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Abstract. Let H2(S) be the Hardy space on the unit sphere S in Cn, n ≥ 2. Consider
the Hankel operator Hf = (1 − P )Mf |H2(S), where the symbol function f is allowed to
be arbitrary in L2(S, dσ). We show that for p > 2n, Hf is in the Schatten class Cp if and
only if f − Pf belongs to the Besov space Bp. To be more precise, the “if” part of this
statement is easy. The main result of the paper is the “only if ” part. We also show that
the membership Hf ∈ C2n implies f − Pf = 0, i.e., Hf = 0.

1. Introduction

Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. Throughout the paper, we
assume that the complex dimension n is greater than or equal to 2. Let σ be the positive,
regular Borel measure on S which is invariant under the orthogonal group O(2n), i.e., the
group of isometries on Cn ∼= R2n which fix 0. We take the usual normalization σ(S) = 1.

Recall that the orthogonal projection P from L2(S, dσ) onto the Hardy space H2(S)
is given by the Cauchy integral formula

(Pf)(w) =
∫

f(ζ)
(1− 〈w, ζ〉)n

dσ(ζ), |w| < 1,

[9,page 39]. As usual, the Hankel operator Hf : H2(S)→ L2(S, dσ)	H2(S) is defined by
the formula

Hf = (1− P )Mf |H2(S).

Here we are interested in the so-called “one-sided” theory of Hankel operators, as explained
on page 27 in [12]. The challenge of the “one-sided” theory is to deal with Hankel operators
Hf which cannot be expressed in the form of a commutator [Mg, P ], g ∈ L2(S, dσ). As
it turns out, “one-sided” problems can usually be interpreted as concrete versions of this
simple question: if Hf has a certain property, does Hf−Pf have the same property?

Since the boundedness and compactness of Hf were characterized in [12], in this paper
we will take up the task of determining when Hf belongs to a Schatten class. Recall that
for each 1 ≤ p <∞, the Schatten class Cp consists of operators A satisfying the condition
‖A‖p <∞, where the p-norm is given by the formula

(1.1) ‖A‖p = {tr((A∗A)p/2)}1/p.
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In terms of the s-numbers s1(A), s2(A), ..., sj(A), ... of A (see [5,Section II.7]), we have
‖A‖p = (

∑∞
j=1{sj(A)}p)1/p. For convenience, we adopt the convention that ‖X‖p =∞ if

the operator X is unbounded.

The motivation for this investigation mainly came from the following sources:

(1) In the unit circle case, the classic result of Peller [7,8] completely determines the
Schatten class membership of the Hankel operator Hf , f ∈ L2(T). But this result is really
about commutators, for on L2(T) we always have Hf = [Mf−Pf , P ].

(2) The result of Janson and Wolff on the Schatten-class membership of commutators
of singular integral operators on Rn [6].

(3) In [3] , Feldman and Rochberg showed that if h ∈ H2(S) and if p > 2n, then
Hh̄ ∈ Cp if and only if h ∈ Bp. But the assumption that h ∈ H2(S) leads to the identity
Hh̄ = [Mh̄, P ]. So, again, this is a result about commutators.

(4) In [3], Feldman and Rochberg also showed that if h ∈ H2(S) and if Hh̄ ∈ C2n,
then h is a constant.

Although these results are all about commutators, they do provide hints as to what
we should expect for Hf . To state our results, let us introduce the Besov spaces on S.

Definition 1.1. (a) For each 1 ≤ p <∞ and each g ∈ L2(S, dσ), denote

Ip(g) =
∫∫
|g(ζ)− g(ξ)|p

|1− 〈ζ, ξ〉|2n
dσ(ζ)dσ(ξ).

(b) For each 1 ≤ p <∞, the Besov space Bp consists of those g ∈ L2(S, dσ) which satisfy
the condition Ip(g) <∞.

Using interpolation techniques [1,6], it is easy to prove

Proposition 1.2. In the case 2n < p <∞, if f ∈ Bp, then [Mf , P ] ∈ Cp.

Since Hf = Hf−Pf , from this proposition we immediately obtain

Corollary 1.3. Let 2n < p <∞. For any f ∈ L2(S, dσ), if f − Pf ∈ Bp, then Hf ∈ Cp.

The main result of the paper is the converse to Corollary 1.3:

Theorem 1.4. Let 2n < p <∞. Then there exists a constant 0 < C <∞ which depends
only on n and p such that the inequality

(1.2) Ip(f − Pf) ≤ C‖Hf‖pp

holds for every f ∈ L2(S, dσ), where ‖.‖p is the Schatten p-norm defined by (1.1).

Unlike Peller’s classic result on the unit circle, in the case n ≥ 2 there is a complete
“cutoff line” for Schatten class Hankel operators at p = 2n:

Theorem 1.5. Let f ∈ L2(S, dσ). If Hf belongs to the Schatten class C2n, then Hf = 0.
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In fact, we have a more quantitative result in terms of s-numbers:

Theorem 1.6. Let f ∈ L2(S, dσ). If Hf is bounded and if Hf 6= 0, then there exists an
ε = ε(f) > 0 such that

s1(Hf ) + ...+ sk(Hf ) ≥ εk(2n−1)/2n

for every k ∈ N.

It is elementary that, for any 1 < p < ∞, if {ak} ∈ `p+, then k−(p−1)/p
∑k
j=1 aj → 0

as k →∞. Thus Theorem 1.5 is an immediate consequence of Theorem 1.6.

The rest of the paper contains the proofs of these results. Section 2 deals with various
estimates of mean oscillation. The culmination of these estimates is an inequality (Lemma
2.4) which tells us how mean oscillation behaves under the combined action of P and
Möbius transform. In Section 3 we derive a “quasi-resolution” of the Cauchy projection
P , which is perhaps the key to the proof of Theorem 1.4. This “quasi-resolution” is what
allows ‖Hf‖p to get into the action. In Section 4 we introduce a gadget called Jp, and we
show that it dominates the Ip defined in Definition 1.1. Roughly speaking, Jp “takes the
exponent p outside the integral”, and the fact that Jp dominates Ip is a kind of “reverse
Hölder’s inequality”. We should mention that the proof of Proposition 4.2 is based on
ideas adapted from [6].

In Section 5 we bring together the estimates in the above-mentioned three sections to
show that there is a C such that inequality (1.2) holds for every f ∈ L2(S, dσ) satisfying
the condition Ip(f −Pf) <∞. The reason that we need this intermediate step is that our
proof uses cancellation (twice). Finally, in Section 6 we use a technique called “smoothing”
to remove the a priori condition Ip(f − Pf) <∞, completing the proof of Theorem 1.4.

In Section 7 we give an easy proof of Proposition 1.2. Although Proposition 1.2 can be
proved by using the conventional interpolation techniques in [1,6], the proof given here can
perhaps best be described as a “hybrid” proof. That is, we combine the idea behind the
Marcinkiewicz interpolation with the fact that we are dealing with a commutator, which
offers nice cancellation properties. By taking full advantage of cancellation, we are able to
find a rather explicit bound for ‖[Mf , P ]‖pp. This more explicit version of the result will
be established as Proposition 7.1.

The technique in the proof of Proposition 7.1 can be further exploited. In Proposition
7.2, we use the same technique to show that, if f is Lipschitz on S, then the commutator
[Mf , P ] belongs to the Lorentz-like ideal C+

2n [5]. This provides an interesting contrast to
Theorem 1.5: while there are no nonzero Hankel operators in the Schatten class C2n, there
are plenty of nonzero Hankel operators in the slightly larger ideal C+

2n. The significance of
Proposition 7.2 extends beyond curiosity; it will be needed in the proof of Theorem 1.6.

Section 8, the longest in the paper, is devoted to the proof of Theorem 1.6. The length
of the section is a reflection of the fact that the proof is really technical. The proof involves
functions of a very specific type and hinges on obtaining the lower bound given in Lemma
8.14. A moment of reflection on the lower bound tells us that this is a natural approach
for proving Theorem 1.6.
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In Section 9 we derive two more conditions which are equivalent to the membership
Hf ∈ Cp, p > 2n. Then we determine the distribution of the s-numbers of Hf in the case
where f is Lipschtz on S. The final result of the section is a re-interpretation of Theorem
1.6 in the language of norm ideals [5].

Since the paper is full of estimates, there are many constants involved. Constants
which appear in the statement of a proposition or lemma usually carry the same enumer-
ation as that proposition or lemma. For example, C2.1 is the constant that appears in
Proposition 2.1. The reason for this is that they will be cited in later proofs. For constants
which occur in proofs, we label them sequentially as C1, C2, · · · , and so on.

2. Estimates of Mean Oscillation

We begin with the basics. It is elementary that if c is a complex number with |c| ≤ 1
and if 0 ≤ ρ ≤ 1, then

2|1− ρc| ≥ |1− c|.

In the sequel this fact will be used frequently. For the rest of the paper, we write B for
the open unit ball {z ∈ Cn : |z| < 1} in Cn. For each z ∈ B, we denote

kz(w) =
(1− |z|2)n/2

(1− 〈w, z〉)n
, |w| ≤ 1.

It is well known that the formula

(2.1) d(ζ, ξ) = |1− 〈ζ, ξ〉|1/2, ζ, ξ ∈ S,

defines a metric on S [9,page 66]. Throughout the paper, we denote

B(ζ, r) = {x ∈ S : |1− 〈x, ζ〉|1/2 < r}

for ζ ∈ S and r > 0. There is a constant A0 ∈ (2−n,∞) such that

(2.2) 2−nr2n ≤ σ(B(ζ, r)) ≤ A0r
2n

for all ζ ∈ S and 0 < r ≤
√

2 [9,Proposition 5.1.4]. Note that the upper bound actually
holds when r >

√
2. For any f ∈ L2(S, dσ), define

SD(f ; ζ, r) =

(
1

σ(B(ζ, r))

∫
B(ζ,r)

|f − fB(ζ,r)|2dσ

)1/2

,

where
fB(ζ,r) =

1
σ(B(ζ, r))

∫
B(ζ,r)

fdσ.

It is easy to see if ζ, ξ ∈ S and r, ρ ∈ (0,∞) satisfy the relation B(ξ, ρ) ⊂ B(ζ, r), then

(2.3) SD(f ; ξ, ρ) ≤
{
σ(B(ζ, r))
σ(B(ξ, ρ))

}1/2

SD(f ; ζ, r).
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Using the newly introduced notation SD, we can restate [12,Proposition 2.2] as

Proposition 2.1. There exists a constant 0 < C2.1 <∞ such that the inequality

SD(Pf ; ζ, a) ≤ C2.1

∞∑
k=1

1
2k

SD(f ; ζ, 2ka)

holds for all f ∈ L2(S, dσ), ζ ∈ S and a > 0.

Lemma 2.2. There exists a constant 0 < C2.2 < ∞ such that for all f ∈ L2(S, dσ) and
z ∈ B\{0}, we have

‖(f − 〈fkz, kz〉)kz‖ ≤ C2.2

∞∑
k=1

1
2k

SD(f ; ζ, 2ka),

where a = (1− |z|2)1/2 and ζ = z/|z|.

Proof. Let f , z, ζ and a be as above. Write Bk = B(ζ, 2ka) for every k ∈ N. Then

(2.4) ‖(f − 〈fkz, kz〉)kz‖2 ≤
∫
B1

|f − fB1 |2|kz|2dσ +
∞∑
k=2

∫
Bk\Bk−1

|f − fB1 |2|kz|2dσ.

For x ∈ B1, we have |1− 〈x, z〉| ≥ 1− |z| ≥ a2/2. Thus we have

(2.5) |kz(x)|2 ≤
{

a2

(a2/2)2

}n
=

22n

a2n
≤ 24nA0

σ(B1)
if x ∈ B1.

If x ∈ S\Bk−1, k ≥ 2, then |1− 〈x, z〉| ≥ (1/2)|1− 〈x, ζ〉| ≥ 22k−3a2. Hence

(2.6) |kz(x)|2 ≤
{

a2

(22k−3a2)2

}n
=

1
2(4k−6)na2n

≤ 26nA0

22nkσ(Bk)
if x ∈ B\Bk−1.

Write C1 = 26nA0. Then by (2.4-6) we have

(2.7) ‖(f − 〈fkz, kz〉)kz‖2 ≤ C1

∞∑
k=1

1
22nkσ(Bk)

∫
Bk

|f − fB1 |2dσ.

For any integer k ≥ 2,

|f − fB1 |2 ≤ 2|f − fBk |2 + 2|fBk − fB1 |2 ≤ 2|f − fBk |2 + 2(k − 1)
k∑
j=2

|fBj−1 − fBj |2

≤ 2|f − fBk |2 + 2(k − 1)
k∑
j=2

1
σ(Bj−1)

∫
Bj−1

|f − fBj |2dσ

≤ 2|f − fBk |2 + C2(k − 1)
k∑
j=2

1
σ(Bj)

∫
Bj

|f − fBj |2dσ,
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where C2 = 23n+1A0. Let C3 = C1(2 + C2). Combining this with (2.7), we see that

‖(f−〈fkz, kz〉)kz‖2 ≤
∞∑
k=1

C3k

22nk

k∑
j=1

1
σ(Bj)

∫
Bj

|f − fBj |2dσ

=
∞∑
j=1

{SD(f ; ζ, 2ja)}2
∞∑
k=j

C3k

22nk
≤
∞∑
j=1

1
22j
{SD(f ; ζ, 2ja)}2

∞∑
k=1

C3k

22(n−1)k
.

If tj ≥ 0 for every j ≥ 1, then (
∑
j tj)

1/2 ≤
∑
j t

1/2
j . Hence the above yields

‖(f − 〈fkz, kz〉)kz‖ ≤

{ ∞∑
k=1

C3k

22(n−1)k

}1/2 ∞∑
j=1

1
2j

SD(f ; ζ, 2ja).

This completes the proof. �

For each z ∈ B\{0}, define the Möbius transform

ϕz(w) =
1

1− 〈w, z〉

{
z − 〈w, z〉

|z|2
z − (1− |z|2)1/2

(
w − 〈w, z〉

|z|2
z

)}
, |w| ≤ 1.

Then ϕz is an involution, i.e., ϕz ◦ ϕz = id [9,Theorem 2.2.2]. Recall that the formula

(2.8) (Uzf)(ζ) = f(ϕz(ζ))kz(ζ), ζ ∈ S and f ∈ L2(S, dσ),

defines a unitary operator with the property [Uz, P ] = 0 [11,Section 6].

Lemma 2.3. There is a constant C2.3 such that the following estimate holds: Let 0 <
a < 1 and ζ ∈ S, and set z = (1− a2)1/2ζ. Let f ∈ L2(S, dσ). Then for each a ≤ b ≤ 4,

(2.9) SD(f ◦ ϕz; ζ, b) ≤ C2.3

∞∑
k=1

1
2k

SD(f ; ζ, 2k+2(a/b)).

Proof. Let ζ, a and b be given as described above. Denote G = B(ζ, b). Then for any
f ∈ L2(S, dσ) and any c ∈ C we have

(2.10) {SD(f ◦ ϕz; ζ, b)}2 ≤
1

σ(G)

∫
G

|f ◦ ϕz − c|2dσ =
∫
ϕz(G)

|f − c|2 |kz|
2

σ(G)
dσ.

Note that 4(a/b) ≥ a under our assumption. Thus if b ≥ 2−3, then (2.9) follows from
(2.10), Lemma 2.2, (2.3) and (2.2). For the rest of the proof we assume b < 2−3. Then
there exist an integer ` ≥ 3 and an R ∈ [1/2, 1) such that

b = 2−`R.
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To complete the proof, we first show that

(2.11) ϕz(G) ⊂ S\B(ζ, 2`−1a).

To verify (2.11), consider any y ∈ G = B(ζ, b). We have |1−〈y, z〉| ≤ 1−|z|+|z||1−〈y, ζ〉| ≤
a2 + b2 ≤ 2b2. Note that for the last ≤ we used the assumption b ≥ a. It follows from [9,
Theorem 2.2.2(iii)] that kz ◦ ϕz = 1/kz. Thus for y ∈ G we have

|kz(ϕz(y))|2 = |kz(y)|−2 = {|1− 〈y, z〉|2a−2}n ≤ {4b4a−2}n.

In other words, if x ∈ ϕz(G), then {a2/|1− 〈x, z〉|2}n = |kz(x)|2 ≤ {4b4a−2}n. Hence

(2.12) |1− 〈x, z〉| ≥ (2b2)−1a2 = (2R2)−1(2`a)2 ≥ (1/2)(2`a)2 if x ∈ ϕz(G).

On the other hand, if w ∈ B(ζ, 2`−1a), then

(2.13) |1− 〈w, z〉| ≤ 1− |z|+ |z||1− 〈w, ζ〉| ≤ a2 + 22`−2a2 ≤ (5/16)(2`a)2.

Thus (2.11) follows from a comparison between (2.12) and (2.13).

Denote Bk = B(ζ, 2ka) for k ≥ ` − 1. If x ∈ Bk+1\Bk, then |1 − 〈x, z〉| ≥ (1/2)|1 −
〈x, ζ〉| ≥ 22k−1a2. Recalling (2.2), for x ∈ Bk+1\Bk we have

|kz(x)|2

σ(G)
≤
(

a2

{22k−1a2}2

)n
· 1

2−n(2−`R)2n
≤ C122n(`−k)

σ(Bk+1)
,

where C1 = 27nA0. Combining this with (2.10) and (2.11), we have

{SD(f ◦ ϕz; ζ, b)}2 ≤
∞∑

k=`−1

∫
Bk+1\Bk

|f − c|2 |kz|
2

σ(G)
dσ

≤
∞∑

k=`−1

C122n(`−k)

σ(Bk+1)

∫
Bk+1\Bk

|f − c|2dσ ≤
∞∑
j=1

C22−2nj

σ(Bj+L)

∫
Bj+L

|f − c|2dσ,(2.14)

where L = `−1, C2 = 24nC1, and c is any complex number. The rest of the proof resembles
the proof of Lemma 2.2, as it should. For any integer j ≥ 1,

|f − fBL |2 ≤ 2|f − fBj+L |2 + 2|fBL − fBj+L |2

≤ 2|f − fBj+L |2 + C3j

j∑
k=1

1
σ(Bk+L)

∫
Bk+L

|f − fBk+L |2dσ,

where C3 = 23n+1A0. Let C4 = C2(2 + C3). Setting c = fBL in (2.14), we find that

{SD(f◦ϕz; ζ, b)}2 ≤
∞∑
j=1

C4

22nj
j

j∑
k=1

1
σ(Bk+L)

∫
Bk+L

|f − fBk+L |2dσ

=
∞∑
k=1

{SD(f ; ζ, 2k+La)}2
∞∑
j=k

C4j

22nj
≤
∞∑
k=1

1
22k
{SD(f ; ζ, 2k+La)}2

∞∑
j=1

C5j

22(n−1)j
.
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If tk ≥ 0 for every k ≥ 1, then (
∑
k tk)1/2 ≤

∑
k t

1/2
k . Hence the above yields

SD(f ◦ ϕz; ζ, b) ≤


∞∑
j=1

C5j

22(n−1)j


1/2

∞∑
k=1

1
2k

SD(f ; ζ, 2k+La).

Since (1/4)(a/b) ≤ 2La ≤ a/b, the lemma follows from this inequality and (2.3). �

Lemma 2.4. There is a constant C2.4 such that the following estimate holds: Let 0 < a < 1
and ζ ∈ S. Set z = (1− a2)1/2ζ. If N ∈ N satisfies the condition 2Na ≤ 4, then

∞∑
k=N

1
2k

SD((P (f ◦ ϕz)) ◦ ϕz; ζ, 2ka) ≤ C2.4
1

2εN

∞∑
j=1

j

2(1−ε)j SD(f ; ζ, 2ja)

for all f ∈ L2(S, dσ) and 0 < ε ≤ 1/2.

Proof. First note that for any ξ ∈ S and r > 0, if ν ≥ 0 is such that 2νr ≥ 2, then

(2.15)
∞∑
j=ν

1
2j

SD(f ; ξ, 2jr) = 2
1
2ν

SD(f ; ξ, 2νr).

Consider any k ≥ N such that 2ka ≤ 4. Applying Lemma 2.3 and (2.15), we have

SD((P (f ◦ ϕz)) ◦ ϕz; ζ, 2ka) ≤ C1

k−1∑
m=0

1
2m

SD(P (f ◦ ϕz); ζ, 2m−k+2).

Then apply Proposition 2.1 to each term on the right hand side. We have

SD((P (f ◦ ϕz)) ◦ ϕz; ζ, 2ka) ≤ C2

k−1∑
m=0

k−1−m∑
d=0

1
2m+d

SD(f ◦ ϕz; ζ, 2d+m−k+2).

By the condition 2ka ≤ 4, we have a ≤ 2−k+2 ≤ 2d+m−k+2. On the other hand, if
d ≤ k − 1 −m, then 2d+m−k+2 ≤ 2. Thus we can apply Lemma 2.3 to each term on the
right hand side to obtain

SD((P (f ◦ ϕz)) ◦ ϕz; ζ, 2ka) ≤ C3

k−1∑
m=0

k−1−m∑
d=0

∞∑
i=1

1
2m+d+i

SD(f ; ζ, 2i+k−m−da).

Combining this inequality with (2.15), we have
∞∑
k=N

1
2k

SD((P (f ◦ ϕz)) ◦ ϕz; ζ, 2ka) ≤ 2
∑

2Na≤2ka≤4

1
2k

SD(P (f ◦ ϕz) ◦ ϕz; ζ, 2ka)

≤ 2C3

∞∑
k=N

k−1∑
m=0

k−1−m∑
d=0

∞∑
i=1

1
2k+m+d+i

SD(f ; ζ, 2i+k−m−da)

≤ 2C3

∞∑
j=1

SD(f ; ζ, 2ja)
∑

C(N,j;k,m,d,i)

1
2k+m+d+i

,(2.16)
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where C(N, j; k,m, d, i) represents the following set of constraints: k ≥ N , m ≥ 0, d ≥ 0,
i ≥ 1, and i+ k −m− d = j. For any 0 < ε ≤ 1/2, we have∑

C(N,j;k,m,d,i)

1
2k+m+d+i

≤ 1
2εN

∑
C(N,j;k,m,d,i)

1
2(1−ε)(k+m+d+i)

=
1

2εN
· 1

2(1−ε)j

∑
C(N,j;k,m,d,i)

1
22(1−ε)(m+d)

.(2.17)

Now we need to count the number of tuples (i, k,m, d) satisfying C(N, j; k,m, d, i) and the
additional constraint m + d = t, t ≥ 0. There are at most t + 1 pairs of such (m, d), and
there are at most j + t+ 1 pairs of (i, k) satisfying the condition i+ k − t = j. Therefore
the total number of such tuples (i, k,m, d) does not exceed (t+ 1)(j + t+ 1). Thus

∑
C(N,j;k,m,d,i)

1
22(1−ε)(m+d)

≤
∞∑
t=0

1
22(1−ε)t (t+ 1)(j + t+ 1)

≤ j
∞∑
t=0

1
2t

(t+ 1)(t+ 2) = C4 · j.(2.18)

Now we substitute (2.18) into (2.17), and then the new (2.17) into (2.16). This gives us
the desired estimate. �

Let dλ be the Möbius invariant measure on B. That is,

dλ(z) =
dv(z)

(1− |z|2)n+1
,

where dv is the volume measure on B with the normalization v(B) = 1.

For each z ∈ B\{0} and each integer k ≥ 0, denote

(2.19) Bk(z) = B(z/|z|, 2k(1− |z|2)1/2).

Keep in mind that Bk(z) is a ball with respect to the metric d in S.

Lemma 2.5. There is a constant C2.5 such that the inequality∫
χBk(z)(ζ)χBk(z)(ξ)

σ2(Bk(z))
dλ(z) ≤ C2.5k · 22nk

|1− 〈ζ, ξ〉|2n
.

holds for all k ∈ N and ζ 6= ξ in S.

Proof. Given a pair of ζ 6= ξ in S, we have 2−` ≤ d(ζ, ξ) < 2−`+1 for some ` ≥ 0. If
χBk(z)(ζ)χBk(z)(ξ) 6= 0, then 2k(1− |z|2)1/2 ≥ 2−`−1, which implies that

(1− |z|2)1/2 ≥ 2−`−k−1.

9



Define Gj = {z ∈ B : ξ ∈ Bk(z), 2−j ≤ (1− |z|2)1/2 < 2−j+1} for 1 ≤ j ≤ `+ k + 1. Then

(2.20)
∫
χBk(z)(ζ)χBk(z)(ξ)

σ2(Bk(z))
dλ(z) ≤

`+k+1∑
j=1

∫
Gj

1
σ2(Bk(z))

dλ(z).

Recalling (2.2), if z ∈ Gj with j ≥ k, then

(2.21) σ(Bk(z)) ≥ C1(2k(1− |z|2)1/2)2n ≥ C1(2k2−j)2n = C122n(k−j),

where C1 = 2−2n. If z ∈ Gj with j ≤ k − 1, then σ(Bk(z)) = σ(S) = 1. Note that

(2.22) λ(Gj) ≤
v(Gj)

(2−j)2(n+1)
≤ C2

2−2j(2k−j)2n

(2−j)2(n+1)
= C222nk

for every 1 ≤ j ≤ `+ k + 1. Combining (2.20), (2.21) and (2.22), we get∫
χBk(z)(ζ)χBk(z)(ξ)

σ2(Bk(z))
dλ(z) ≤

k−1∑
j=0

C222nk +
`+k+1∑
j=k

C222nk

C2
124n(k−j)

≤ C3

(
k · 22nk +

24n(`+k+1)

22nk

)
≤ C4

k · 22nk

|1− 〈ζ, ξ〉|2n
,

where the last ≤ holds because d(ζ, ξ) < 2−`+1. This completes the proof. �

Proposition 2.6. Let 2n < p <∞. There is a constant C2.6(p) which depends only on p
and n such that the inequality∫

‖(f − 〈fkz, kz〉)kz‖p dλ(z) ≤ C2.6(p)Ip(f)

holds for every f ∈ L2(S, dσ).

Proof. From Lemma 2.2, for each z ∈ B\{0} we have

‖(f − 〈fkz, kz〉)kz‖ ≤ C2.2

∞∑
k=1

1
2k

SD(f ; z/|z|, 2k(1− |z|2)1/2).

Since p > 2n, we can write p = 2n+2ε with some ε > 0. Splitting 2−k as 2−εk/p ·2−(2n+ε)k/p

and applying Hölder’s inequality to the above, we find that

‖(f − 〈fkz, kz〉)kz‖p ≤ C1

∞∑
k=1

1
2(2n+ε)k

{SD(f ; z/|z|, 2k(1− |z|2)1/2)}p.

By Hölder’s inequality,

(2.23) {SD(f ; z/|z|, 2k(1− |z|2)1/2)}p ≤ 1
σ(Bk(z))

∫
Bk(z)

|f − fBk(z)|pdσ.
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On the other hand, for each ζ ∈ S we have

(2.24) |f(ζ)− fBk(z)|p ≤
1

σ(Bk(z))

∫
Bk(z)

|f(ζ)− f(ξ)|pdσ(ξ).

Thus the combination of the above three inequalities yields

‖(f − 〈fkz, kz〉)kz‖p ≤ C1

∞∑
k=1

2−(2n+ε)k

σ2(Bk(z))

∫∫
Bk(z)×Bk(z)

|f(ζ)− f(ξ)|pdσ(ζ)dσ(ξ).

Integrating both sides with respect to the measure dλ, we obtain

(2.25)
∫
‖(f − 〈fkz, kz〉)kz‖p dλ(z) ≤ C1

∫∫
G(ζ, ξ)|f(ζ)− f(ξ)|pdσ(ζ)dσ(ξ),

where

G(ζ, ξ) =
∞∑
k=1

1
2(2n+ε)k

∫
χBk(z)(ζ)χBk(z)(ξ)

σ2(Bk(z))
dλ(z).

It follows from Lemma 2.5 that

G(ζ, ξ) ≤ C2.5

( ∞∑
k=1

k · 22nk

2(2n+ε)k

)
1

|1− 〈ζ, ξ〉|2n
= C2.5

( ∞∑
k=1

k

2εk

)
1

|1− 〈ζ, ξ〉|2n
.

Substituting this in (2.25), the proof is complete. �

3. A Quasi-resolution of the Identity Operator

Let t be a positive real number. For each z ∈ B, define the function

ψz,t(w) =
(1− |z|2)(n/2)+t

(1− 〈w, z〉)n+t
,

|w| ≤ 1. We also define the Schur multiplier

(3.1) mz(w) =
1− |z|

1− 〈w, z〉
,

|w| ≤ 1. Then we have the relation

(3.2) ψz,t = (1 + |z|)tmt
zkz.

Given a t > 0, we need a crude asymptotic formula for t(t + 1)...(t + k), which is
derived in the same way as Stirling’s formula for factorial. We have the identity

1
2
{f(1) + f(0)} =

∫ 1

0

f(x)dx− 1
2

∫ 1

0

(x2 − x)f ′′(x)dx

11



for any C2-function f on any neighborhood of [0, 1]. From this it follows that

k∑
j=0

log(t+ j) =
1
2
{log t+ log(t+ k)}+

∫ k

0

log(t+ x)dx+
1
2

k−1∑
j=0

∫ 1

0

x2 − x
(t+ j + x)2

dx,

k ∈ N. Evaluating the integral
∫ k

0
and then exponentiating both sides, we find that

(3.3)
k∏
j=0

(t+ j) = (t+ k)t+k+(1/2)e−kec(t;k),

where c(t; k) has a finite limit (which depends on t) as k →∞.

Proposition 3.1. For each t > 0, the self-adjoint operator

Rt =
∫
ψz,t ⊗ ψz,tdλ(z)

is bounded on the Hardy space H2(S). In other words, for any given t > 0, there exists a
constant 0 < β(t) <∞ which depends only on t and the complex dimension n such that

〈Rth, h〉 ≤ β(t)‖h‖2

for every h ∈ H2(S).

Proof. Write Cmk for the binomial coefficient m!/(k!(m − k)!). We first show that for all
w,w′ ∈ B and integer k ≥ 0,

(3.4) Cn−1+k
k

∫
〈w, u〉k〈u,w′〉kdσ(u) = 〈w,w′〉k.

Since any two monomials of different degrees in H2(S) are orthogonal to each other, for
every 0 ≤ r < 1 we have

rk〈w,w′〉k =
∫

〈u,w′〉k

(1− r〈w, u〉)n
dσ(u) =

∞∑
j=0

Cn−1+j
j rj

∫
〈u,w′〉k〈w, u〉jdσ(u)

= Cn−1+k
k rk

∫
〈w, u〉k〈u,w′〉kdσ(u),

proving (3.4).

Given any t > 0, we have the power series expansion

1
(1− v)n+t

=
∞∑
k=0

ak,tv
j

12



on the open unit disc {v ∈ C : |v| < 1}, where a0,t = 1 and

(3.5) ak,t =
1
k!

k−1∏
j=0

(n+ t+ j)

for k ≥ 1. Thus for w,w′ ∈ B and 0 ≤ r < 1, we have∫
ψru,t(w)ψru,t(w′)dσ(u) =

∫
(1− r2)n+2t

(1− r〈w, u〉)n+t(1− r〈u,w′〉)n+t
dσ(u)

=
∞∑
k=0

a2
k,t(1− r2)n+2tr2k

∫
〈w, u〉k〈u,w′〉kdσ(u)

=
∞∑
k=0

a2
k,t

Cn−1+k
k

(1− r2)n+2tr2k〈w,w′〉k,

where the last = follows from (3.4). Therefore∫
ψz,t(w)ψz,t(w′)dλ(z) =

∫ 1

0

∫
ψru,t(w)ψru,t(w′)dσ(u)

2nr2n−1dr

(1− r2)n+1

= 2n
∞∑
k=0

a2
k,t

Cn−1+k
k

∫ 1

0

(1− r2)n+2tr2kr2n−1

(1− r2)n+1
dr〈w,w′〉k

= 2n
∞∑
k=0

a2
k,t

Cn−1+k
k

∫ 1

0

(1− r2)2t−1r2k+2n−1dr〈w,w′〉k.

Since 2t− 1 > −1, we can integrate by parts to obtain

2
∫ 1

0

(1− r2)2t−1r2k+2n−1dr =
∫ 1

0

(1− x)2t−1xn−1+kdx =
(n− 1 + k)!∏n−1+k
j=0 (2t+ j)

.

Hence

(3.6)
∫
ψz,t(w)ψz,t(w′)dλ(z) =

∞∑
k=0

bk,tC
n−1+k
k 〈w,w′〉k,

where

bk,t = n

(
ak,t

Cn−1+k
k

)2
(n− 1 + k)!∏n−1+k
j=0 (2t+ j)

.

Using (3.3) and (3.5), it is straightforward to verify that there exists a 0 < β(t) <∞ which
depends only on t and n such that

(3.7) bk,t ≤ β(t)
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for every k ≥ 0.

For each k ≥ 0, let Tk be the integral operator with the kernel function 〈ζ, ζ ′〉k on
H2(S). In other words,

(Tkh)(ζ) =
∫
h(ζ ′)〈ζ, ζ ′〉kdσ(ζ ′),

h ∈ H2(S). Then obviously each Tk is a positive operator. For each 0 < ρ < 1, define

ψz,t,ρ(ζ) = ψz,t(ρζ), ζ ∈ S.

Applying (3.6) and (3.7), for any h ∈ H2(S) we have∫
|〈h, ψz,t,ρ〉|2dλ(z) =

∫ ∫
h(ζ ′)h(ζ)

{∫
ψz,t(ρζ)ψz,t(ρζ ′)dλ(z)

}
dσ(ζ ′)dσ(ζ)

=
∞∑
k=0

bk,tC
n−1+k
k ρ2k〈Tkh, h〉 ≤ β(t)

∞∑
k=0

Cn−1+k
k ρ2k〈Tkh, h〉

= β(t)
∫
h(ρ2ζ)h(ζ)dσ(ζ) ≤ β(t)‖h‖2.

Clearly, for each z we have ‖ψz,t,ρ − ψz,t‖ → 0 as ρ ↑ 1. Thus, by Fatou’s lemma,

〈Rth, h〉 =
∫
|〈h, ψz,t〉|2dλ(z) ≤ lim inf

ρ↑1

∫
|〈h, ψz,t,ρ〉|2dλ(z) ≤ β(t)‖h‖2,

establishing the bound for Rt. �

Corollary 3.2. Let t > 0. Then for any positive operator A on H2(S) we have

(3.8)
∫
〈Aψz,t, ψz,t〉dλ(z) ≤ β(t)tr(A),

where β(t) is the constant provided by Proposition 3.1.

Proof. If rank(A) <∞, then the left hand side of (3.8) is just tr(ARt) = tr(A1/2RtA
1/2).

Hence (3.8) follows from Proposition 3.1 in the case rank(A) <∞. For an arbitrary A, con-
sider an increasing sequence of finite-rank orthogonal projections {Ek} which converges to
1 strongly on H2(S). Since (3.8) holds for each Ak = A1/2EkA

1/2, applying the monotone
convergence theorem to both sides, the general case follows. �

Lemma 3.3. There exists a constant 0 < C3.3 < ∞ which depends only on the complex
dimension n such that the inequality ‖[P,Mmtz

]‖ ≤ C3.3t holds for all z ∈ B and t > 0.

Proof. It is well known [2] that there is a constant C which depends only on n such that

(3.9) ‖[P,Mf ]‖ ≤ C‖f‖BMO
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for every f ∈ BMO (also see [13]). By (3.9), it suffices to find a C1 which depends only on
n such that

(3.10) ‖mt
z‖BMO ≤ C1t

for all z ∈ B and t > 0.

To prove (3.10), let η be the function on the unit circle T = {eix : 0 < x ≤ 2π}
such that η(eix) = π − x for 0 < x ≤ 2π. Then η(eix) = −i

∑∞
k=1 (1/k)(eikx − e−ikx).

Integrating this against the Poisson kernel on T, we conclude that the inequality

(3.11)
∣∣∣∣log

1
1− v

− log
1

1− v

∣∣∣∣ ≤ π
holds on the open unit disc {v ∈ C : |v| < 1}. For each z ∈ B, define the functions

Ωz(ζ) = log
1

1− 〈ζ, z〉
− log

1
1− 〈ζ, z〉

and Lz(ζ) = log
1

1− 〈ζ, z〉
,

ζ ∈ S. Then (3.11) tells us that ‖Ωz‖∞ ≤ π for every z ∈ B. Since PΩz = Lz, it follows
from Proposition 2.1 that

(3.12) ‖Lz‖BMO = ‖PΩz‖BMO ≤ C2.1 · 2‖Ωz‖∞ ≤ 2πC2.1,

z ∈ B. Let

Jz(ζ) = log
1− |z|

1− 〈ζ, z〉
.

Since log(1− |z|) is a constant on S, from (3.12) we obtain

(3.13) ‖Jz‖BMO ≤ 2πC2.1.

For each z ∈ B, let Xz and Yz be the real part and imaginary part of Jz respectively.
Because eXz(ζ) = |mz(ζ)| ≤ 1 for every ζ ∈ S, we conclude that Xz ≤ 0 on S.

Let an arbitrary B = B(ξ, r) be given, where ξ ∈ S and r > 0. Obviously, (Xz)B ≤ 0.
Since the inequality |ex − ey| ≤ |x− y| holds for all x, y ∈ (−∞, 0], for t > 0 we have

(3.14)
1

σ(B)

∫
B

|etXz − et(Xz)B |dσ ≤ 1
σ(B)

∫
B

|tXz − t(Xz)B |dσ ≤ 2πC2.1t,

where the second ≤ follows from (3.13). Also, we have |eix − eiy| ≤ |x − y| for all x, y ∈
R. Since Yz is a real-valued function, we have

(3.15)
1

σ(B)

∫
B

|eitYz − eit(Yz)B |dσ ≤ 1
σ(B)

∫
B

|tYz − t(Yz)B |dσ ≤ πt,
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where the second ≤ follows from the facts that Yz = Ωz/2i and that ‖Ωz‖∞ ≤ π. Since
Xz + iYz = Jz = logmz, we have

|mt
z − et(Xz)Beit(Yz)B | = |etXzeitYz − et(Xz)Beit(Yz)B | ≤ |etXz − et(Xz)B |+ |eitYz − eit(Yz)B |.

Thus from (3.14) and (3.15) we obtain

1
σ(B)

∫
B

|mt
z − et(Xz)Beit(Yz)B |dσ ≤ π(2C2.1 + 1)t.

Since B = B(ξ, r) is arbitrary, this implies ‖mt
z‖BMO ≤ 2π(2C2.1 + 1)t, verifying (3.10). �

Lemma 3.4. Let f ∈ L2(S, dσ) and write g = f −Pf . Then for every z ∈ B\{0} we have
Hfkz = vzkz, where vz = g − (P (g ◦ ϕz)) ◦ ϕz.

Proof. We use the Uz defined by (2.8). Since [Uz, P ] = 0 and ϕz ◦ ϕz = id, we have

vzkz = gkz − UzP (g ◦ ϕz) = gkz − PUz(g ◦ ϕz) = gkz − P (gkz) = Hgkz = Hfkz. �

Lemma 3.5. Let p ≥ 2. Then for all 0 < t ≤ 1 and f ∈ L2(S, dσ) we have

(3.16)
∫
‖MmzHfkz‖pdλ(z) ≤ 22pβ(t)‖Hf‖pp + 2p−1(C3.3t)p

∫
‖Hfkz‖pdλ(z),

where β(t) and C3.3 are the constants given by Proposition 3.1 and Lemma 3.3 respectively.

Proof. We may assume ‖Hf‖p <∞, for otherwise (3.16) holds trivially. By Corollary 3.2,∫
〈(H∗fHf )p/2ψz,t, ψz,t〉dλ(z) ≤ β(t)tr((H∗fHf )p/2) = β(t)‖Hf‖pp.

Since p/2 ≥ 1, by the spectral decomopsition of H∗fHf and Hölder’s inequality,

‖Hfψz,t‖p = 〈H∗fHfψz,t, ψz,t〉p/2 ≤ 〈(H∗fHf )p/2ψz,t, ψz,t〉‖ψz,t‖p−2.

We have ‖ψz,t‖ ≤ 2t by (3.1-2), and 2t ≤ 2 since we assume 0 < t ≤ 1. Thus the
combination of the above two inequalities gives us

(3.17)
∫
‖Hfψz,t‖pλ(z) ≤ 2p−2β(t)‖Hf‖pp.

For the given f , let g and vz be the same as in Lemma 3.4. Then f − vz = Pf +
(P (g ◦ ϕz)) ◦ ϕz ∈ H2(S). Recalling (3.2), we have

‖Hfψz,t‖ ≥ ‖Hf (mt
zkz)‖ = ‖Hvz (m

t
zkz)‖ = ‖(1− P )Mmtz

vzkz‖
≥ ‖Mmtz

(1− P )vzkz‖ − ‖[1− P,Mmtz
]‖‖vzkz‖.(3.18)
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By Lemma 3.4, vzkz = Hfkz. And by Lemma 3.3, ‖[1− P,Mmtz
]‖ = ‖[P,Mmtz

]‖ ≤ C3.3t.
Also, since we now assume 0 < t ≤ 1 and since |mz| ≤ 1 on S, we have ‖Mmtz

u‖ ≥ ‖Mmzu‖
for every u ∈ L2(S, dσ). Bringing these facts into (3.18), we find that

‖MmzHfkz‖ ≤ ‖Hfψz,t‖+ C3.3t‖Hfkz‖.

Since (a+ b)p ≤ 2p−1(ap + bp) for all a, b ∈ [0,∞), this leads to∫
‖MmzHfkz‖pdλ(z) ≤ 2p−1

∫
‖Hfψz,t‖pλ(z) + 2p−1(C3.3t)p

∫
‖Hfkz‖pλ(z).

Substituting (3.17) in the above, (3.16) follows. �

4. Spherical Decomposition

For each k ≥ 0, let {ξk,1, ..., ξk,ν(k)} be a subset of S which is maximal with respect
to the property

(4.1) B(ξk,i, 2−k+1) ∩B(ξk,j , 2−k+1) = ∅ if i 6= j.

Denote

(4.2) Ak,j = B(ξk,j , 2−k+3), Bk,j = B(ξk,j , 2−k+4) and Ck,j = B(ξk,j , 2−k+5),

k ≥ 0, 1 ≤ j ≤ ν(k). The maximality of {ξk,1, ..., ξk,ν(k)} implies that

(4.3) ∪ν(k)
j=1Ak,j = S.

Definition 4.1. For p ≥ 1 and g ∈ L2(S, dσ), write

Jp(g) =
∞∑
k=0

ν(k)∑
j=1

(
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ

)p
.

Proposition 4.2. Given any p > 1, there exists a constant 0 < C4.2(p) < ∞ which
depends only on p and n such that

Ip(g) ≤ C4.2(p)Jp(g)

for every g ∈ L2(S, dσ).

Proof. Let g ∈ L2(S, dσ) be given. We may assume Jp(g) <∞, for otherwise the desired
inequality holds trivially. For every integer k ≥ 0 define the function

gk(ζ) =
1

σ(B(ζ, 2−k))

∫
B(ζ,2−k)

gdσ, ζ ∈ S.

17



In other words, gk(ζ) is the mean value of g on B(ζ, 2−k). For each k ≥ 0, define

Ek = {(ζ, ξ) ∈ S × S : 2−k ≤ d(ζ, ξ) < 2−k+1},

where d was given by (2.1). We have

Ip(g) ≤
∞∑
k=0

24nk

∫∫
Ek

|g(ζ)− g(ξ)|pdσ(ζ)dσ(ξ)

≤
∞∑
k=0

24nk

∫∫
Ek

3p−1(|g(ζ)− gk(ζ)|p + |gk(ζ)− gk(ξ)|p + |gk(ξ)− g(ξ)|p)dσ(ζ)dσ(ξ).

(4.4)

Applying Fubini’s theorem and (2.2), we have∫∫
Ek

|g(ζ)− gk(ζ)|pdσ(ζ)dσ(ξ) ≤
∫
|g(ζ)− gk(ζ)|pσ(B(ζ, 2−k+1))dσ(ζ)

≤ A02−2n(k−1)

∫
|g − gk|pdσ.

Substituting this in (4.4), we see that

(4.5) Ip(g) ≤ 3p−1{22n+1A0I1 + I2},

where

I1 =
∞∑
k=0

22nk

∫
|g − gk|pdσ and

I2 =
∞∑
k=0

24nk

∫∫
Ek

|gk(ζ)− gk(ξ)|pdσ(ζ)dσ(ξ).

We will estimate I1 and I2 separately.

For I1, note that by (4.3) and the fact that σ(Ak,j) ≤ A022n(−k+3), we have

22nk

∫
|gk − gk+1|pdσ ≤ C

ν(k)∑
j=1

1
σ(Ak,j)

∫
Ak,j

|gk − gk+1|pdσ

≤ C1

ν(k)∑
j=1

1
σ(Ak,j)

∫
Ak,j

(|gk − gCk,j |p + |gCk,j − gk+1|p)dσ.(4.6)

But for any ζ ∈ Ak,j we have B(ζ, 2−k) ⊂ Ck,j and

(4.7) |gk(ζ)− gCk,j | ≤
1

σ(B(ζ, 2−k))

∫
B(ζ,2−k)

|g − gCk,j |dσ ≤
C2

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ.
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A similar inequality holds for |gCk,j − gk+1(ζ)|, ζ ∈ Ak,j . Therefore from (4.6) we obtain

(4.8) 22nk

∫
|gk − gk+1|pdσ ≤ C3

ν(k)∑
j=1

(
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ

)p
,

k ≥ 0. Now for any L ∈ N, it follows from Hölder’s inequality that

|gk − gk+L|p =

∣∣∣∣∣
L−1∑
i=0

2i/p

2i/p
(gk+i − gk+i+1)

∣∣∣∣∣
p

≤

( ∞∑
i=0

1
2i/(p−1)

)p−1 L−1∑
i=0

2i|gk+i − gk+i+1|p.

Combining this with (4.8), we see that

(4.9) 22nk

∫
|gk − gk+L|pdσ ≤ C4

∞∑
`=k

ν(`)∑
j=1

(
1

σ(C`,j)

∫
C`,j

|g − gC`,j |dσ

)p

for all k ≥ 0 and L ≥ 1. But for each k, we have gk+L(ξ) → g(ξ) as L → ∞ if ξ is a
Lebesgue point for g. Applying this fact and Fatou’s lemma to (4.9), we find that

(4.10) 22nk

∫
|gk − g|pdσ ≤ C4Jp(g)

for every k ≥ 0.

For each m ∈ N, write

I1,m =
m∑
k=0

22nk

∫
|g − gk|pdσ.

Let N be the smallest natural number such that 2p−12−2nN ≤ 1/2. If m > N , then

I1,m ≤ 2p−1
m∑
k=0

22nk

∫
|g − gk+N |pdσ + 2p−1

m∑
k=0

22nk

∫
|gk+N − gk|pdσ

≤ 2p−12−2nN
m−N∑
k=0

22n(k+N)

∫
|g − gk+N |pdσ + 2p−1

m∑
k=m−N+1

22nk

∫
|g − gk+N |pdσ

+ (2N)p−1
N−1∑
i=0

m∑
k=0

22nk

∫
|gk+i+1 − gk+i|pdσ.

Taking (4.10) and (4.8) into account, we see that

I1,m ≤ 2p−12−2nNI1,m + 2p−1NC4Jp(g) + (2N)pC3Jp(g).
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By the assumption Jp(g) < ∞ and (4.10), we have I1,m < ∞ for every m ∈ N. Since
2p−12−2nN ≤ 1/2, we can cancel out 2p−12−2nNI1,m from both sides to obtain

(1/2)I1,m ≤ {2p−1NC4 + (2N)pC3}Jp(g).

Letting m→∞, we have

(4.11) I1 ≤ 2{2p−1NC4 + (2N)pC3}Jp(g),

where N is the smallest natural number such that 2p−12−2nN ≤ 1/2.

To estimate I2, note that (4.3) implies Ek ⊂ ∪ν(k)
j=1 (Bk,j ×Bk,j). Therefore

24nk

∫∫
Ek

|gk(ζ)− gk(ξ)|pdσ(ζ)dσ(ξ) ≤
ν(k)∑
j=1

24nk

∫∫
Bk,j×Bk,j

|gk(ζ)− gk(ξ)|pdσ(ζ)dσ(ξ)

≤ 2p−1

ν(k)∑
j=1

24nkσ(Bk,j)
∫
Bk,j

|gk − gCk,j |pdσ

≤ C5

ν(k)∑
j=1

1
σ(Bk,j)

∫
Bk,j

|gk − gCk,j |pdσ.

If ζ ∈ Bk,j , then B(ζ, 2−k) ⊂ Ck,j . Thus (4.7) still holds if ζ ∈ Bk,j . Substituting (4.7) in
the above inequality, we have

24nk

∫∫
Ek

|gk(ζ)− gk(ξ)|pdσ(ζ)dσ(ξ) ≤ C5C
p
2

ν(k)∑
j=1

(
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ

)p
.

Summing over all k ≥ 0, we obtain I2 ≤ C5C
p
2Jp(g). Combining this with (4.5) and (4.11),

the proposition is proved. �

5. Cancellation

In this section, we will show that there is a C such that inequality (1.2) holds for
every f ∈ L2(S, dσ) satisfying the condition Ip(f − Pf) <∞.

Lemma 5.1. For each k ≥ 0, there is a C5.1(k) which depends only on k and n such that

SD(vz; z/|z|, 2k(1− |z|2)1/2) ≤ C5.1(k)‖MmzHfkz‖

for all f ∈ L2(S, dσ) and z ∈ B\{0}, where the relation between f and vz is the same as
in Lemma 3.4.

Proof. Let z ∈ B\{0}. If ξ ∈ Bk(z) (see (2.19)), then

|1− 〈ξ, z〉| ≤ 1− |z|+ |1− 〈ξ, z/|z|〉| ≤ 1− |z|2 + 22k(1− |z|2) ≤ 22k+1(1− |z|2).
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Therefore for each ξ ∈ Bk(z) we have

|mz(ξ)kz(ξ)|2 ≥
(1− |z|2)n+2

4|1− 〈ξ, z〉|2n+2
≥ 2−(2n+2)(2k+1)−2

(1− |z|2)n
≥ c(n; k)
σ(B0(z))

≥ c(n; k)
σ(Bk(z))

.

Recall from Lemma 3.4 that Hfkz = vzkz. Therefore

‖MmzHfkz‖2 = ‖mzvzkz‖2 ≥
c(n; k)
σ(Bk(z))

∫
Bk(z)

|vz|2dσ

≥ c(n; k){SD(vz; z/|z|, 2k(1− |z|2)1/2)}2.

This completes the proof. �

Lemma 5.2. Suppose p > 2n. Let γ > 0 be given. Then there is a constant C5.2(γ) which
depends only on n, p and γ such that for any f ∈ L2(S, dσ),

Jp(f − Pf) ≤ C5.2(γ)
∫
‖MmzHfkz‖pdλ(z) + γIp(f − Pf).

Proof. Let f ∈ L2(S, dσ) be given and write

g = f − Pf.

For each pair of k ≥ 7 and 1 ≤ j ≤ ν(k), define

Fk,j = {z ∈ B : 2−k+5 ≤ (1− |z|2)1/2 < 2−k+6, z/|z| ∈ B(ξk,j , 2−k+1)},

where {ξk,1, · · · ξk,ν(k)} were given at the beginning of Section 4. It is easy to see that

(5.1) B1(z) ⊃ Ck,j if z ∈ Fk,j .

And, it is easy to verify that there is a c > 0 such that

(5.2) λ(Fk,j) ≥ c

for all k ≥ 7 and 1 ≤ j ≤ ν(k). The condition (1−|z|2)1/2 ≤ 2−k+6 for z ∈ Fk,j guarantees
that there is a 0 < C1 < ∞ such that σ(B1(z)) ≤ C1σ(Ck,j) if z ∈ Fk,j . Therefore for
z ∈ Fk,j we have

(5.3)
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ ≤
2C1

σ(B1(z))

∫
B1(z)

|g − gB1(z)|dσ.

Recall from Lemma 3.4 that we have the decomposition g = hz + vz where vz = g− (P (g ◦
ϕz)) ◦ ϕz and hz = (P (g ◦ ϕz)) ◦ ϕz. Since hz = −Pvz, we have

SD(g; ξ, r) ≤ SD(vz; ξ, r) + SD(Pvz; ξ, r) ≤ (1 + C2.1)
∞∑
k=0

1
2k

SD(vz; ξ, 2kr),
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where the second ≤ follows from Proposition 2.1. Combing this with (5.3), we see that

(5.4)
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ ≤ C2

∞∑
k=1

1
2k

SD(vz; z/|z|, 2k(1− |z|2)1/2)

if z ∈ Fk,j , k ≥ 7, where C2 = 4C1(1 + C2.1).

Now let N ≥ 8 be given. We define

T
(1)
N (z) =

N−1∑
k=1

1
2k

SD(vz; z/|z|, 2k(1− |z|2)1/2),

T
(2)
N (z) =

∞∑
k=N

1
2k

SD(vz; z/|z|, 2k(1− |z|2)1/2),(5.5)

z ∈ B\{0}. Then (5.4) yields(
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ

)p
≤ 2p−1Cp2 ((T (1)

N (z))p + (T (2)
N (z))p)

if z ∈ Fk,j . Combining this with (5.2), we find that

(5.6)

(
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ

)p
≤ 2p−1Cp2

c

∫
Fk,j

((T (1)
N (z))p + (T (2)

N (z))p)dλ(z),

k ≥ 7, 1 ≤ j ≤ ν(k). Next we estimate T (1)
N (z) and T

(2)
N (z).

By Lemma 5.1, there is a constant C3(N) such that

(5.7) T
(1)
N (z) ≤ C3(N)‖MmzHfkz‖ for all z ∈ B\{0}.

Let us consider T (2)
N (z). Since vz = g−(P (g◦ϕz))◦ϕz, we have T (2)

N (z) ≤ T (3)
N (z)+T (4)

N (z),
where

T
(3)
N (z) =

∞∑
k=N

1
2k

SD(g; z/|z|, 2k(1− |z|2)1/2),

T
(4)
N (z) =

∞∑
k=N

1
2k

SD((P (g ◦ ϕz)) ◦ ϕz; z/|z|, 2k(1− |z|2)1/2).

Since p > 2n, there exist δ > 0 and 0 < ε < 1/2 such that p(1− ε) = 2n+ 2δ. Define

FN =
∞⋃

k=N+6

ν(k)⋃
j=1

Fk,j .

22



If z ∈ FN , then 2N (1− |z|2)1/2 ≤ 4. By Lemma 2.4,

T
(4)
N (z) ≤ C2.4

1
2εN

∞∑
k=1

k

2(1−ε)k SD(g; z/|z|, 2k(1− |z|2)1/2)

for z ∈ FN . Obviously,

T
(3)
N (z) ≤ 1

2εN

∞∑
k=N

k

2(1−ε)k SD(g; z/|z|, 2k(1− |z|2)1/2).

Therefore, if we set C5 = 1 + C2.4, then

T
(2)
N (z) ≤ C5

1
2εN

∞∑
k=1

k

2(1−ε)k SD(g; z/|z|, 2k(1− |z|2)1/2) for z ∈ FN .

Since 1− ε = (2n+ 2δ)/p, we can split 2−(1−ε)k as 2−δk/p · 2−(2n+δ)k/p and apply Hölder’s
inequality to the above. The result of this is

(T (2)
N (z))p ≤ C6

2εNp

∞∑
k=1

kp

2(2n+δ)k
{SD(g; z/|z|, 2k(1− |z|2)1/2)}p for z ∈ FN .

From (2.23) and (2.24) we see that

{SD(g; z/|z|, 2k(1− |z|2)1/2)}p ≤ 1
σ2(Bk(z))

∫∫
Bk(z)×Bk(z)

|g(ζ)− g(ξ)|pdσ(ζ)dσ(ξ).

Therefore for each z ∈ FN , we have

(T (2)
N (z))p ≤ C6

2εNp

∞∑
k=1

kp

2(2n+δ)k
· 1
σ2(Bk(z))

∫∫
Bk(z)×Bk(z)

|g(ζ)− g(ξ)|pdσ(ζ)dσ(ξ).

Integrating the above against dλ over FN , we find that∫
FN

(T (2)
N (z))pdλ(z)

≤ C6

2εNp

∫ ∞∑
k=1

kp

2(2n+δ)k
· 1
σ2(Bk(z))

∫∫
Bk(z)×Bk(z)

|g(ζ)− g(ξ)|pdσ(ζ)dσ(ξ)dλ(z)

=
C6

2εNp

∫∫
F(ζ, ξ)|g(ζ)− g(ξ)|pdσ(ζ)dσ(ξ),

where

F(ζ, ξ) =
∞∑
k=1

kp

2(2n+δ)k

∫
χBk(z)(ζ)χBk(z)(ξ)

σ2(Bk(z))
dλ(z).
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By Lemma 2.5,

F(ζ, ξ) ≤ C2.5

( ∞∑
k=1

kp+1

2δk

)
1

|1− 〈ζ, ξ〉|2n
=

C7

|1− 〈ζ, ξ〉|2n
.

Consequently

(5.8)
∫
FN

(T (2)
N (z))pdλ(z) ≤ C8

2εNp
Ip(g).

From the definition of Fk,j and (4.1) we see that Fk,j ∩ Fk′,j′ = ∅ if either k 6= k′ or
j 6= j′. Therefore it follows from (5.6),(5.7) and (5.8) that

∞∑
k=N+6

ν(k)∑
j=1

(
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ

)p
≤ C9(N)

∫
‖MmzHfkz‖pdλ(z) +

C10

2εNp
Ip(g).

Suppose now γ > 0 is given. We pick an N = N(γ) ≥ 8 such that C10/2εNp ≤ γ. This
determines the value of N in terms of γ and converts C9(N) to C11(γ). We can write the
above inequality as

(5.9)
∞∑

k=N+6

ν(k)∑
j=1

(
1

σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ

)p
≤ C11(γ)

∫
‖MmzHfkz‖pdλ(z)+γIp(g).

Next we consider the terms in Jp(g) corresponding to 0 ≤ k ≤ N + 5.

First all, there is a c12(γ) such that σ(Ck,j) ≥ c12(γ) when k ≤ N + 5. Therefore

1
σ(Ck,j)

∫
Ck,j

|g − gCk,j |dσ ≤ C13(γ)‖g‖

if 0 ≤ k ≤ N + 5 and 1 ≤ j ≤ ν(k). Combining this inequality with (5.9), we obtain

Jp(g) ≤ C11(γ)
∫
‖MmzHfkz‖pdλ(z) + C14(γ)‖g‖p + γIp(g).

Thus the proof of the lemma will be complete if we can find a constant C15 such that

(5.10) ‖g‖p ≤ C15

∫
‖MmzHfkz‖pdλ(z).

Note that MmzHfkz = MmzHgkz = Mmz (1− P )Mkzg. Also note that

Mmz (1− P )Mkzg − g = {Mmz (1− P )Mkz − (1− P )}g.
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It is obvious that there is an a ∈ (0, 1) such that ‖Mmz (1 − P )Mkz − (1 − P )‖ ≤ 1/2 if
|z| ≤ a. This means that ‖MmzHfkz‖ = ‖Mmz (1 − P )Mkzg‖ ≥ (1/2)‖g‖ when |z| ≤ a.
Thus if we let Ω = {z : |z| ≤ a}, then

‖g‖p ≤ 2p

λ(Ω)

∫
‖MmzHfkz‖pdλ(z).

This establishes (5.10) and completes the proof of the lemma. �

Proposition 5.3. Let 2n < p <∞. Then there exists a constant 0 < C5.3(p) <∞ which
depends only on n and p such that the inequality

Ip(f − Pf) ≤ C5.3(p)‖Hf‖pp

holds for every f ∈ L2(S, dσ) satisfying the condition Ip(f − Pf) <∞.

Proof. Let f ∈ L2(S, dσ) and suppose Ip(f − Pf) <∞. Denote

g = f − Pf

as before. Let γ > 0. It follows from Proposition 4.2 and Lemma 5.2 that

Ip(g) ≤ C4.2(p)C5.2(γ)
∫
‖MmzHfkz‖pdλ(z) + C4.2(p)γIp(g).

Pick a γ such that C4.2(p)γ ≤ 1/2. Then since Ip(g) < ∞, we can cancel out (1/2)Ip(g)
from both sides to obtain

(1/2)Ip(g) ≤ C4.2(p)C5.2(γ)
∫
‖MmzHfkz‖pdλ(z).

Now apply Lemma 3.5 with 0 < t ≤ 1 to the right hand side of the above. This gives us

(5.11) (1/2)Ip(g) ≤ C4.2(p)C5.2(γ)
(

22pβ(t)‖Hf‖pp + 2p−1(C3.3t)p
∫
‖Hfkz‖pdλ(z)

)
.

Since ‖Hfkz‖ = ‖Hg−ckz‖ ≤ ‖(g − c)kz‖, c ∈ C, it follows from Proposition 2.6 that∫
‖Hfkz‖pdλ(z) ≤ C2.6(p)Ip(g).

Substituting this into (5.11), we see that

(1/2)Ip(g) ≤ C4.2(p)C5.2(γ){22pβ(t)‖Hf‖pp + 2p−1(C3.3t)pC2.6(p)Ip(g)}.

Now set t to be such that C4.2(p)C5.2(γ) · 2p−1(C3.3t)pC2.6(p) ≤ 1/4. Then, since Ip(g) <
∞, we can cancel out (1/4)Ip(g) from both sides to obtain

(1/4)Ip(g) ≤ C4.2(p)C5.2(γ)22pβ(t)‖Hf‖pp.
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This completes the proof. �

6. Smoothing

Obviously, our goal here is to remove the a priori condition Ip(f − Pf) < ∞ in
Proposition 5.3. This is the soft part of the proof of Theorem 1.4, but it is a part of
the proof nonetheless. To carry out this part of the proof, we need to have available a
sufficiently large class of functions for which the desired inequality holds.

Many of the facts established in this section will also be needed in Section 8. For the
rest of the paper, let Lip(S) denote the collection of functions which are Lipschitz with
respect to the Euclidian metric on S. For any ζ, ξ ∈ S, we have |ζ − ξ|2 = 2 − 2Re〈ζ, ξ〉,
which implies |ζ − ξ| ≤

√
2|1 − 〈ζ, ξ〉|1/2. Thus each g ∈ Lip(S) is also Lipschitz with

respect to the metric d defined by (2.1).

Proposition 6.1. If g ∈ Lip(S), then Ip(g) <∞ for every p > 2n.

Proof. Let g ∈ Lip(S). Then there is an L such that |g(ζ)− g(ξ)| ≤ L|1− 〈ζ, ξ〉|1/2 for all
ζ, ξ ∈ S. If p > 2n, then p/2 = n+ s for some s > 0. Therefore

∫∫
|g(ζ)− g(ξ)|p

|1− 〈ζ, ξ〉|2n
dσ(ζ)dσ(ξ) ≤

∫∫
Lp|1− 〈ζ, ξ〉|p/2

|1− 〈ζ, ξ〉|2n
dσ(ζ)dσ(ξ)

=
∫∫

Lp

|1− 〈ζ, ξ〉|n−s
dσ(ζ)dσ(ξ).

By [9,Proposition 1.4.10], this quantity is finite. �

Let U = U(n) denote the collection of unitary transformations on Cn. For each U ∈ U ,
define the operator WU : L2(S, dσ)→ L2(S, dσ) by the formula

(WUg)(ζ) = g(Uζ),

g ∈ L2(S, dσ). By the invariance of σ, WU is a unitary operator on L2(S, dσ).

Lemma 6.2. Let ϕ ∈ C(S). If there exists a positive number L such that

‖ϕ−WUϕ‖∞ ≤ L‖1− U‖

for every U ∈ U , then ϕ ∈ Lip(S).

Proof. Clearly, the conclusion of the lemma follows from the following basic fact: Given a
pair of ζ, ξ ∈ S, there is a U = Uζ,ξ ∈ U which has the properties that Uζ = ξ and that
‖1−U‖ ≤

√
2|ζ−ξ|. This can be easily proved by considering the orthogonal decomposition

Cn = E ⊕ (Cn 	 E), where E = span{ζ, ξ}. We omit the details. �

Next we recall the smoothing technique in [12]. With the usual multiplication and the
operator-norm topology, U is a compact group. We write dU for the Haar measure on U
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as in [9,12]. For each g ∈ L2(S, dσ), the map U 7→ WUg is continuous with respect to the
norm topology of L2(S, dσ). Let Φ ∈ C(U). For each g ∈ L2(S, dσ) we define

YΦg =
∫

Φ(U)WUgdU

in the sense that
〈YΦg, f〉 =

∫
Φ(U)〈WUg, f〉dU

for every f ∈ L2(S, dσ).

Lemma 6.3. If Ψ is Lipschitz with respect to the operator norm on U , then YΨg ∈ Lip(S)
for every g ∈ L2(S, dσ).

Proof. First recall that the inequality

|〈YΦg, f〉| ≤ ‖Φ‖∞
∫
|g|dσ

∫
|f |dσ

holds for all g, f ∈ L2(S, dσ) and Φ ∈ C(U) [12,page 43]. This obviously means that

(6.1) ‖YΦg‖∞ ≤ ‖Φ‖∞‖g‖ for all g ∈ L2(S, dσ) and Φ ∈ C(U).

Using Fubini’s theorem it is easy to see that if ϕ ∈ C(S), then

(YΦϕ)(ζ) =
∫

Φ(U)ϕ(Uζ)dU, ζ ∈ S.

From this we draw the conclusion that if ϕ ∈ C(S), then YΦϕ ∈ C(S). But for any
f ∈ L2(S, dσ), there is a sequence {fk} ⊂ C(S) such that ‖f − fk‖ → 0 as k →∞. Since
YΦfk ∈ C(S), by (6.1) we also have YΦf ∈ C(S).

Now let Ψ be given as in the statement of the lemma, and let g ∈ L2(S, dσ) also be
given. By the preceding paragraph and Lemma 6.2, to prove that YΨg ∈ Lip(S), it suffices
to find a C such that

(6.2) ‖YΨg −WUYΨg‖∞ ≤ C‖1− U‖

for every U ∈ U . To prove this, note that for any U ∈ U and f ∈ L2(S, dσ) we have

〈WUYΨg, f〉 = 〈YΨg,W
∗
Uf〉 =

∫
Ψ(V )〈WV g,W

∗
Uf〉dV =

∫
Ψ(V )〈WUWV g, f〉dV

=
∫

Ψ(V )〈WV Ug, f〉dV =
∫

Ψ(V U∗)〈WV g, f〉dV,(6.3)

where the last step uses the invariance of the Haar measure. Define the function

DU (V ) = Ψ(V )−Ψ(V U∗), V ∈ U ,
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for each U ∈ U . Then, by (6.3), YΨg −WUYΨg = YDU g. Applying (6.1), we have

(6.4) ‖YΨg −WUYΨg‖∞ ≤ ‖DU‖∞‖g‖.

Since Ψ is Lipschitz with respect to ‖.‖, there is an L such that

‖DU‖∞ = sup
V ∈U
|Ψ(V )−Ψ(V U∗)| ≤ L sup

V ∈U
‖V − V U∗‖ = L‖1− U‖

for every U ∈ U . Obviously, (6.2) follows from (6.4) and this inequality. �

Lemma 6.4. Let f ∈ L2(S, dσ), Φ ∈ C(U), h ∈ H∞(S) and ψ ∈ L2(S, dσ). Then

〈HYΦfh, ψ〉 =
∫

Φ(U)〈WUHfW
∗
Uh, ψ〉dU

Proof. Let f , Φ, h and ψ be given as above, and let g = (1− P )ψ. Then

〈HYΦfh, ψ〉 = 〈(YΦf) · h, g〉 = 〈YΦf, h̄g〉 =
∫

Φ(U)〈WUf, h̄g〉dU

=
∫

Φ(U)〈h ·WUf, g〉dU =
∫

Φ(U)〈WUMfW
∗
Uh, g〉dU

=
∫

Φ(U)〈WUHfW
∗
Uh, ψ〉dU,

where the last step uses the fact that [WU , 1− P ] = 0. �

Lemma 6.5. Let f ∈ L2(S, dσ) and Φ ∈ C(U). If Hf is bounded, then

s1(HYΦf ) + ...+ sk(HYΦf ) ≤ ‖Φ‖1{s1(Hf ) + ...+ sk(Hf )}

for every k ∈ N, where ‖Φ‖1 is the L1-norm of Φ with respect to the Haar measure dU .

Proof. Let k ∈ N be given. Consider any operator E such that ‖E‖ = 1 and rank(E) = k.
Recall that sj(ABC) ≤ ‖A‖sj(B)‖C‖ [5,page 61]. Thus for each U ∈ U , we have

|tr(WUHfW
∗
UE)| ≤

k∑
j=1

sj(WUHfW
∗
UE) ≤

k∑
j=1

‖WU‖sj(Hf )‖W ∗UE‖ =
k∑
j=1

sj(Hf ).

Combining this with Lemma 6.4, we find that

|tr(HYΦfE)| =
∣∣∣∣∫ Φ(U)tr(WUHfW

∗
UE)dU

∣∣∣∣ ≤ ∫ |Φ(U)||tr(WUHfW
∗
UE)|dU

≤ ‖Φ‖1{s1(Hf ) + ...+ sk(Hf )}.

Since s1(HYΦf ) + ...+ sk(HYΦf ) is the supremum of |tr(HYΦfE)| over all possible E’s with
‖E‖ = 1 and rank(E) = k, the lemma follows. �
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Corollary 6.6. Let Φ ∈ C(U) be such that ‖Φ‖1 6= 0. Then the inequality ‖HYΦf‖p ≤
‖Φ‖1‖Hf‖p holds for all f ∈ L2(S, dσ) and 1 ≤ p <∞.

Proof. This follows from Lemma 6.5 and the following easy exercise: If a1 ≥ ... ≥ ak ≥
... and b1 ≥ ... ≥ bk ≥ ... are non-increasing sequences of non-negative numbers such that
a1 + ... + ak ≤ b1 + ... + bk for every k ∈ N, then

∑∞
j=1 a

p
j ≤

∑∞
j=1 b

p
j , 1 ≤ p < ∞. For a

more general version of this exercise, see Lemma III.3.1 in [5]. �

Let η : [0,∞) → [0, 1] be the function such that η = 1 on [0, 1], η = 0 on [2,∞), and
η(x) = 2− x on [1, 2]. Of course, η is Lipschitz on [0,∞). For each j ∈ N, define

Φj(U) =
η(j‖1− U‖)∫
η(j‖1− V ‖)dV

,

U ∈ U . Then we have the following properties:
(1) Φj ≥ 0 on U .
(2)

∫
Φj(U)dU = 1.

(3) Φj is Lipschitz on U with respect to the operator norm.
(4) The sequence of operators {YΦj} converges to 1 strongly on L2(S, dσ).

In the above (1) and (2) are obvious, (3) can be easily deduced from the fact that η is
Lipschitz on [0,∞), and (4) was established on page 45 of [12].

Proof of Theorem 1.4. Let f ∈ L2(S, dσ) be given and write

g = f − Pf.

Furthermore, for each j ≥ 1 let

fj = YΦjf and gj = fj − Pfj .

Because [P,WU ] = 0 for every U ∈ U , we have [P, YΦj ] = 0. Therefore

(6.5) gj = YΦjg

for every j ≥ 1. Let 2n < p <∞ also be given.

By (6.5), (3) and Lemma 6.3, we have gj ∈ Lip(S). By Proposition 6.1, this means
Ip(gj) < ∞. Therefore it follows from Proposition 5.3 that Ip(gj) ≤ C5.3(p)‖Hfj‖pp. But
by (1), (2) and Corollary 6.6, we have ‖Hfj‖pp ≤ ‖Hf‖pp. Thus we conclude that

(6.6) Ip(gj) ≤ C5.3(p)‖Hf‖pp for every j ≥ 1.

By (4) and (6.5), there is a subsequence {gjν} of {gj} such that

(6.7) lim
ν→∞

gjν (ζ) = g(ζ) for σ-a.e. ζ ∈ S.

Applying Fatou’s lemma, from (6.7) and (6.6) we obtain

Ip(g) ≤ lim inf
ν→∞

Ip(gjν ) ≤ C5.3(p)‖Hf‖pp.
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This completes the proof of Theorem 1.4. �

7. Estimates for Commutators

Recall that the s-numbers of a bounded operator A are denoted by s1(A), s2(A), · · · ,
sj(A), · · · [5,Section II.7]. For each t > 0, define

NA(t) = card{j ∈ N : sj(A) > t}.

It follows from [5,Theorem II.7.1] that sj+k+1(A+B) ≤ sj+1(A)+sk+1(B) for any bounded
operators A, B and any j ≥ 0, k ≥ 0. A consequence of this is that

(7.1) NA+B(t) ≤ NA(t/2) +NB(t/2).

To see this, suppose that NA(t/2) = j(t) and NB(t/2) = k(t). Then by the definition of
N we have sj(t)+1(A) ≤ t/2 and sk(t)+1(B) ≤ t/2. Therefore

sj(t)+k(t)+1(A+B) ≤ sj(t)+1(A) + sk(t)+1(B) ≤ t,

which implies NA+B(t) ≤ j(t) + k(t). It is well known [4,Lemma I.4.1] that

(7.2)
∞∑
j=1

(sj(A))p = p

∫ ∞
0

tp−1NA(t)dt, 1 ≤ p <∞.

Proposition 7.1. Let 2 < p <∞ and f ∈ L2(S, dσ). Then

‖[Mf , P ]‖pp ≤
(36)pp
p− 2

∫∫
|f(x)− f(y)|p

|1− 〈x, y〉|2n
dσ(x)dσ(y).

Proof. Consider a real-valued f ∈ L2(S, dσ). For any t > 0, define

(7.3) Et,k = {x ∈ S : kt ≤ f(x) < (k + 1)t},

k ∈ Z. For each pair of k ∈ Z and i ∈ {−1, 0, 1}, define

T
(t)
k,i = MχEt,k

[Mf , P ]MχEt,k+i
.

Taking advantage of the commutator, we can rewrite it as

T
(t)
k,i = MχEt,k

[Mf−kt, P ]MχEt,k+i
= M(f−kt)χEt,kPMχEt,k+i

−MχEt,k
PM(f−kt)χEt,k+i

.

By (7.3), we have ‖(f − kt)χEt,k‖∞ ≤ t and ‖(f − kt)χEt,k+i‖∞ ≤ (1 + |i|)t. Therefore for
each pair of k ∈ Z and i ∈ {−1, 0, 1} we have

(7.4) ‖T (t)
k,i ‖ ≤ 3t.
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Now for each i ∈ {−1, 0, 1} define

T
(t)
i =

∑
k∈Z

T
(t)
k,i .

Since χEt,kL
2(S, dσ) ⊥ χEt,`L

2(S, dσ) whenever k 6= `, (7.4) implies ‖T (t)
i ‖ ≤ 3t, i ∈

{−1, 0, 1}. Write
T (t) = T

(t)
−1 + T

(t)
0 + T

(t)
1 .

Then ‖T (t)‖ ≤ 9t, which means

(7.5) NT (t)(9t) = 0.

For each i ∈ {−1, 0, 1}, write G(t)
i = ∪k∈Z(Et,k × Et,k+i). Note that G(t)

−1, G(t)
0 and

G
(t)
1 are mutually disjoint subsets of S × S. Define

B(t) = (S × S)\(G(t)
−1 ∪G

(t)
0 ∪G

(t)
1 ).

If (x, y) ∈ B(t), x ∈ Et,k and y ∈ Et,`, then |k − `| ≥ 2. By (7.3), this means

(7.6) B(t) ⊂ {(x, y) ∈ S × S : |f(x)− f(y)| > t}.

Now define
Y (t) = [Mf , P ]− T (t).

It is easy to estimate the Hilbert-Schmidt norm of Y (t). Indeed from the previous two
paragraphs we see that Y (t) is the operator on L2(S, dσ) which has the function

f(x)− f(y)
(1− 〈x, y〉)n

χB(t)(x, y)

as its integral kernel. This and (7.6) lead to the bound
(7.7)

‖Y (t)‖22 =
∫∫

B(t)

|f(x)− f(y)|2

|1− 〈x, y〉|2n
dσ(x)dσ(y) ≤

∫∫
|f(x)−f(y)|>t

|f(x)− f(y)|2

|1− 〈x, y〉|2n
dσ(x)dσ(y).

Combining the identity [Mf , P ] = Y (t) + T (t) with (7.1) and (7.5), we have

(7.8) N[Mf ,P ](18t) ≤ NY (t)(9t) +NT (t)(9t) = NY (t)(9t) ≤ NY (t)(t) ≤
1
t2
‖Y (t)‖22.

Therefore∫ ∞
0

tp−1N[Mf ,P ](18t)dt ≤
∫ ∞

0

tp−1

t2

∫∫
|f(x)−f(y)|>t

|f(x)− f(y)|2

|1− 〈x, y〉|2n
dσ(x)dσ(y)dt

=
∫∫ (∫ |f(x)−f(y)|

0

tp−3dt

)
|f(x)− f(y)|2

|1− 〈x, y〉|2n
dσ(x)dσ(y)

=
1

p− 2

∫∫
|f(x)− f(y)|p−2 |f(x)− f(y)|2

|1− 〈x, y〉|2n
dσ(x)dσ(y).
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Making the substitution s = 18t, we have∫ ∞
0

sp−1N[Mf ,P ](s)ds ≤
(18)p

p− 2

∫∫
|f(x)− f(y)|p

|1− 〈x, y〉|2n
dσ(x)dσ(y).

By (7.2), the proposition follows. �

Recall that, for each 1 ≤ p <∞, the formula

(7.9) ‖A‖+p = sup
k≥1

s1(A) + s2(A) + ...+ sk(A)
1−1/p + 2−1/p + ...+ k−1/p

defines a symmetric norm for operators [5,Section III.14]. On any Hilbert space H, the set
C+
p = {A ∈ B(H) : ‖A‖+p < ∞} is a norm ideal [5,Section III.2] of compact operators. It

is well known that C+
p ⊃ Cp and that C+

p 6= Cp. An interesting property of C+
p is that it is

not separable with respect to the norm ‖.‖+p .

Proposition 7.2. There is a 0 < C <∞ which depends only on n such that the inequality

‖[Mf , P ]‖+2n ≤ CL(f)

holds for every f ∈ Lip(S), where L(f) = supx 6=y |f(x)− f(y)|/|x− y|.

Proof. Recall that |x− y| ≤
√

2|1− 〈x, y〉|1/2, x, y ∈ S. Thus it suffices to consider a real-
valued f ∈ Lip(S) with the property that |f(x) − f(y)| ≤ d(x, y), x, y ∈ S. Consider any
t > 0 and let [Mf , P ] = Y (t) +T (t) be the decomposition given in the proof of Proposition
7.1. It follows from (7.8) and (7.7) that

N[Mf ,P ](18t) ≤ 1
t2

∫∫
d(x,y)≥t

1
|1− 〈x, y〉|2n−1

dσ(x)dσ(y)

=
1
t2

∫ ∞∑
k=0

∫
B(x,2k+1t)\B(x,2kt)

1
|1− 〈x, y〉|2n−1

dσ(y)dσ(x)

≤ 1
t2

∫ ∞∑
k=0

σ(B(x, 2k+1t))
(2kt)4n−2

dσ(x).

Since σ(B(x, 2k+1t)) ≤ A0(2k+1t)2n, we see that there is a C1 which depends only on n
(≥ 2) such that N[Mf ,P ](18t) ≤ C1t

−2n. Thus if we set C2 = (18)2nC1, then N[Mf ,P ](t) ≤
C2t
−2n for every t > 0. For each k ∈ N, let tk > 0 be such that C2t

−2n
k = k. Then

N[Mf ,P ](tk) ≤ C2t
−2n
k = k, which implies

(7.10) sk+1([Mf , P ]) ≤ tk = C
1/2n
2 k−1/2n ≤ 2C1/2n

2 (k + 1)−1/2n.

The condition |f(x) − f(y)| ≤ d(x, y) implies ‖[Mf , P ]‖ ≤ 2
√

2, i.e., s1([Mf , P ]) ≤ 2
√

2.
This plus (7.10) gives us sk([Mf , P ]) ≤ 2 max{C1/2n

2 ,
√

2}k−1/2n for every k ∈N. By (7.9),
this means ‖[Mf , P ]‖+2n ≤ 2 max{C1/2n

2 ,
√

2}. �
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8. Lower Bound for s-Numbers

The proof of Theorem 1.6 is a long journey. We begin with the action of the n-
dimensional torus on S. Let Tn = {(τ1, ..., τn) ∈ Cn : |τ1| = ... = |τn| = 1}. For each
τ = (τ1, ..., τn) ∈ Tn, define the unitary transformation Uτ on Cn by the formula

Uτ (z1, ..., zn) = (τ1z1, ..., τnzn).

We will follow the usual multi-index convention given on page 3 in [9].

Definition 8.1. A function f ∈ L2(S, dσ) is said to be Tn-invariant if f ◦ Uτ = f for
every τ ∈ Tn.

Lemma 8.2. If f is a Tn-invariant function in L∞(S, dσ), then ‖Hf̄h‖ = ‖Hfh‖ for
every h ∈ H2(S).

Proof. Let {eα : α ∈ Zn+} be the standard orthonomal basis in H2(S). That is, eα(ζ) =
cαζ

α, where cα > 0 is such that ‖eα‖ = 1. If f is Tn-invariant, then it is well known (and
easy to verify) that the Toeplitz operator Tf = PMf |H2(S) is a diagonal operator with
respect to the orthonomal basis {eα : α ∈ Zn+}. Therefore [T ∗f , Tf ] = 0 and, consequently,

PMf̄ (1− P )MfP = T|f |2 − T ∗f Tf = T|f |2 − TfT ∗f = PMf (1− P )Mf̄P.

That is, H∗fHf = H∗
f̄
Hf̄ , which implies ‖Hf̄h‖ = ‖Hfh‖ for every h ∈ H2(S). �

Next we consider functions of a very specific kind. For each j ∈ {1, ..., n}, let ej ∈ S
be the vector whose j-th component is 1 and whose other components are 0. For each pair
of i, j ∈ {1, ..., n}, define the function pi,j on U by the formula

pi,j(U) = 〈Uei, ej〉, U ∈ U .

For the rest of the section, let

(8.1) F (ζ) =
∫
m(U)ψ(Uζ)dU, ζ ∈ S,

where ψ ∈ C(S) and m is a monomial in pi,j and p̄i′,j′ , i, j, i′, j′ ∈ {1, ..., n}.

Lemma 8.3. For the F given by (8.1), if HF 6= 0, then there is an ε1 > 0 such that
sk(HF ) ≥ ε1k−1/2n for every k ∈ N.

This lemma, whose proof will be given after we state Lemma 8.5, is one of the reduction
steps in the proof of Theorem 1.6.

Lemma 8.4. There exists a pair of α = (α1, ..., αn), β = (β1, ..., βn) in Zn+ with the
property that αjβj = 0 for every j ∈ {1, ..., n} such that

F ◦ Uτ = τ̄ατβF

for every τ ∈ Tn.
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Proof. By the invariance of the Haar measure dU , we have

(8.2) F (Uτζ) =
∫
m(U)ψ(UUτζ)dU =

∫
m(UU∗τ )ψ(Uζ)dU

for all ζ ∈ S and τ ∈ Tn. But for any i, j ∈ {1, ..., n},

pi,j(UU∗τ ) = 〈UU∗τ ei, ej〉 = τ̄i〈Uei, ej〉 = τ̄ipi,j(U)

if τ = (τ1, ..., τn). Since m is a monomial in pi,j and p̄i′,j′ , it is easy to see that there exists
a pair of α, β as described in the statement of the lemma such that

m(UU∗τ ) = τ̄ατβm(U)

for all U ∈ U and τ ∈ Tn. Substituting this in (8.2), the lemma follows. �

With the α given by Lemma 8.4, we define the function

(8.3) G(ζ) = ζαF (ζ), ζ ∈ S.

Lemma 8.5. For the G given by (8.3), if HG 6= 0, then there is an ε2 > 0 such that
sk(HG) ≥ ε2k−1/2n for every k ∈ N.

Before embarking on the long proof of Lemma 8.5, let us first show that it implies
Lemma 8.3.

Proof of Lemma 8.3. If α = (0, ..., 0), then F = G, and in this case Lemma 8.3 just
duplicates Lemma 8.5. Now suppose that there is a j0 ∈ {1, ..., n} such that αj0 > 0.

We first show that the assumption HF 6= 0 implies HG 6= 0. For if it were true that
HG = 0, then we would have G ∈ H2(S). By (8.3) and Lemma 8.4,

G(Uτζ) = ταζατ̄ατβF (ζ) = τβζαF (ζ) = τβG(ζ)

for all ζ ∈ S and τ ∈ Tn. The only functions in H2(S) which have this property are
multiples of the monomial ζβ . That is, there is a c ∈ C such that

(8.4) G(ζ) = cζβ , ζ ∈ S.

Since αj0 > 0, by Lemma 8.4 we have βj0 = 0. Now let ζ0 be the vector whose j0-th
component is 0 and whose other components are (n − 1)−1/2. Then ζα0 = 0 and ζβ0 6= 0.
Combining (8.3) and (8.4), we have

0 = ζα0 F (ζ0) = G(ζ0) = cζβ0 .

Since ζβ0 6= 0, this means c = 0. By (8.4), we then have G = 0. Since the zero set of ζα

is nowhere dense in S, (8.3) and the continuity of F lead to the conclusion F = 0 on S,
which contradicts the assumption HF 6= 0.
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Hence if HF 6= 0, then HG 6= 0. By Lemma 8.5, this implies sk(HG) ≥ ε2k
−1/2n,

k ∈ N. Obviously, HG = HFTζα , where Tζα = PMζα |H2(S). Since ‖Tζα‖ ≤ 1, we have
sk(HG) ≤ sk(HF ) [5,page 61]. Hence sk(HF ) ≥ ε2k−1/2n, k ∈ N. �

We now turn to the proof of Lemma 8.5. With the β given in Lemma 8.4, we write

(8.5) b(ζ) = ζβ , ζ ∈ S.

Note that the assumption HG 6= 0 in Lemma 8.5 in particular implies

(8.6) G is not a multiple of b on S.

The basic idea for the proof of Lemma 8.5 is to show that (8.6) implies the lower bound
given in Lemma 8.14 below. This involves many technical steps, and a major hurdle among
these is the zero set of b. Due to the technicalities, it may be advisable for the reader to
first read Lemma 8.14 and beyond, and then come back for the proofs.

Define Qj = {(z1, ..., zn) ∈ Cn : zj = 0} for each j ∈ {1, ..., n}. Furthermore, define

Z = (S ∩Q1) ∪ ... ∪ (S ∩Qn).

An obvious property of Z is that it is invariant under {Uτ : τ ∈ Tn}. The key step on our
way to Lemma 8.14 is the following improvement of (8.6):

Lemma 8.6. There exist x, z ∈ S and 0 ≤ r < s ≤ π/2 such that the following are true:
(1) 〈x, z〉 = 0.
(2) {cos tx+ sin tz : t ∈ [r, s]} ∩ Z = ∅.
(3) On the interval [r, s], the function t 7→ G(cos tx+ sin tz) is not a multiple of the
function t 7→ b(cos tx+ sin tz).

Proof. Define the vector u0 = (n−1/2, ..., n−1/2). We then define the linear subspaces E1 =
span{u0} and E2 = Cn 	 E1 of Cn. Furthermore, let

Si = S ∩ Ei, i = 1, 2.

The definition of u0 guarantees that for each j ∈ {1, ..., n}, Qj contains vectors which are
not orthogonal to u0. Thus Qj∩E2 is a proper linear subspace of Qj . Since dim(Qj) = n−1,
we have dim(Qj ∩ E2) < n− 1. Since dim(E2) = n− 1, for each j ∈ {1, ..., n} the set

Bj = Qj ∩ S2

is nowhere dense in S2. Consequently, the set B1 ∪ ... ∪ Bn is also nowhere dense in S2.
Hence the set

Γ = S2\(B1 ∪ ... ∪Bn)

is dense in S2. We have, of course, Γ ∩ Z = ∅. We first show that there exist an x ∈ S1

and a z ∈ Γ such that, on the entire interval [0, π/2], the function t 7→ G(cos tx+ sin tz) is
not a multiple of the function t 7→ b(cos tx+ sin tz).

35



If this assertion were false, then for each pair of x ∈ S1 and z ∈ Γ there would be a
cx,z ∈ C such that

G(cos tx+ sin tz) = cx,zb(cos tx+ sin tz) for every t ∈ [0, π/2].

But since b(x) 6= 0 and b(z) 6= 0, setting t = 0 and t = π/2 in the above, we have

G(x)/b(x) = cx,z = G(z)/b(z).

If z′ is any other point in Γ, then we also have

cx,z′ = G(x)/b(x) = cx,z.

Thus cx,z is independent of z ∈ Γ. A similar argument shows that cx,z is also independent
of x ∈ S1. Hence there is a c ∈ C such that

G(cos tx+ sin tz) = cb(cos tx+ sin tz) for all x ∈ S1, z ∈ Γ and t ∈ [0, π/2].

Since Γ is dense in S2 and since G, b are continuous, the above implies

G(cos tx+ sin tz) = cb(cos tx+ sin tz) for all x ∈ S1, z ∈ S2 and t ∈ [0, π/2].

Since {cos tx+ sin tz : x ∈ S1, z ∈ S2, t ∈ [0, π/2]} = S, this contradicts (8.6).

Thus there exists a pair of x ∈ S1 and z ∈ Γ such that on the whole interval [0, π/2],
the function t 7→ G(cos tx+ sin tz) is not a multiple of the function t 7→ b(cos tx+ sin tz).
Next we will show that for such a pair of x, z, there exist 0 ≤ r < s ≤ π/2 such that the
interval [r, s] satisfies requirements (2) and (3). To do this, we note that since x, z have
no zero components and since tan t is strictly increasing on [0, π/2), the set

{t ∈ [0, π/2] : cos tx+ sin tz ∈ Z}

is finite. If {t ∈ [0, π/2] : cos tx+ sin tz ∈ Z} = ∅, then [r, s] = [0, π/2] will do. Otherwise,
we enumerate the set {t ∈ [0, π/2] : cos tx+ sin tz ∈ Z} in the ascending order as

t1 < ... < tk,

1 ≤ k < ∞. Since t1 > 0 and tk < π/2, we can define t0 = 0 and tk+1 = π/2. If there
is an i ∈ {1, ..., k + 1} such that the function t 7→ G(cos tx + sin tz) is not a multiple
of the function t 7→ b(cos tx + sin tz) on the interval (ti−1, ti), then there is a non-trivial
subinterval [r, s] in (ti−1, ti) for which (3) holds true. Such an [r, s] also satisfies (2) because
{t ∈ [0, π/2] : cos tx+ sin tz ∈ Z} = {t1, ..., tk}.

Hence what remains for the proof is to rule out the possibility that, for each 1 ≤ i ≤
k + 1, there is a ci ∈ C such that

(8.7) G(cos tx+ sin tz) = cib(cos tx+ sin tz) for every t ∈ (ti−1, ti).
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First of all, the choice of x, z does not allow the possibility c1 = c2 = ... = ck+1. Thus if
(8.7) were true for every i ∈ {1, ..., k + 1}, then there would be a ν ∈ {1, ..., k} such that
cν 6= cν+1. We will show that this leads to a contradiction.

By (8.5), the function t 7→ b(cos tx + sin tz) is a polynomial in cos t and sin t. Since
cos t and sin t have analytic extensions to C, there is an analytic function b̃ on C such that

(8.8) b̃(t) = b(cos tx+ sin tz) for every t ∈ R.

We claim that there is an analytic function G̃ on C such that

(8.9) G̃(t) = G(cos tx+ sin tz) for every t ∈ R.

Postponing the proof of this claim for a moment, we first show that this leads to the
contradiction promised in the preceding paragraph. This is because the combination of
(8.8), (8.9) and (8.7) gives us

G̃(t) = cν b̃(t) for t ∈ (tν−1, tν) and

G̃(t) = cν+1b̃(t) for t ∈ (tν , tν+1).

The analyticity of G̃ and b̃ then leads to G̃ = cν b̃ on C and G̃ = cν+1b̃ on C. This implies
that (cν+1 − cν)b̃ = G̃ − G̃ = 0. Since cν 6= cν+1, this forces b̃ = 0 on C. By (8.8), this
contradicts the fact that the function t 7→ b(cos tx+ sin tz) is not identically zero.

We now turn to the proof that there is an analytic function G̃ on C such that (8.9)
holds. For this we revert back to the function F . By (8.3) and the reasoning at the
beginning of previous paragraph, it suffices to show that the function

(8.10) t 7→ F (cos tx+ sin tz)

on R is a polynomial in cos t and sin t. For this we need to introduce a one-parameter
subgroup of U , which will be used beyond this proof. Denote E = span{x, z}. For each t ∈
R, let Vt be the unitary transformation on Cn such that

(8.11)

Vtx = cos tx+ sin tz
Vtz = − sin tx+ cos tz
Vt = 1 on Cn 	 E

.

By (8.1) and the invariance of the Haar measure dU , we have

(8.12) F (cos tx+ sin tz) = F (Vtx) =
∫
m(U)ψ(UVtx)dU =

∫
m(UV ∗t )ψ(Ux)dU.

Let Q : Cn → Cn 	 E be the orthogonal projection. For each pair of i, j ∈ {1, ..., n},

pi,j(UV ∗t ) = 〈V ∗t ei, U∗ej〉 = 〈V ∗t (〈ei, x〉x+ 〈ei, z〉z +Qei), U∗ej〉
= 〈ei, x〉〈cos tx− sin tz, U∗ej〉+ 〈ei, z〉〈sin tx+ cos tz, U∗ej〉+ 〈Qei, U∗ej〉
= (〈ei, x〉〈Ux, ej〉+ 〈ei, z〉〈Uz, ej〉) cos t
+ (〈ei, z〉〈Ux, ej〉 − 〈ei, x〉〈Uz, ej〉) sin t+ 〈UQei, ej〉.
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Combining this with (8.12) and with the fact that m is a monomial in pi,j and p̄i′,j′ ,
i, j, i′, j′ ∈ {1, ..., n}, we see that (8.10) is indeed a polynomial in cos t and sin t. This
completes the proof of the lemma. �

Now consider the consequence of Lemma 8.6. A byproduct of the above proof is that
the function t 7→ G(Vtx)/b(Vtx) is smooth on the interval (r, s). Since Lemma 8.6 tells us
that this function is not a constant on (r, s), there is a θ ∈ (r, s) such that

d

dt

(
G(Vtx)
b(Vtx)

)∣∣∣∣
t=θ

6= 0.

Because Vt+θ = VθVt, we can rewrite the above as

d

dt

(
G(VθVtx)
b(VθVtx)

)∣∣∣∣
t=0

6= 0.

Define

(8.13) y = Vθx and y⊥ = Vθz.

Then, of course, 〈y, y⊥〉 = 〈x, z〉 = 0. Since θ ∈ (r, s), y = cos θx+ sin θz /∈ Z. Therefore

(8.14) d(y,Z) = inf{d(y, ξ) : ξ ∈ Z} = ρ > 0.

Since VθVtx = Vθ(cos tx+ sin tz) = cos ty + sin ty⊥, from the above we obtain

Corollary 8.7. For the y and y⊥ defined by (8.13), we have

d

dt

(
G(cos ty + sin ty⊥)
b(cos ty + sin ty⊥)

)∣∣∣∣
t=0

6= 0.

Let η : R → [0, 1] be a C∞-function such that η = 0 on (−∞, 1/2] and η = 1 on
[1,∞). There is a sufficiently large number R > 1 such that if we define

(8.15) µ(w) =
n∏
j=1

η(R|wj |), where w = (w1, ..., wn),

then

(8.16) µ(u) = 1 for every u ∈ B(y, ρ/2).

With this µ we define the functions G1, G2 on S by the formulas

(8.17) G1 = µG and G2 = (1− µ)G.
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From the definition of µ, it is clear that the function µ(w)/b(w) = µ(w)/wβ has a natural
smooth extension to Cn. In other words, there is a C∞-function g on the entire space Cn

such that

(8.18) g(w) =

µ(w)/b(w) if µ(w) 6= 0

0 if µ(w) = 0
.

For the rest of the section, let ϕ denote the function given by the formula

(8.19) ϕ(ζ) = g(ζ)G(ζ), ζ ∈ S.

By (8.18), the identity b(ζ)g(ζ) = µ(ζ) holds on S. Hence

(8.20) G1(ζ) = b(ζ)ϕ(ζ), ζ ∈ S.

Lemma 8.8. The function ϕ is Tn-invariant.

Proof. Obviously, µ is Tn-invariant. By (8.3), (8.5), (8.18) and Lemma 8.4, if ζ ∈ S
satisfies the condition µ(ζ) 6= 0, then

ϕ(Uτζ) =
µ(Uτζ)
(Uτζ)β

(Uτζ)αF (Uτζ) =
µ(ζ)
τβζβ

ταζατ̄ατβF (ζ) =
µ(ζ)
ζβ

ζαF (ζ) = ϕ(ζ)

for every τ ∈ Tn. If ζ ∈ S is such that µ(ζ) = 0, then clearly ϕ(Uτζ) = 0 = ϕ(ζ) for every
τ ∈ Tn. This completes the proof. �

Lemma 8.9. For each V ∈ U , the derivative

d

dt
ϕ(cos tV y + sin tV y⊥)

∣∣∣∣
t=0

exists. Moreover, as t→ 0, the convergence

ϕ(cos tV y + sin tV y⊥)− ϕ(V y)
t

→ d

dt
ϕ(cos tV y + sin tV y⊥)

∣∣∣∣
t=0

is uniform with respect to V ∈ U . Finally, the map

(8.21) V 7→ d

dt
ϕ(cos tV y + sin tV y⊥)

∣∣∣∣
t=0

is continuous with respect to the norm topology on U .

Proof. By (8.3) and (8.19), if we define f(ζ) = ζαg(ζ), then ϕ = fF . Combining (8.13)
and (8.11), we have cos tV y + sin tV y⊥ = V (cos ty + sin ty⊥) = V VθVtx for every V ∈ U .
Thus, recalling (8.1) and using the invariance of dU , we have

F (cos tV y + sin tV y⊥) = F (V VθVtx) =
∫
m(U)ψ(UV VθVtx)dU

=
∫
m(UV ∗t V

∗
θ V
∗)ψ(Ux)dU.
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By the nature of m and the fact that f is the restriction to S of a C∞-function on Cn,
the desired conclusions follow immediately. �

Lemma 8.10. We have
d

dt
ϕ(cos ty + sin ty⊥)

∣∣∣∣
t=0

6= 0.

Proof. By (8.19), (8.18) and (8.16), we have

d

dt
ϕ(cos ty + sin ty⊥)

∣∣∣∣
t=0

=
d

dt

(
G(cos ty + sin ty⊥)
b(cos ty + sin ty⊥)

)∣∣∣∣
t=0

.

Corollary 8.7 tells us that this quantity is not 0. �

Lemma 8.11. There exist c > 0, 0 < δ < 1/2 and 0 < ρ0 < ρ/3 such that if u ∈ B(y, ρ0)
and 0 < t ≤ δ, then

sup
v∈B(u,t)

|ϕ(v)− ϕ(u)| ≥ ct.

Proof. By Lemma 8.10 and the continuity of the map (8.21), there exist a c0 > 0 and an
open neighborhood N of 1 in U such that the inequality∣∣∣∣ ddtϕ(cos tV y + sin tV y⊥)

∣∣∣∣
t=0

∣∣∣∣ ≥ c0
holds for every V ∈ N . Combining this with the uniform convergence mentioned in Lemma
8.9, there is a 0 < δ < 1/2 such that

(8.22)
∣∣∣∣ϕ(cos tV y + sin tV y⊥)− ϕ(V y)

t

∣∣∣∣ ≥ c0/2
if 0 < t ≤ δ and V ∈ N . Since N is an open set containing 1, there is a 0 < ρ0 < ρ/3 such
that {V y : V ∈ N} ⊃ B(y, ρ0). Thus (8.22) tells us that for each u ∈ B(y, ρ0) and each
0 < t ≤ δ, there is a u⊥ ∈ S with 〈u, u⊥〉 = 0 such that

|ϕ(cos tu+ sin tu⊥)− ϕ(u)| ≥ c0t/2.

Since 〈u, cos tu + sin tu⊥〉 = cos t, we have d(u, cos tu + sin tu⊥) =
√

1− cos t < sin t < t,
i.e., cos tu+ sin tu⊥ ∈ B(u, t). Thus c = c0/2 will do for the lemma. �

Lemma 8.12. Let δ and ρ0 be the same as in Lemma 8.11. There exists a c1 > 0 such
that if u ∈ B(y, ρ0) and 0 < t ≤ δ, and if we set

w = (1− t2)1/2u,

then ‖Hϕkw‖ ≥ c1t.
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Proof. By (8.19), (8.3), (8.1) and Lemma 6.3, ϕ is Lipschitz on S. Therefore there is an
L > c such that

(8.23) |ϕ(ζ)− ϕ(ξ)| ≤ Ld(ζ, ξ) for all ζ, ξ ∈ S.

Let u, t and w be given as in the statement of the lemma. By Lemma 8.11, there is a
v ∈ B(u, t) such that |ϕ(v)− ϕ(u)| ≥ ct/2. Combining this with (8.23), we have

|ϕ(ζ)− ϕ(ξ)| ≥ ct/6 if ζ ∈ B(v, ct/6L) and ξ ∈ B(u, ct/6L).

Note that B(v, ct/6L) ⊂ B(v, t) ⊂ B(u, 2t). Thus for any γ ∈ C, we have

σ({ζ ∈ B(u, 2t) : |ϕ(ζ)− γ| ≥ ct/12}) ≥ min{σ(B(u, ct/6L)), σ(B(v, ct/6L))}
= σ(B(u, ct/6L)).

Consequently, there is an a1 > 0 which depends only on c, L and n such that

(8.24)
1

σ(B(u, 2t))

∫
B(u,2t)

|ϕ− γ|2dσ ≥ σ(B(u, ct/6L))
σ(B(u, 2t))

(ct/12)2 ≥ a1t
2.

By Lemmas 8.8 and 8.2, ‖Hϕ̄kw‖2 = ‖Hϕkw‖2. Combining this with [11,(6.4)], we obtain

(8.25) 2‖Hϕkw‖2 = ‖Hϕkw‖2 + ‖Hϕ̄kw‖2 ≥ ‖(ϕ− 〈ϕkw, kw〉)kw‖2.

If ζ ∈ B(u, 2t), then |1− 〈ζ, w〉| ≤ 1− |w|+ |1− 〈ζ, u〉| ≤ t2 + (2t)2 = 5t2. Thus

|kw(ζ)|2 ≥ t2n

(5t2)2n
≥ a2

σ(B(u, 2t))
for ζ ∈ B(u, 2t),

where a2 > 0 depends only on n. Combining this inequality with (8.25) and (8.24), we see
that 2‖Hϕkw‖2 ≥ a2a1t

2, which proves the lemma. �

Lemma 8.13. There is a constant C8.13 which depends only on n such that the following
estimate holds: Let u ∈ S and 0 < t < 1, and set

w = (1− t2)1/2u.

Suppose that f1, f2 are functions on S satisfying the condition

|fi(ζ)− fi(ξ)| ≤ Lid(ζ, ξ) for all ζ, ξ ∈ S,

i = 1, 2. Then ‖(f1 − f1(u))(f2 − f2(u))kw‖ ≤ C8.13L1L2t
3/2.

Proof. For any ζ ∈ S\B(u, 2j−1t), j ≥ 1, we have 2|1 − 〈ζ, w〉| ≥ |1 − 〈ζ, u〉| ≥ (2j−1t)2.
Therefore, if ζ ∈ S\B(u, 2j−1t), then

|kw(ζ)|2 =
(1− |w|2)n

|1− 〈ζ, w〉|2n
≤ 82nt2n

(2jt)4n
=

1
22nj

· 82n

(2jt)2n
≤ C1

22nj
· 1
σ(B(u, 2jt))

.
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Also, for ζ ∈ B(u, t) we have

|kw(ζ)|2 ≤ (1− |w|2)n

(1− |w|)2n
≤ 22n

(1− |w|2)n
=

22n

t2n
≤ C2

σ(B(u, t))
.

For ζ ∈ B(u, 2jt), j ≥ 0, we have

|f1(ζ)− f1(u)|2|f2(ζ)− f2(u)|2 ≤ 2L1|f1(ζ)− f1(u)||f2(ζ)− f2(u)|2 ≤ 2L1 · L1L
2
2(2jt)3.

Combining the above, we find that

‖(f1 − f1(u))(f2−f2(u))kw‖2 =
∫
B(u,t)

|f1 − f1(u)|2|f2 − f2(u)|2|kw|2dσ

+
∞∑
j=1

∫
B(u,2jt)\B(u,2j−1t)

|f1 − f2(u)|2|f2 − f2(u)|2|kw|2dσ

≤ 2C2L
2
1L

2
2t

3 + 2C1L
2
1L

2
2

∞∑
j=1

(2jt)3

22nj
.

By our standing assumption n ≥ 2, we have 2n− 3 > 0. Thus the above inequality implies
the desired estimate. �

Lemma 8.14. Let δ and ρ0 be the same as in Lemma 8.11. There exist a 0 < c2 < c1 and
a 0 < δ0 < δ such that if u ∈ B(y, ρ0) and 0 < t ≤ δ0, and if we set

w = (1− t2)1/2u,

then ‖HGkw‖ ≥ c2t.

Proof. Consider any 0 < t < δ and u ∈ B(y, ρ0). For such a pair of t, u, define w as above.
Recall from (8.17) that G = G1 + G2. We first derive a lower bound for ‖HG1kw‖. By
(8.14) and the fact that ρ0 < ρ/3, we have

(8.26) inf
v∈B(y,ρ0)

|b(v)| = c3 > 0.

Recall from (8.20) that G1 = bϕ. Therefore

HG1kw = b(u)Hϕkw +H(b−b(u))ϕkw = b(u)Hϕkw +H(b−b(u))(ϕ−ϕ(u))kw,

where the second = is a crucial use of the fact that Hb−b(u)kw = 0. There is an M > 0
such that |b(ζ)− b(ξ)| ≤Md(ζ, ξ) for all ζ, ξ ∈ S. Applying Lemma 8.12, Lemma 8.13 and
(8.26), we find that

‖HG1kw‖ ≥ |b(u)|‖Hϕkw‖ − ‖H(b−b(u))(ϕ−ϕ(u))kw‖ ≥ c3c1t− C8.13LMt3/2,
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where L is the same as in (8.23). Now let 0 < δ1 < δ be such that C8.13LMδ
1/2
1 ≤ c3c1/2.

The above yields

(8.27) ‖HG1kw‖ ≥ c3c1t/2 if 0 < t < δ1.

Next we give an upper bound for ‖HG2kw‖. By (8.16) and (8.17), G2 = 0 on the set
B(y, ρ/2). Since ρ0 < ρ/3, we see that there is a 0 < C < ∞ which is independent of
u ∈ B(y, ρ0) and certainly independent of t such that

|G2(ζ)kw(ζ)| ≤ C(1− |w|2)n/2 = C(t2)n/2 = Ctn if ζ ∈ S\B(y, ρ/2).

Therefore ‖HG2kw‖ ≤ Ctn. Since n ≥ 2, there is a 0 < δ0 < δ1 such that if 0 < t ≤ δ0,
then ‖HG2kw‖ ≤ c3c1t/4. Combining this with (8.27), we see that

‖HGkw‖ ≥ ‖HG1kw‖ − ‖HG2kw‖ ≥ (c3c1t/2)− (c3c1t/4) = c3c1t/4

for such t and u. Thus c2 = c3c1/4 will do for the lemma. �

Lemma 8.15. There is a constant C8.15 which depends only on n such that the following
estimate holds: Suppose that 0 < t < 1/2 and that {uj : j ∈ J} is a subset of S satisfying
the condition

(8.28) B(ui, t) ∩B(uj , t) = ∅ for all i 6= j.

Define zj = (1− t2)1/2uj , j ∈ J . Then the norm of the operator

E =
∑
j∈J

kzj ⊗ kzj

satisfies the inequality ‖E‖ ≤ C8.15.

Proof. Define G = {w ∈ Cn : |w| < 1/2}. We first show that

(8.29) ϕzj (G) ⊂ {ru : u ∈ B(uj , 3t), (1− (2t)2)1/2 ≤ r ≤ (1− (t/3)2)1/2},

j ∈ J . Indeed for any given j ∈ J and w ∈ G, write ϕzj (w) = ru, where u ∈ S and
0 ≤ r < 1. By [9,page 26], we have 1 − 〈ϕzj (w), zj〉 = (1− |zj |2)/(1− 〈w, zj〉). Since
|w| < 1/2, this gives us |1 − 〈u, uj〉| ≤ 2|1 − 〈ϕzj (w), zj〉| ≤ 2(t2/2−1) = 4t2. Thus
d(u, uj) ≤ 2t < 3t. To estimate r, note that

1− |ϕzj (w)|2 =
(1− |zj |2)(1− |w|2)
|1− 〈w, zj〉|2

=
1− |w|2

|1− 〈w, zj〉|2
t2

(see [9,page 26]). Therefore

(t/3)2 ≤ 1− (1/2)2

22
t2 ≤ 1− r2 ≤ 1

(1/2)2
t2 = (2t)2.
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This completes the proof of (8.29). Set

W (t) = {ru : u ∈ S, (1− (2t)2)1/2 ≤ r ≤ (1− (t/3)2)1/2}.

By (8.28), there is a C1 which depends only on n such that card{j ∈ J : u ∈ B(uj , 3t)} ≤ C1

for every u ∈ S. Combining this with (8.29), we see that

(8.30)
∑
j∈J

χϕzj (G) ≤ C1χW (t) on B.

Let f be any function in L2(S, dσ) and denote h = Pf . Then h ∈ H2(S) and

(8.31) 〈Ef, f〉 =
∑
j∈J
|〈h, kzj 〉|2 =

∑
j∈J

(1− |zj |2)n|h(zj)|2 = t2n
∑
j∈J
|h2(zj)|.

By the Möbius invariance dλ ◦ ϕzj = dλ [9,Theorem 2.2.6] and the fact ϕzj (0) = zj ,

(8.32) h2(zj) = h2(ϕzj (0)) =
1

λ(G)

∫
G
h2 ◦ ϕzjdλ =

1
λ(G)

∫
ϕzj (G)

h2dλ

for each j ∈ J . Combining (8.31), (8.32) and (8.30), we have

〈Ef, f〉 ≤ t2n
∑
j∈J

1
λ(G)

∫
ϕzj (G)

|h2|dλ ≤ C1

λ(G)
t2n
∫
W (t)
|h|2dλ

=
C1

λ(G)
t2n
∫ (1−(t/3)2)1/2

(1−(2t)2)1/2

2nr2n−1

(1− r2)n+1

(∫
|h(ru)|2dσ(u)

)
dr

≤ C1

λ(G)
‖h‖2t2n

∫ (1−(t/3)2)1/2

(1−(2t)2)1/2

2nr2n−1

(1− r2)n+1
dr.

But it is easy to see that there is a C2 which depends only on n such that

t2n
∫ (1−(t/3)2)1/2

(1−(2t)2)1/2

2nr2n−1

(1− r2)n+1
dr ≤ C2

for all 0 < t < 1/2. This completes the proof. �

Proof of Lemma 8.5. Let t ∈ (0, δ0) be given, where δ0 is the same as in Lemma 8.14. Then
there is a subset {uj : j ∈ J} of B(y, ρ0) which is maximal with respect to the property

B(ui, t) ∩B(uj , t) = ∅ if i 6= j.

The maximality of {uj : j ∈ J} implies ∪j∈JB(uj , 2t) ⊃ B(y, ρ0). Thus there are constants
0 < C1 < C2 <∞ which depend only on ρ0 and n such that

(8.36) C1t
−2n ≤ card(J) ≤ C2t

−2n.
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For each j ∈ J , define wj = (1− t2)1/2uj . Then define the operator

Et =
∑
j∈J

kwj ⊗ kwj .

Let A = H∗GHG. By Lemma 8.14, we have ‖HGkwj‖ ≥ c2t for each j ∈ J . Combining this
with the lower bound in (8.36), we obtain

(8.37) tr(AEt) =
∑
j∈J
‖HGkwj‖2 ≥ (c2t)2 · C1t

−2n = εt−2n+2,

where ε = c22C1. We have ‖Et‖ ≤ C8.15 by Lemma 8.15 and rank(Et) ≤ C2t
−2n by the

upper bound in (8.36). Also, sj(AEt) ≤ sj(A)‖Et‖ [5,page 61]. Hence

(8.38) tr(AEt) ≤ ‖AEt‖1 =
rank(Et)∑
j=1

sj(AEt) ≤ C8.15

∑
1≤j≤C2t−2n

sj(A).

Now suppose that an integer k ≥ C2(δ0/2)−2n is given. Let tk ∈ (0, δ0) be such that
C2t
−2n
k = k. Then from (8.38) and (8.37) we obtain

C8.15{s1(A) + ...+ sk(A)} ≥ εt−2n+2
k = ak(n−1)/n,

where a = εC
(−n+1)/n
2 . Since the above inequality holds for every k ≥ C2(δ0/2)−2n, it is

easy to see that there is an a1 > 0 such that

(8.39) s1(A) + ...+ sk(A) ≥ a1k
(n−1)/n

for every k ∈ N.

On the other hand, Proposition 7.2 tells us that ‖HG‖+2n <∞. Observe that

ksk(HG) ≤ s1(HG) + ...+ sk(HG) ≤ ‖HG‖+2n(1−1/2n + ...+ k−1/2n) ≤ C3k
1−(1/2n)

for every k ∈ N, where C3 = 3‖HG‖+2n. Hence sk(HG) ≤ C3k
−1/2n. Since A = H∗GHG, we

have sk(A) = {sk(HG)}2 ≤ (C3)2k−1/n, k ∈ N. Therefore

(8.40) s1(A) + ...+ sk(A) ≤ (C3)2(1−1/n + ...+ k−1/n) ≤ 3(C3)2k(n−1)/n

for every k ∈ N. Let N ∈ N be such that a1N
(n−1)/n ≥ 3(C3)2 + 1. By (8.39) and (8.40),

Nksk(A) ≥ sk(A) + ...+ sNk(A) ≥ a1(Nk)(n−1)/n − 3(C3)2k(n−1)/n ≥ k(n−1)/n

for each k ∈ N. Thus if we set a2 = N−1, then sk(A) ≥ a2k
−1/n for each k ∈ N. Hence

sk(HG) = {sk(A)}1/2 ≥ √a2k
−1/2n. This completes the proof of Lemma 8.5. �
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Proof of Theorem 1.6. Let f ∈ L2(S, dσ) and suppose that Hf is bounded. If Hf 6= 0,
then by using the sequence of approximate identity {Φj} in Section 6, we find that there
is a Ψ ∈ C(U) such that the function

ψ = YΨf =
∫

Ψ(U)WUfdU

also has the property Hψ 6= 0. Obviously, the functions {pi,j : 1 ≤ i, j ≤ n} separate
points on U . Thus, by the Stone-Weierstrass approximation theorem, the linear span of
monomials in pi,j and p̄i′,j′ is dense in C(U) with respect to the norm ‖.‖∞. Combining
this fact with the sequence {Φj} in Section 6, we see that there is a monomial m in pi,j
and/or p̄i′,j′ , i, j, i′, j′ ∈ {1, ..., n}, such that the function

(8.41) F = Ymψ =
∫
m(U)WUψdU

also has the property HF 6= 0. In the proof of Lemma 6.3 we showed that ψ ∈ C(S).
Hence from (8.41) we obtain the “pointwise” expression (8.1) for this F . Thus Lemma 8.3
is applicable. Since HF 6= 0, Lemma 8.3 tells us that sk(HF ) ≥ ε1k

−1/2n for each k ∈ N.
Applying Lemma 6.5, we have

ε1k
(2n−1)/2n = kε1k

−1/2n ≤ ksk(HF ) ≤ s1(HF ) + ...+ sk(HF )
≤ ‖m‖1{s1(Hψ) + ...+ sk(Hψ)} ≤ ‖m‖1‖Ψ‖1{s1(Hf ) + ...+ sk(Hf )}

for every k ∈ N. Thus ε = ε1‖m‖−1
1 ‖Ψ‖

−1
1 will do. �

9. Further Results

In this section we first derive two more conditions (Corollary 9.3) which are equivalent
to the membership Hf ∈ Cp, p > 2n. Then we use Theorem 1.6 and Proposition 7.2 to
describe the distribution of the s-numbers of Hf in the case f ∈ Lip(S). The final result
of the section is a re-interpretation of Theorem 1.6 in the language of norm ideals [5].

To obtain additional conditions equivalent to Hf ∈ Cp, we begin with

Lemma 9.1. Let Φ ∈ C(U) and suppose that Φ ≥ 0 on U and that
∫

Φ(U)dU = 1. Then
for all f ∈ L2(S, dσ) and p ≥ 2 we have∫

‖HYΦfkz‖pdλ(z) ≤
∫
‖Hfkz‖pdλ(z).

Proof. Applying Lemma 6.4 twice, we obtain

‖HYΦfkz‖2 =
∫∫

Φ(U)Φ(V )〈WUHfW
∗
Ukz,WVHfW

∗
V kz〉dUdV

=
∫∫

Φ(U)Φ(V )〈WUHfkUz,WVHfkV z〉dUdV,
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z ∈ B. Since p/2 ≥ 1, Hölder’s inequality yields

‖HYΦfkz‖p ≤
∫∫

Φ(U)Φ(V )|〈WUHfkUz,WVHfkV z〉|p/2dUdV

≤
∫∫

Φ(U)Φ(V )‖HfkUz‖p/2‖HfkV z‖p/2dUdV.

Therefore∫
‖HYΦfkz‖pdλ(z) ≤

∫∫
Φ(U)Φ(V )

∫
‖HfkUz‖p/2‖HfkV z‖p/2dλ(z)dUdV

≤
∫∫

Φ(U)Φ(V )
(∫
‖HfkUz‖pdλ(z)

)1/2(∫
‖HfkV z‖pdλ(z)

)1/2

dUdV

=
∫
‖Hfkz‖pdλ(z),

where the = follows from the U-invariance of dλ and the assumptions on Φ. �

Proposition 9.2. Suppose that p > 2n. Then there exists a constant 0 < C9.2(p) < ∞
which depends only on n and p such that the inequality

(9.1) Ip(f − Pf) ≤ C9.2(p)
∫
‖Hfkz‖pdλ(z)

holds for every f ∈ L2(S, dσ).

Proof. Let f ∈ L2(S, dσ) be given and write g = f − Pf as before. Recall that |mz| ≤ 1
on S. Let γ > 0. Applying Propositions 4.2 and Lemma 5.2, we have

Ip(g) ≤ C4.2(p)C5.2(γ)
∫
‖Hfkz‖pdλ(z) + C4.2(p)γIp(g).

Again, we first prove (9.1) under the additional assumption Ip(g) < ∞. Set γ to be such
that γC4.2(p) ≤ 1/2. Subtracting (1/2)Ip(g) from both sides, we find that

(9.2) (1/2)Ip(g) ≤ C4.2(p)C5.2(γ)
∫
‖Hfkz‖pdλ(z) if Ip(g) <∞.

Next we drop the a priori assumption Ip(g) <∞. Let the sequence {Φj} be the same as in
Section 6. For each j ≥ 1, we set fj = YΦjf and gj = fj −Pfj as in the proof of Theorem
1.4. Then (6.5) holds. Again, by Lemma 6.3 and Proposition 6.1, we have Ip(gj) <∞ for
each j. Applying (9.2) and Lemma 9.1, for each j ≥ 1 we have

Ip(gj) ≤ 2C4.2(p)C5.2(γ)
∫
‖Hfjkz‖pdλ(z) ≤ 2C4.2(p)C5.2(γ)

∫
‖Hfkz‖pdλ(z).
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Then, as in the proof of Theorem 1.4, there is a subsequence {gjν} such that

Ip(g) ≤ lim inf
ν→∞

Ip(gjν ) ≤ 2C4.2(p)C5.2(γ)
∫
‖Hfkz‖pdλ(z).

Thus the constant C9.2(p) = 2C4.2(p)C5.2(γ) will do for the lemma. �

For any f ∈ L2(S, dσ) and c ∈ C, we have Hf = Hf−Pf−c. Thus, combining Propo-
sitions 9.2 and 2.6, we have

Corollary 9.3. Let p > 2n. Then for every f ∈ L2(S, dσ) we have

Ip(f − Pf) ≤ C9.2(p)
∫
‖Hfkz‖pdλ(z)

≤ C9.2(p)
∫
‖{(f − Pf)− 〈(f − Pf)kz, kz〉}kz‖pdλ(z)

≤ C9.2(p)C2.6(p)Ip(f − Pf).

For the distribution of s-numbers, we have

Proposition 9.4. Let f ∈ Lip(S). If Hf 6= 0, then there exist 0 < a ≤ b <∞ such that

ak−1/2n ≤ sk(Hf ) ≤ bk−1/2n

for every k ∈ N.

Proof. Let f ∈ Lip(S). Then Proposition 7.2 tells us that ‖Hf‖+2n <∞. For each k ∈ N,

ksk(Hf ) ≤ s1(Hf ) + ...+ sk(Hf ) ≤ ‖Hf‖+2n(1−1/2n + ...+ k−1/2n) ≤ 3‖Hf‖+2nk(2n−1)/2n.

Dividing both sides by k, we see that the desired upper bound holds with b = 3‖Hf‖+2n.
Since Hf 6= 0, Theorem 1.6 provides an ε = ε(f) > 0 such that

s1(Hf ) + ...+ sk(Hf ) ≥ εk(2n−1)/2n

for every k ∈ N. Now we repeat the argument at the end of the proof of Lemma 8.5. Let
N ∈ N be such that εN (2n−1)/2n ≥ 3‖Hf‖+2n + 1. Then

Nksk(Hf ) ≥ sk(Hf ) + ...+ sNk(Hf )

≥ ε(Nk)(2n−1)/2n − 3‖Hf‖+2nk(2n−1)/2n ≥ k(2n−1)/2n

for each k ∈ N. Dividing both sides by k, we see that the desired lower bound holds with
a = N−1. �

Finally, let us consider norm ideals. From now on the symbol Φ will be used to denote
a symmetric gauge function (also called symmetric norming function) [5,page 71], whose
definition we will now recall.
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Let ĉ be the linear space of sequences {aj}j∈N, where aj ∈ R and for each sequence
aj 6= 0 only for a finite number of j’s. A symmetric gauge function is a map Φ : ĉ→ [0,∞)
which has the following properties:

(a) Φ is a norm on ĉ.
(b) Φ({1, 0, ..., 0, ...}) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

Each symmetric gauge function Φ gives rise to the symmetric norm

‖A‖Φ = sup
k≥1

Φ({s1(A), ..., sk(A), 0, ..., 0, ...})

for operators. On any Hilbert space H, the set of operators

CΦ = {A ∈ B(H) : ‖A‖Φ <∞}

is a norm ideal [5,page 68]. This term refers to the following properties of CΦ:
• For any B, C ∈ B(H) and A ∈ CΦ, BAC ∈ CΦ and ‖BAC‖Φ ≤ ‖B‖‖A‖Φ‖C‖.
• If A ∈ CΦ, then A∗ ∈ CΦ and ‖A∗‖Φ = ‖A‖Φ.
• For any A ∈ CΦ, ‖A‖ ≤ ‖A‖Φ, and the equality holds when rank(A) = 1.
• CΦ is complete with respect to ‖.‖Φ.

As an example, let us mention that for any 1 ≤ p < ∞, C+
p is none other than the

norm ideal CΦ+
p

, where the symmetric gauge function Φ+
p : ĉ→ [0,∞) is defined as follows.

For any {aj}j∈N ∈ ĉ,

(9.3) Φ+
p ({aj}j∈N) = sup

k≥1

|aπ(1)|+ ...+ |aπ(k)|
1−1/p + ...+ k−1/p

,

where π : N → N is any bijection such that |aπ(j)| ≥ |aπ(j+1)| for every j ∈ N, which
exists because aj = 0 for all but a finite number of j’s.

Our final result asserts that C+
2n is the smallest norm ideal of the form CΦ to which a

nonzero Hankel operator Hf can belong.

Proposition 9.5. Let Φ be a symmetric gauge function. If there is an f ∈ L2(S, dσ) such
that 0 < ‖Hf‖Φ <∞, then CΦ ⊃ C+

2n.

Proof. Suppose that 0 < ‖Hf‖Φ <∞. By Theorem 1.6, there is an ε = ε(f) > 0 such that

s1(Hf ) + ...+ sk(Hf ) ≥ εk(2n−1)/2n

for every k ∈ N. By (7.9) (or (9.3)), for each A ∈ C+
2n we have

s1(A) + ...+ sk(A) ≤ ‖A‖+2n(1−1/2n + ...+ k−1/2n) ≤ 3‖A‖+2nk(2n−1)/2n,

k ∈ N. The combination of the above two inequalities gives us

s1(A) + ...+ sk(A) ≤ (3‖A‖+2n/ε){s1(Hf ) + ...+ sk(Hf )},
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k ∈ N. By [5,Lemma III.3.1], this implies

‖A‖Φ ≤ (3‖A‖+2n/ε)‖Hf‖Φ.

Since ‖Hf‖Φ <∞, this means ‖A‖Φ <∞ for each A ∈ C+
2n. That is, CΦ ⊃ C+

2n. �
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