
CSI31

Introduction to Computer

Programming I

Dr. Sharon Persinger

November 19, 2018

Topics

● post-test loops

● loop-and-a-half

● event loops

Post-test loops

● In a post-test-loop, the loop condition is tested after

the body of the loop is executed. So the loop body will

be executed at least once.

● Some programming languages have a do-while loop

construct. Python doesn’t have a do-while loop.

Input validation in Python, various ways

of creating a post-test loop

Problem: Get a non-negative number as input.

● Seed the loop to get started:

number = -1 #illegal value to get started

while number < 0:

 number = float(input(“Enter a positive number: “))

● break from an infinite loop:

while True:

 number = float(input(“Enter a positive number: ”))

if number >= 0: break

One more version

● add information to the user

while True:

 number = float(input”Enter a positive number: “))

 if number > = 0:

 break #exit with valid input

 else:

 print(“The number you entered was not positive.”)

break statement

● The break statement can appear only inside a for

loop or a while loop.

● Executing break causes the innermost loop to

terminate.

● Execution continues with the next statement

immediately following the loop.

Loop and a half version of sentinel loop

● General pattern:

while True:

get next data item

if the item is the sentinel, break

process the item

● The sentinel is not processed.

● The break comes in the middle of the loop.

break statement: good or bad?

● Some programmers never (or almost never)

use break statements. They think that the

reason a loop terminates should be obvious -

the loop condition is False.

● In any case, it is bad practice to use multiple

break statements in a loop. The logic of the

loop will be confusing.

GUI and Event loop

● Programs that use a graphical user interface or GUI are written

in an event driven style.

● The user interface is displayed and then the interface waits for

user events - mouse clicks, keys typed.

● The program processes the event.

● Underlying this is the event loop.

draw the GUI

while True:

 get next event

 if event is quit signal: break

 process the event

clean up and quit

Example

● event_loop1.py Change the background of a window in

response to key presses,

● The program waits for the user to press a key.

● Single input mode - keyboard

Another example with multimodal

input - either key or mouse
● Write a program that changes the color of the window in

response to keyboard click and allows the user to type text into

the window by clicking the window and then typing.

● Problem - win.getKey() waits for a key to be pressed,

win.getMouse() waits for the mouse to be clicked.

● How can we get input from either? Multimodal input

○ use methods checkKey() and checkMouse()

○ checkKey() returns key if one is pressed, returns the empty

string if no key is pressed since last call to checkKey() or

getkey(),

○ checkMouse() returns Point if mouse is clicked, returns

None if the mouse has not been clicked since the last call to

getMouse() or checkMouse()

Design of solution

Draw the GUI

while True:

 key = checkKey()

 if key is quit signal: break

 if key is valid key:

 process key

 click = checkMouse():

 if click is valid:

 process click

clean up and exit

Implementation of solution

event_loop3.py

The program uses functions to handle the key press and

mouse click.

Handling the mouse is complicated.

Display an Entry box.

Get the text typed into the box until Enter is pressed.

Remove the entry box and display the text in a Text

object.

