
CSI31 Introduction to Computer

Programming I

Dr. Sharon Persinger

November 21, 2018

Topics

 Simulation

 Randomness and pseudorandom number generator

functions in Python

 Racquetball

 Top-down design

Simulation and randomness

 Simulation: a representation through a computer program of some real

event – business, town, battle, science experiment.

 Called Monte Carlo simulations when the simulation uses a pseudo-
random number generator to generate numbers with uncertainty

 Randomness: Python's pseudorandom number module random



 randrange(start, stop) chooses a pseudorandom int x that satisfies start
<=x < stop

 random() chooses a pseudorandom float x that satisfies 0 <=x < 1

 Both uniform distribution: all possible values are equally likely to be
returned by the function

 Import the functions from the module random when you need them

Examples

 Write a function that returns a tuple that is the result of

rolling two dice.

 Write a function that returns a random card from a

standard 52 card deck.

 Write a function that returns True randomly p of the

time. Here p is a number between 0 and 1 inclusive.

Racquetball

 We are going to write a simulation of the game of

racquetball.

 http://www.youtube.com/watch?v=EXvyNKaFkaU

http://www.youtube.com/watch?v=EXvyNKaFkaU
http://www.youtube.com/watch?v=EXvyNKaFkaU

Racquetball

 Racquet sport played with a short-handled racquet,

hollow ball, on a court with four walls. Like handball but

with a racquet.

 Play: Server puts the ball into play. Players alternate hitting

the ball to keep it in play legally – rally. Player who fails to

hit the ball loses the rally. If the server wins the rally, a

point is won. If the server loses the rally, serve goes to

the other player. In order to win a point, a player must be

serving.

 Scoring: The first person to win 15 points wins the game.

Racquetball simulation

 What is the effect of small differences in ability in
racquetball? Measure the differences in ability by
probability of winning a serve.

 Program specification:

 Input: Program gets as input the service probabilities for Player
A and Player B and the number of games to simulate.

 Output: After the program has done the simulation, it prints a
report showing the number of games simulated and the
number and percent of games won by each player.

 The specification tells what the program should do, not
how it will do that.

Top-down design

 Start with the general problem.

 Express that problem in terms of smaller problems.

 Then express those problems in terms of smaller

problems, and so on, until you have described a small,

simple problem that you can write a program to solve.

 Also called successive refinement.

 Encourages the programmer to break a problem into

simpler parts

 Encourages the programmer to think about solving one

simpler problem at a time

Top level design for Racquetball simulation

 Print an introduction

 Get the inputs: probA, probB, n

 Simulate n games of racquetball using probA, probB.

 Print a report on the wins for playerA, playerB.

 THINK ABOUT ONE TASK AT A TIME!

Convert this immediately into a main

program with functions

def main():

printIntro():

probA, probB, n = getInputs()

winsA, winsB = SimNgames(n, probA, probB)

printSummary(winsA, winsB)

We’ve decided what functions we need to write, what

parameters they take, how many values they return. The

variable names indicate the roles of the parameters and the

return values.

Implementation

 Some functions we can implement immediately:

 printIntro()

 getInputs()

 printSummary(winsA, winsB)



printIntro()

def printIntro():

 print("This program simulates a game of racquetball between two")

 print('players called "A" and "B". The ability of each player is')

 print("indicated by a probability (a number between 0 and 1) that")

 print("the player wins the point when serving. Player A always")

 print("has the first serve.")

getInputs()

def getInputs():

#Returns the three simulation parameters

 a = eval(input("What is the prob. player A wins a serve? "))

 b = eval(input("What is the prob. player B wins a serve? "))

 n = eval(input("How many games to simulate? "))

 return a, b, n

printSummary(winsA, winsB)

def printSummary(winsA, winsB):

#Prints a summary of wins for each player.

 n = winsA + winsB

 print("\nGames simulated:", n)

 print("Wins for A: {0}({1:0.1%})".format(winsA, winsA/n))

 print("Wins for B: {0} {1:0.1%})".format(winsB, winsB/n))

Formatted output

 str.format(*args, **kwargs) Perform a string formatting

operation. Read section 5.8

 Many different types of string formatting operations

 {0}: replace this with the 0-position argument

 ({1:0.1%}): replace with the 1-postion argument,

formatted by 0.1%, which means formatted as a percent

with 1 decimal place

What’s left? Designing simNGames

Counted loop to simulate one game, n times

Initialize winsA and WinsB to 0

Loop n times

Simulate a game #still have to do this

If playerA wins

Add 1 to winsA

Else

Add 1 to winsB

simNGames

def simNGames(n, probA, probB):

#Simulates n games of racquetball between players

#whose abilities are represented by the probability of

 #winning a serve. Returns number of wins for A and B

winsA = winsB = 0

 for i in range(n):

 scoreA, scoreB = simOneGame(probA, probB)

 #still have to do this

 if scoreA > scoreB:

 winsA = winsA + 1

 else:

 winsB = winsB + 1

return winsA, winsB

Third-level design: simOneGame

Design:

 Initialize scores to 0

 Set serving to 'A'

 Loop while game is not over:

 Simulate one serve of whichever player is serving

 Update the status- score and player serving- of the

 game depending on outcome of serve

Return scores

Easy part of simOneGame

def simOneGame(probA, probB):

 scoreA = 0

 scoreB = 0

 serving = 'A'

 while not gameOver(scoreA, scoreB) #still have to do this

 if serving == 'A':

 if random() < probA:

 scoreA = score A+1

 else:

 serving == 'B”

 else: #serving == ‘B’

 if random() < probB:

 scoreB = score B+1

 else:

 serving == 'A”

 return score A, scoreB


What does

if random() < probA:

 scoreA = score A+1

 else:

 serving == 'B”

Do?

Last part: gameOver()

def gameOver(a, b):

#a and b represent scores for a

#racquetball game

#Returns True if the game is over, False otherwise.

 return a==15 or b==15

