
CSI31 Introduction to Computer

Programming I

Dr. Sharon Persinger

November 21, 2018

Topics

 Simulation

 Randomness and pseudorandom number generator

functions in Python

 Racquetball

 Top-down design

Simulation and randomness

 Simulation: a representation through a computer program of some real

event – business, town, battle, science experiment.

 Called Monte Carlo simulations when the simulation uses a pseudo-
random number generator to generate numbers with uncertainty

 Randomness: Python's pseudorandom number module random

 randrange(start, stop) chooses a pseudorandom int x that satisfies start
<=x < stop

 random() chooses a pseudorandom float x that satisfies 0 <=x < 1

 Both uniform distribution: all possible values are equally likely to be
returned by the function

 Import the functions from the module random when you need them

Examples

 Write a function that returns a tuple that is the result of

rolling two dice.

 Write a function that returns a random card from a

standard 52 card deck.

 Write a function that returns True randomly p of the

time. Here p is a number between 0 and 1 inclusive.

Racquetball

 We are going to write a simulation of the game of

racquetball.

 http://www.youtube.com/watch?v=EXvyNKaFkaU

http://www.youtube.com/watch?v=EXvyNKaFkaU
http://www.youtube.com/watch?v=EXvyNKaFkaU

Racquetball

 Racquet sport played with a short-handled racquet,

hollow ball, on a court with four walls. Like handball but

with a racquet.

 Play: Server puts the ball into play. Players alternate hitting

the ball to keep it in play legally – rally. Player who fails to

hit the ball loses the rally. If the server wins the rally, a

point is won. If the server loses the rally, serve goes to

the other player. In order to win a point, a player must be

serving.

 Scoring: The first person to win 15 points wins the game.

Racquetball simulation

 What is the effect of small differences in ability in
racquetball? Measure the differences in ability by
probability of winning a serve.

 Program specification:

 Input: Program gets as input the service probabilities for Player
A and Player B and the number of games to simulate.

 Output: After the program has done the simulation, it prints a
report showing the number of games simulated and the
number and percent of games won by each player.

 The specification tells what the program should do, not
how it will do that.

Top-down design

 Start with the general problem.

 Express that problem in terms of smaller problems.

 Then express those problems in terms of smaller

problems, and so on, until you have described a small,

simple problem that you can write a program to solve.

 Also called successive refinement.

 Encourages the programmer to break a problem into

simpler parts

 Encourages the programmer to think about solving one

simpler problem at a time

Top level design for Racquetball simulation

 Print an introduction

 Get the inputs: probA, probB, n

 Simulate n games of racquetball using probA, probB.

 Print a report on the wins for playerA, playerB.

 THINK ABOUT ONE TASK AT A TIME!

Convert this immediately into a main

program with functions

def main():

printIntro():

probA, probB, n = getInputs()

winsA, winsB = SimNgames(n, probA, probB)

printSummary(winsA, winsB)

We’ve decided what functions we need to write, what

parameters they take, how many values they return. The

variable names indicate the roles of the parameters and the

return values.

Implementation

 Some functions we can implement immediately:

 printIntro()

 getInputs()

 printSummary(winsA, winsB)

printIntro()

def printIntro():

 print("This program simulates a game of racquetball between two")

 print('players called "A" and "B". The ability of each player is')

 print("indicated by a probability (a number between 0 and 1) that")

 print("the player wins the point when serving. Player A always")

 print("has the first serve.")

getInputs()

def getInputs():

#Returns the three simulation parameters

 a = eval(input("What is the prob. player A wins a serve? "))

 b = eval(input("What is the prob. player B wins a serve? "))

 n = eval(input("How many games to simulate? "))

 return a, b, n

printSummary(winsA, winsB)

def printSummary(winsA, winsB):

#Prints a summary of wins for each player.

 n = winsA + winsB

 print("\nGames simulated:", n)

 print("Wins for A: {0}({1:0.1%})".format(winsA, winsA/n))

 print("Wins for B: {0} {1:0.1%})".format(winsB, winsB/n))

Formatted output

 str.format(*args, **kwargs) Perform a string formatting

operation. Read section 5.8

 Many different types of string formatting operations

 {0}: replace this with the 0-position argument

 ({1:0.1%}): replace with the 1-postion argument,

formatted by 0.1%, which means formatted as a percent

with 1 decimal place

What’s left? Designing simNGames

Counted loop to simulate one game, n times

Initialize winsA and WinsB to 0

Loop n times

Simulate a game #still have to do this

If playerA wins

Add 1 to winsA

Else

Add 1 to winsB

simNGames

def simNGames(n, probA, probB):

#Simulates n games of racquetball between players

#whose abilities are represented by the probability of

 #winning a serve. Returns number of wins for A and B

winsA = winsB = 0

 for i in range(n):

 scoreA, scoreB = simOneGame(probA, probB)

 #still have to do this

 if scoreA > scoreB:

 winsA = winsA + 1

 else:

 winsB = winsB + 1

return winsA, winsB

Third-level design: simOneGame

Design:

 Initialize scores to 0

 Set serving to 'A'

 Loop while game is not over:

 Simulate one serve of whichever player is serving

 Update the status- score and player serving- of the

 game depending on outcome of serve

Return scores

Easy part of simOneGame

def simOneGame(probA, probB):

 scoreA = 0

 scoreB = 0

 serving = 'A'

 while not gameOver(scoreA, scoreB) #still have to do this

 if serving == 'A':

 if random() < probA:

 scoreA = score A+1

 else:

 serving == 'B”

 else: #serving == ‘B’

 if random() < probB:

 scoreB = score B+1

 else:

 serving == 'A”

 return score A, scoreB

What does

if random() < probA:

 scoreA = score A+1

 else:

 serving == 'B”

Do?

Last part: gameOver()

def gameOver(a, b):

#a and b represent scores for a

#racquetball game

#Returns True if the game is over, False otherwise.

 return a==15 or b==15

