queue queue™

post: x is added to the queue™

Analysis of queue implementation using
Python list

» enqueue using insert at position 0

» Recopy the entire queue with every insertion - so ®(n) where n is the number of
elements in the queue

» dequeue using pop

» Constant time

» What if we decided to enqueue at the end using append and dequeue by
deleting at the beginning position 0?

» Still have the recopying issue, now to move very element up each time there is a
dequeue

» Easy to implement

Applications

» Operating systems - Manage shared resources, such as a printer
» Determine whether a string is a palindrome

» Queue to read the string forward

» Stack to read the string backward

» Module palindrome.py

Analysis of queue implementation using
Linked List

» enqueue using insert at tail or append
» Keep a tail reference so this is constant time
» Dequeue using remove at head
» Again constant time
» Why do it this way instead of dequeue at the tail?

» Need a Linked List with tail implementation

Implementation using a circular array

write pointer

Array: /

buf{0] buff1] "mn buf{15] |:|-|.||[‘| 5] |:|-|.||'[I'.'l] d int
r]
butf14] o T [amprr buipy] TR PRITIET
o \ . m_r.-r'r
Pretend array is a circle: bul13] b0l budf1 3] . \/ -~ . / , I:|-|.r'I'[2]
buf{14] buf{1] '5 L

buf]13] buf{2] hLITI_'l E] III_I':. '-._II g Ilbu“:ﬁl
buf[12] buf{3] |
buf{11] bui{4] buff11] lI'L_ l.'____ | Bui[4]

_1'
buf{10] buf{5] __.-' 3
buf[10] \{2 R 1 IJ i Eru:I[E-]
bufi&l buflAl T q
buaffa] .. A nu1[ﬁ]

I:MIEH huil‘?l

Circular array implementation of a

queue
» Invariant:
» Array/list items large enough to

hold the entire queue

Variable capacity for the fixed
size of the array

Variable size that tells how many
items are in the queue

So 0 is less than or equal to size
is less than or equal to capacity

Variable head is the index of the
front of the queue

tail == (head+size-1)%capacity

If size > 0, the queue items are at
locations items [head] through
items [head+size-

1) Scapacity]

If size ==0, head == (tail +
1)%capacity

Simulation using a queue

» Modelling the behavior of a » Simulate the check out process.
real-word queue -
supermarket, ticket line, bank,
restaurant, car wash

» Customers arrive with a
number of items and are served
in the order they arrive.

» Example - small grocery store
with only one register. Use a
simulation to find out

» There is a randomness to the
times at which they arrive and
to the number of items they

» How long customers wait on have.
average?! How long does the
line get? What is the
maximum wait?

» The time to check out depends
on the number of items.

Simulation using a queue

Some abstractions to simplify

The simulation will be
controlled by “clock ticks” or
counting. Think of a “clock
tick” as representing a second.

A customer consists of an
arrival time and a number of
items. The numbers are
generated randomly subject to
some conditions and stored in a
file.

See simulation.py for
genTestData

» If the store serves 30 customers

per hour, then one customer
arrive on average every 2
minutes or 120 seconds.

So each second thereis a 1/120
probability of a customer
arriving.

Generate a random number in
[0, 1) and if that number is <
1/arrivaltime, create a
customer.

Simulation using a queue

» Run method sets the clock ticking-
time driven

Create a class for Customer

Read the file into a queue of

Customer objects. » At each clock tick, any customer in

the queue arriving at that time is

Simulate using CheckerSim object. move into the checkout line.
CheckerSim object takes a queue » If the checker is processing another
of Custqmer; and an average Customer, this Customer has to
processing time for one item as wait to be processed - decrease
parameters and computes a the serviceTime variable

number of statistics. o , ,
» Once the serviceTime variable is 0,

> averageWait if there is a Customer waiting,
» maximumWait process them and update the

» maximumLineLength statistics

