DEFECT OPERATORS ASSOCIATED WITH
SUBMODULES OF THE HARDY MODULE

Quanlei Fang and Jingbo Xia

Abstract. Let H?(S) be the Hardy space on the unit sphere S in C", n > 2. Then
H?(S) is a natural Hilbert module over the ball algebra A(B). Let M,,, ..., M, be the
module operators corresponding to the multiplication by the coordinated functions. Each
submodule M C H?(S) gives rise to the module operators Zaq; = M. |M, j =1, ..., n,
on M. In this paper we establish the following commonly believed, but never previously
proven result: whenever M # {0}, the sum of the commutators

[Zj\/l,b ZM,l] + ...+ [Zj\/l,rw ZM,n]
does not belong to the Schatten class C,,.

1. Introduction

Let S denote the unit sphere {z € C" : |z| = 1} in C". Throughout the paper, we
assume that the complex dimension n is greater than or equal to 2. The open unit ball
{z € C":|z] <1} in C" will be denoted by B. We write A(B) for the ball algebra. That
is, A(B) consists of functions which are analytic on B and continuous on the closed ball

{zeC":|z] <1}

Let o be the positive, regular Borel measure on S which is invariant under the or-
thogonal group O(2n), i.e., the group of isometries on C" 2 R®" which fix 0. We take the
usual normalization o(S) = 1. As usual, let H?(S) denote the Hardy space on the unit
sphere S. That is, H%(S) is the closure in L?(S,do) of the polynomials in the coordinate
variables z1, ..., z,. For each i € {1,...,n}, let Z; be the operator of multiplication by the
coordinate function z; on H?(S).

The study of naturally arising operators on H?(S) has a long history. In recent years,
an increasingly common approach in this study is to treat the Hardy space H?(S) as a
Hilbert module over the algebra A(B) [7], where the module operation is, of course, the
natural multiplication of functions. In this context we will call H2(S) the Hardy module
over A(B). A great advantage of the framework of Hilbert modules is that it leads to many
new and challenging questions.

A closed, linear subspace M of H?(S) is said to be a submodule of the Hardy module
if it is invariant under the multiplication by the functions in A(B). Each submodule M
gives rise to the restricted operators

ZMJ:Z”M, zzl,,n
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A natural question about the submodules is the Schatten class membership, or the lack
thereof, of the commutators [Z;k\/t,i’ Z ;). The purpose of this paper is to actually prove a
“negative” result in this regard. Although this result is widely believed to be true, it has
never been established in the literature. As we will see, its proof is not a trivial matter.

Recall that for each 1 < p < oo, the Schatten class C, consists of operators A

satisfying the condition ||Al|, < oo, where the p-norm is given by the formula ||A|, =
{tr((A*A)P/2)}Y/P, In terms of the s-numbers s1(A), sa(A), ..., sp(A), ... of A (see [11,Sec-
tion I1.7]), we have

oo 1/p
[Allp, = (Z{Sk(fl)}p> :

Also recall that for each £ € N,
sp(A) = inf{||A+ K| : rank(K) < k — 1}.

It is well known that if p > n, then [Z7,Z;] € C, for all i,j € {1,...,n}. It is also well
known that for each i € {1,...,n}, [Z], Z;] ¢ C,,. See, for example, [10]. This leads to the
natural question, what happens if we consider Zaq 1, ..., Za,n instead of 7y, ..., Z,,7

Given a submodule M, let us denote

(1.1) Dami = [Zins Zamil.
=1

The main result of the paper is an estimate for the distribution of the s-numbers of D 4.

Theorem 1.1. Let M be any submodule of the Hardy module H*(S). If M # {0}, then
there is a positive number € = (M) > 0 such that

(1.2) $1(Dpg) + ... + sp(Dpg) > ekn=D/m

for every k € N. Consequently, Daq does not belong to the Schatten class C,, whenever

In the above theorem, the conclusion Dy ¢ C,, follows from (1.2) immediately. This
is because, if 1 < p < oo and if {a} € £, then k= (P=1)/P 2?21 a; — 0 as k — oc.

An analogue of Theorem 1.1 also holds in the context of the Drury-Arveson space.
Recall that the Drury-Arveson space H? is the Hilbert space of analytic functions on B
which has the function (1 — (w, z)) ™! as its reproducing kernel [1,2,3]. One can alternately
describe the Drury-Arveson space H2 as the collection of analytic functions

f(z) = Z Caz®

ani
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on B satisfying the condition

|
Z |ca|2i < 0.
jal!

an1

We will also write 71, ..., Z,, for the operators of multiplication by the coordinate functions
21, -y Zn on H2. With the identification of each z; with Z;, H2 is a free Hilbert module
over the polynomial ring C[z1, ..., z,] [1]. We will refer to H2 as the Drury-Arveson module.

A closed, linear subspace M of H2 is said to be a submodule of the Drury-Arveson
module if it is invariant under the multiplication by the polynomials in C|z1, ..., z,,]. Each
submodule M of H? gives rise to the restricted operators

ZALiZZZ”AA, i::lw“,n.

Given a submodule M of the Drury-Arveson module H2, we also define the operator Dy
by (1.1). Note that for M C H2, M # {0}, the operator D differs from

(1.3) 1= ZpmiZi-

=1

In fact, (1.3) detects the “defect” of the row contraction (Zaq1,...,Zm,n) and can even
have finite rank for submodules of the Drury-Arveson module. But the story for D is
quite different.

Theorem 1.2. Let M be any submodule of the Drury-Arveson module H2. If M # {0},
then there is a positive number € = (M) > 0 such that

Sl(DM) + ...+ Sk(DM) > Gk(n_l)/n

for every k € N. Consequently, Daq does not belong to the Schatten class C,, whenever

Although Theorem 1.2 looks the same as Theorem 1.1, its proof is much easier than
the proof of Theorem 1.1. Ultimately, this is due to the freeness of H2 as a Hilbert module
over C|z1, ..., zp]. Specifically, in the proof of Theorem 1.2 we use the fact that if M is
a submodule of H2 and if M # {0}, then M contains a non-trivial multiplier of H2 [2].
While this fact itself is not trivial, it leads to an easy proof of Theorem 1.2, as we will see.

By contrast, a multiplier for the Hardy space H?(S) is a function in H>°(S). But if M
is a submodule of the Hardy module, it is not known whether MNH*(S) contains anything
other than 0. This is the main difficulty in the proof of Theorem 1.1. In other words, in
the proof of Theorem 1.1 we need a scheme to get around a certain unboundedness.

Notwithstanding the technical merit in the proof of Theorem 1.1, it is a fair question to
ask, why should one care about these results? Or, put differently, what is the motivation for
proving Theorems 1.1 and 1.2 in the first place? We are motivated by two considerations.

The first motivation is related to what is now commonly referred to as the Arveson
conjecture. Simply stated, it is this:



Problem 1.3. [3] For a submodule M of H;;, do the commutators [Z}, ;, Za ;] belong
to the Schatten class C, for p > n?

In [5], Douglas proposed the analogous problem for the Bergman space. From there
it does not take too much imagination for one to think about the case of the Hardy space
H?(8S), since all of these are reproducing-kernel Hilbert spaces. In all these versions of the
problem, one conspicuous feature is the lower limit p > n that one sets for the Schatten
class. One might say that this lower limit is dictated by known examples. For instance,
it is well known that [Z},Z;] ¢ C, on H?(S) and H2, and the same is also true on the
Bergman space of the ball B. In other words, examples show that the lower limit p > n is
necessary for some submodules. The first motivation for this investigation was to find out
whether the lower limit p > n is necessary for every submodule M # {0}.

The second motivation is related to extensions of the C*-algebra C'(S) by the com-
pact operators. More specifically, this stems from a paper of Douglas and Voiculescu [8].
Suppose that (71,...,T,) is an essentially commuting tuple of bounded operators on a
separable Hilbert space H. Furthermore, suppose that the tuple (71, ...,7},) generates an
exact sequence

{0} = K =T —C(5) — {0},

where K is the collection of compact operators, 7 is the C*-algebra generated by T1, ...,
T,, and K, and the homomorphism 7 — C(S) is an extension of the map T; — z;, i = 1,
..., n. Such an exact sequence, of course, represents an element [7] in Ext(S) [4]. The class
[7] can be determined in the following way. There exists a 2" x 2™ matrix a whose entries
are polynomials in 2n variables such that if we set

(1.4) A=ao(Ty,TY,....T,,T7),
then A is Fredholm and, under the identification Ext(S) & Z [4], we have
[7] = index(A).

See page 107 in [8]. Douglas and Voiculescu proved the following index formula, which is
generally regarded as a precursor to what is now called non-commutative geometry.

Theorem 1.4. [8,Proposition 2] Suppose that the operators Ty, ..., T,, satisfy the conditions

(1.5) 1;,T;] € Cn, [I;7,T;]€Cp  forall 1<i,j<n
and
(1.6) 1= T;T; €Cp.

i=1
Then for the operator A given by (1.4) we have
(1.7) index(A) = tr[T1, 17, ..., T, T)],
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where [Th, Ty, ..., Ty, T7] is the antisymmetric sum of Ty, Ty, ..., Ty, Tx.

When [8] was published, it was not known whether one can have index(A) # 0 for a
tuple (11, ...,T},) satisfying conditions (1.5) and (1.6). Later, however, Gong showed that
for any m € Z, there exists a tuple (71, ...,T;,) satisfying (1.5) and (1.6) with

index(A) = m.

Indeed Gong showed that one can even replace Schatten class C,, with C, for any p >
n — (1/2) [12,Theorems 2.2 and 2.4].

From the view point of function-theoretical operator theory, however, Gong’s paper is
not the end of the story. It does not tell us whether index formula (1.7) can ever be applied
to canonical operator tuples associated with the sphere. Being canonical is, of course, not
something that one can precisely define. But by any standard, tuples of the form

(1.8) (Ty, s Tp) = (Zpts oos Zpim)

must be considered canonical in the setting of the sphere, while perturbations of the above
by unspecified compact operators are certainly not. Thus one of the motivating questions
for us was whether index formula (1.7) can ever be applied in the case of (1.8). In other
words, do (1.8), (1.5) and (1.6) ever hold simultaneously? Although it is generally believed
that the answer is always negative for submodules M # {0} of the Hardy, Drury-Arveson
and Bergman modules, no such results have been proven until Theorems 1.1 and 1.2. But
we do not know what happens in the case of the Bergman module.

Problem 1.5. Does the analogue of Theorems 1.1 and 1.2 hold true for submodules of
the Bergman module?

Having explained the motivation for this investigation, let us turn to the techniques
involved in the proof of Theorem 1.1. This paper benefits greatly from our recent work on
Hankel operators on the sphere [9]. More specifically, the proof of Theorem 1.1 uses many
ideas in the proof of [9,Theorem 1.6]. To prove (1.2), for each k € N we need to construct
an operator F' with

rank(F') ~ k

and
(1.9) || <,

where C' is independent of k, such that tr(D,F) is on the order of k(~1/" Of the three
requirements, (1.9) turns out to be the biggest obstacle, which we over come by using the
Schur multiplier m, introduced in [9,Section 3] and certain techniques in [14].

The rest of the paper is organized as follows. Section 2 contains some of the estimates
needed in the proof of Theorem 1.1. In Section 3 we combine these estimates and others to
complete the proof of Theorem 1.1. In Section 4 we give a proof of Theorem 1.2. Thanks
to Arveson’s paper [2], the proof of Theorem 1.2 is just a rather straightforward estimate
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using the standard orthonormal basis for H2. We include Theorem 1.2 in the paper partly
because its proof provides such a sharp contrast to the proof of Theorem 1.1. Finally, in
Section 5 we explain the meaning of inequality (1.2) in the language of norm ideals [11].

2. Preliminaries and Estimates

Recall that the normalized reproducing kernel for H?(S) is given by the formula

(1— |22

SO =g

IC| <1 and |z| < 1.

Lemma 2.1. If f € L?(S,do), then

(2.1) hm/H F = F(€)krel2do(€) = 0.

Proof. Let f € L?(S,do) and 0 < r < 1. Then

Jiselaste) = [ ( [17@P he(@)Ra0(0)) dae
= [ ([ FE o)) asto) = [ 15600 dotc) = 11

Therefore

/ I = S helPdot€) = [ (15krell* = 2Re{FE e, )} + £ P)do(€)
(22 = 2(IfI1> = Re(. )

where
(1—7r2)n
1 —7(¢ &)

By the well-known properties of the Poisson integral on S (see, e.g., [13,Theorem 3.3.4(b)]),

51(6) = (Fhoe, kre) / O T g el

(23 lin(f,. f) = (£, £) = I

Thus (2.1) follows from (2.2) and (2.3). O
Let us denote

(2.4) D= En:[ZZ‘ , Zil,
=1

and let us keep in mind that D acts on the entire Hardy space H?(.9).
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In conformity with [13], we write U for the collection of unitary transformations on
C". Each U € U induces a unitary operator Wy on H2(S) by the formula

(Wuh)(Q) = h(UC),  h e H¥(S).
It is straightforward to verify that
(2.5) [D,Wy] =0 forevery U €elU.

For each z € B, we define the Schur multiplier

1—|z|
1— <C,Z>

as in [9]. Furthermore, for each z € B we define the function

(2.6) m:(C) =

(1 _ |Z‘2)(n/2)+n+1

(1= (¢, )2+t

In the proof of our next lemma, the assumption n > 2 enters the proof of Theorem 1.1 in
a dramatic fashion.

(2.7) u(¢) =

Lemma 2.2. There exists a constant co.o > 0 which depends only on the complex dimen-
ston n such that
(Dus,uz) > ca2(1—|2]%)

for every z € B.

Proof. Given any z € B, write p = |z| and define the vector Z = (p,0,...,0) in B. There
exists a V' € U such that V*z = 2. Thus, by (2.5), we have

(Duz,uy) = (DWyuy,, Wyu,) = (Duys,, uy«,) = (Duz,usz).
Since [ZF, Z;] > 0 for each i € {1,...,n}, the above implies
(2.8) (Duy,u,) > ([Z5, Zaluz, usz).
Let us write ¢; for the i-th component of (. Since 2 = (p,0,...,0), we have

(1 _ p2)(n/2)+n—|—1
(1= pGr)?ntt

uz () =

Since uz only depends on (3, it follows that Z5us; = 0. Thus from (2.8) we obtain
<Duza uZ> > <[Z§ka ZZ]ui’v ui’) = <Z§Z2u737 U5>

2
(2.9 =1zl = (= )7 [ R et

P



To estimate the above integral, recall that, for each m € N, the expansion

Ly hdm,

_ yym+1 [
(1—v) — klml

holds on {v € C: |v| < 1}. Since Cf(z L (F¢y for each pair of j # k in Z,, we have

/|1—|p<22|4n+2 U(Q:Z((Z((Fi) 2k/\C1C2| do(¢)

k=
B (k+20)1\2 o Kklll(n— 1)
_;( kl(2n)! ) pk(n—l—i—k‘—l—l)!’

where the second = follows from [13,Proposition 1.4.9]. Hence

G2 _ (n—1)! (k:—|—2n “
/!1—0C1|4”+2 o(0) = (2n)! kz_o kl(2n)! gk+n+3)

. (n—l)!i(k+3n)! on,  (n—1)! 1

k!(3n)! Pz (2n)!12n ) (1= p2)3n+l’

Substituting this in (2.9) and recalling the fact that p = |z|, the lemma follows. [J

It is elementary that if ¢ is a complex number with |¢| < 1 and if 0 < ¢ < 1, then
(2.10) 2|11 —tc| > |1 —¢|.
It is well known that the formula
(2.11) dw,y) =1 — (&,9)[112, zyeS,
defines a metric on S [13,page 66]. Throughout the paper, we denote
Bla,r) = {Ce S |1—(¢.a)|? <1}
for z € S and r > 0. There is a constant Ag € (27", 00) such that
(2.12) 272" < o(B(x,7)) < Agr®™

for all z € S and 0 < r < v/2 [13,Proposition 5.1.4]. Note that the upper bound above
also holds for r > /2.

Lemma 2.3. (i) Ifz,y€ S,z #y,0<p<1,and ( € S, then

1=z, y>|

8
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(ii) For allx,{ € S and 0 < p < 1, we have |¢ — z||m,. ()] < 2(1 — p)1/2.

Proof. (i) Given x # y in S, write t = d(x,y). Let 0 < p < 1 and ¢ € S also be given. Since

B(z,t/2) N B(y,t/2) = 0, we have either ( ¢ B(x,t/2) or ¢ ¢ B(y,t/2). If ( ¢ B(x,t/2),

then

__1-p _20-p) _20-p) _20-p) _ 81-p)
1=pC2)] — N ={Cx)l  (d(¢z)? — (¢/2)2 1= (z,y)

Since |m,y(¢)| < 1, (2.13) holds in this case. Similarly, if ¢ ¢ B(y,t/2), then |[m,,(¢)] <
8(1 — p)|1 — (z,y)| ™! and |m,;(¢)| < 1. Hence (2.13) also holds in the latter case.

(i) Let z,¢ € S. Then |¢ — x|* = 2 — 2Re((, x). Thus for each 0 < p < 1 we have

¢ — al[mpe(O)] < V/2[1 - <<’“’>|!1—1p_—<cpx>\

:{M}lﬂ.{;ﬁ)'}m.\@.m_

11— p(C, z) 1 —p(C,x

Obviously, the second {- - - }!/2 above is at most 1, while the first {---}'/2 does not exceed
v/2 according to (2.10). This completes the proof. [J

M (€]

<

Next we recall the following counting lemma:

Lemma 2.4. [14,Lemma 4.1] Let X be a set and let E be a subset of X x X. Suppose that
m 1s a natural number such that

card{y € X : (z,y) €e E} <m and card{ye X :(y,z) € E} <m
for every x € X. Then there exist pairwise disjoint subsets Eq1, Fs, ..., Fs,, of E such that
E=F UFEU..UFEy,

and such that for each 1 < j < 2m, the conditions (z,y), (z',y’) € E; and (z,y) # (2, y)
imply both x # x' and y #y'.

For each z € B, define the function
2.14 v,(C) = (— .
240 O=imcs
The following is the key estimate in the proof of Theorem 1.1.

Lemma 2.5. There is a constant 0 < Cy5 < oo which depends only on the complex
dimension n such that the following estimate holds: Let 0 < t < 1 and suppose that
{y; : j € J} is a subset of S satisfying the condition

9



For each 5 € J, let
2= (1=1%)!2y;.

Let {fj :j € J} be a set of functions in L*(S,do) satisfying the condition | f;| <1, j € J.
Then the norm of the operator
F=) (055 @ (vs,f;)
JjedJ
satisfies the inequality | F|| < Ca.5.
Proof. Let {n; : j € J} be an orthonormal set and define the operator
T = Z(Uzjfj) X n;-
jedJ

Then F' = TT*. Since | TT*|| = ||T*T||, it suffices to estimate ||T*T||. We have

(2'16) T = Z <Uzjfjavzz'fi>ni®77j :B+2Yk7
1,j€J k=0

where

B =Y v, fll’n; ® n;
jeJ
and

Y, = > (v, fis vz i) ® mj,

2kt <d(yi,y ) <2ktit

k€ Zy. By (2.14), ||vs]loo < (14 |2[)" T < 27F! for each z € B. Since || f;|| < 1, we have

vz, f5]] < 2"F1, j € J. Since {n; : j € J} is an orthonormal set, we conclude that
(2.17) |B|| < 4™t

Next we estimate [|Yy]|.

For each k € Z_, define
E® = {(i,5) € J x J: 2% < d(ys,y;) < 281t}

Using the conditions || f;]| <1, ||f;|| <1 and (2.14), we have
|<Uijjvvzifi>| < /|vzjvzi||fjfi|d0 < ”UzjvziHoo < 4n+1||mzjmzi||go+1~

For each (i,j) € E®) | it follows from Lemma 2.3(i) and the condition d(y;,y;) > 2*t that

8(1— (1 —t2)1/2) 82 8

o S (th)z < 92k2 ~ 92k’

Hij me,
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Hence

@2t (k)
(2.18) (2, fis 02 fi)| < P2R(nTD) if (4,7) € BV,

For each i € J, if d(y;,y;) < 271, then B(y;,t) C B(y;, 28T2t). By (2.15) and the fact
that o(B(x,t)) = o(B(y,t)) for all z,y € S, for each i € J we have

o(B(y:, 257%1) _ Ao(2"%1)*"

:C22nk
o(B(yi,t)) ~ 27 o

card{j € J : d(y;,y;) < 2"t} <

where Ag is the constant that appears in (2.12) and C; = 25" A,. Set
(2.19) ((k) = min{f € N : £ > C;2*"F},
According to Lemma 2.4, we can decompose E*) as the union of pairwise disjoint subsets

(k) (k)
By Egyny
such that for each v € {1,...,20(k)}, if (4,7), (@', 7') € B and if (i,7) # (¢, 4), then we
have both i # i’ and j # j’. This decomposition of E*) allows us to write

(2.20) Yi =Y+ + Y20

where
Yiw =Y (v fi,ve fiyni @y,

(i,j)eEX

1 < v < 20(k). The property of E,gk) simply means that the projection onto the first
component, (i,j) +— i, is injective on E,Sk). Similarly, the projection onto the second
component, (i,j) — j, is also injective on each E,Sk). Combining these injectivities with
the fact that {n; : j € J} is an orthonormal set and with (2.18), we obtain

(32)"+!
Vo]l < Q2R(ndD)
for each v € {1,...,2¢(k)}. Recalling (2.20) and (2.19), we now have

(32)n—|—1
92k(n+1)

n+1 . 232n—|—10 11
[¥ill < () < B g0y g e - 2ETHGED),

Combining this estimate with (2.16) and (2.17), we see that if we set

oo

Cys=4"1 +2(32)" 1 (CL + 1))
k=0

1
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then ||F|| S 02_5. L]

3. Proof of Theorem 1.1

Let a submodule M of the Hardy module H?(S) be given. Let Py be the orthogonal
projection from H?(S) onto M. Let i € {1,...,n} and h € M. Then Z3,;h = PuZ'h
and Za,;h = Z;h, which leads to

(Zpas Zailh, by = 1 Zaaibll? = 1 Z3g ihlP 2 1 Zih|* = 1 Z70I1P = (27, Zi]h, b).
Therefore
(3.1) (Dpth,h) > (Dh,h) for every h € M.

Our proof of Theorem 1.1 is based on the realization that, with enough work and further
exploitation of the invariance of M under the multiplication by functions in A(B), (1.2)
can be deduced from (3.1). Here is how we proceed.

Suppose that M # {0}. We pick an arbitrary ¢ € M with ||¢|| # 0. Since 0 < [|9|| <
00, there are positive numbers 0 < a < b < oo such that if we set

G={{ecS:a< ()] <0b},

then o(G) > 0. Next we set
acyly

C3.2 = \/_27’L+3 )

where c¢5 5 is the constant that appears in Lemma 2.2. For each 0 < r < 1, define the set

Gr ={6 € G: (¥ = 9(&))kre| < c32}-

(3.2)

Obviously,
o(G\G)) <c32/||¢ B(E) ke |2do (€).

Thus it follows from Lemma 2.1 that there exists a 0 < p < 1 such that
(3.4) o(G) > (1/2)0(G) for every p<r <1.
With this p we define

(3.5) §=(1- p?)2,

Now suppose a 0 < t < § is given. We set r(t) = (1 — t?)1/2. The relation between §
and p ensures p < r(t) < 1. By (3.4), this gives us

(3.6) o(Gry) = (1/2)0(G).

12



There is a subset {z; : j € J} of G, ) which is mazimal with respect to the property
The maximality of {x; : j € J} implies U;c s B(x;,2t) D G, (). Combining this with (2.12)

and (3.6), we see that there exist a constant 0 < ¢; < oo which are determined by n and
0(G), and a constant 0 < Cy < oo which depends on n only, such that

(3.8) ot < card(J) < Cot =2,

For each j € J, define z; = (1 — #2)'/22;. Then define the operator

Fr= 3 (ua) @ (us, ),

JjeJ
where u., is defined by (2.7). Since z; € G,«4) and z; = r(t)x;, the definition of G,

ensures |[(¢) — 9 (x;))k.,|| < c3.2 for each j € J. Since G,y C G, we have [¢(z;)] < b,
7 € J. Combining these two inequalities, we find that

(3.9) |¥k.,|| < c3.2+b foreach jec.J
By (2.7) and (2.14), u.,9 = v. k.. Thus it follows from (3.9) and Lemma 2.5 that
(3.10) IF]| < Cas(csa +b)%.

Since 1 € M and since M is a submodule, we have u. 1 € M for each j € J. Hence F}
is an operator on the Hilbert space M. Next we estimate tr(DaF}).

Applying (3.1), we have
(3.11)  r(DmFy) = (D, by uz, ) = > (Dughyuz p) = > ||DYPu v,
= jEJ jEJ
We need to estimate || D'/?u, 1| for each j € J. Obviously,

1D 2uz, ll = () [[1DV 2, || = | DV2 (4 — o)), |
> a|| DY 2us, || — IDY2 (¢ — v ()))us,|

J

> afeaa(l— |2 2)}2 — | DY2(y — (a;))us, |
(3.12) = acylat — | DY2( — ¢(z;))us, |,

where the third > follows from Lemma 2.2.

13



For each v € {1,...,n}, write (x;), for the v-th component of z;. Also, for each
g € A(B), let M, denote the operator of multiplication by g on H?(S) as usual. Then

| DV (3 — w<xj>>uzj 12 = (D — ¥(x)))us,, (b — P(x;))us,)
= Z s Z) (W = (x))us,, (Y — ¥(@y))us,)

- Z<[<zy ) 2 — () — Bl (6 — D))
< Z [[¢4 o) (W = (), ||*
_ Z 1(Z = () )Mo, (6 — ) I

(313) < Z 1(Z0 — e3)) Mo, [P0 — )b I

By (2.14) and (2.6), |[(Z, — (@5)v) My || < 2nt|(Z, — (25)v) M. |. On the other hand,
Lemma 2.3(ii) tells us that [[(Z, — (z;)u) M, || < 2(1 - r(t))/2 < 2t. Thus

1(Zy = (25)u) Mo, ||* < 4722,
As we mentioned previously, [|(¢ — ¥ (x;))k.,|| < c3.2. Hence from (3.13) we obtain
IDY2 (4 = b ()yuz, |2 < nej o4 242,
Taking square-root on both sides and then bringing the result into (3.12), we find that
(3.14) IDY2u, || > {acyly — Vnez 22"}t = (1/2)acy/st,

where the = follows from (3.2).
Combining (3.11), (3.14) and the lower bound in (3.8), we have

1 1
(3.15) tr(DaFy) > Za202_2t2 -card(J) > ZaQCg,th Cept T2 = g2,

where we set c3 = (1/4)acico0. Let ||.||1 denote the norm of the trace class. Recall that
s-numbers obey the relation si(AB) < sx(A)||B]| [11,page 61]. Hence

rank(F}) rank(F})
(316)  u(DuE)<IDuEli= S sDuF) < S seDalEl
(=1 (=1

14



Obviously, the upper bound in (3.8) implies rank(F;) < Cot~2". Combine this with (3.16),
(3.10) and (3.15), we obtain

02,5(03,2 + b)2 Z Sg(DM) > tr(DMFt) > Cgt2_2n.
1S£§02t_2n

Thus we have shown that, if we set ¢y = {Ca.5(c3.2 + b)?} " les, then the inequality

Z Sg(DM) 2 C4t2_2n
1<e<Cot—2n

holds for every 0 < t < 4.

Let K be the smallest natural number greater than Cyd~=2". If k£ > K, then there is
a 0 <t < 0 such that Cgt];2n = k. Hence

sUDM) + et se(Da) = Y se(Dp) = eaty > = eaCy TR
1<0<Coty 2™

for each k > K. Thus if we set € = K‘lc402_(n_1)/n, then (1.2) holds for every k € N.
This completes the proof of Theorem 1.1.

4. Submodules of the Drury-Arveson Module

We still assume, of course, n > 2. Let {eq : @ € Z'}} be the standard orthonormal
basis for the Drury-Arveson space H2. That is, for each o € z,

cut) = (1) en

a!
Recall that on H?2, we also write Z1, ..., Z, for the operators by the coordinate functions
(1 +oy o And, just as in Section 2, on H?2 we also have the operator

p-37.2]
=1

Lemma 4.1. For each

f= Z baeaerL

aEZi
we have

|ba |

(4.1) (D) =Ihol + (n=1) 32 g

a€EZ

n
+
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Proof. This follows from the last line on page 191 in [1]. O

Proof of Theorem 1.2. Let a submodule M of the Drury-Arveson module H? be given.
Arveson showed that there exists a sequence {¢1, ..., ¢k, ...} contained in M such that each
o is a multiplier of H? and such that the operator

My, My, + ...+ My Mg, + ...
is the orthogonal projection from H2 onto M [2,page 191]. Now suppose that M # {0}.

Then this result of Arveson tells us that there is a ¢ € M, ¢ # 0, which is a multiplier of
H2. That is, M, is a bounded operator on H? [1,Proposition 2.2].

For each ¢ € N, denote
Ag={(a1, ) €ZT 0 < <20, 1 <i<n}.

With the ¢ obtained above, we define the operator

Fy, = Z (pea) ® (pea),

a€Ay

¢ € N. Obviously, F; = M,Q,Mj, where Q, = ZaeAe €o ® €4, which is an orthogonal
projection. Therefore

(4.2) 1| < 1|11

for every £ € N. Now suppose that

= Z cpep-

pezn
Then for each o € Z'} we have
(4.3) Pla = Z cpu(a, B)ea+ts,
pezn

where

Bl ot (a+ )\
wer= (o o)

For each a@ = (aq,...,a,) € Ay, it follows from the condition ¢ < «a; < 2¢ for each
i€ {l,..,n} that

ot (a+B)!_ (a+p)/al <L)'Bl
al Ja+ 81 Ja+ g/l = \ 20+ 8]
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Therefore

(4.4) U(a’ﬁ)z<%>l/2'(m)w/2

for every o € Ay.

By the argument in the first paragraph of Section 3, in the present case we also have
(Daph,h)y > (Dh,h)  for every h € M.

Since ¢ € M, we have pe, € M for each o € Z"}. Combining these facts with (4.3) and
(4.1), we have

2.,
tr(DamFy) = Z (Dmpea; pea) > Z (Dpea; pea) = (n—1) Z Z feel w0 5)

a€Ay a€Ay a€Ay BEZ” |Oé + ﬁ| + 1
Since ¢ # 0, there is a By € Z] such that cg, # 0. The above gives us

(4.5) tr(DmFr) > (n—1)|cg,|? Z %

for every ¢ € N. Now suppose that £ > |3g|. Then it follows from (4.4) that u?(c, (o)
(18ol!/BoY) - (1/3n)1Pol when o € Ay. Also, if £ > |By| and a € Ay, then |a + Fo| + 1
la| + [Bo] +1 < 2nl + ¢ < 3nl. Substituting these inequalities in (4.5), we find that

v

n—1)|es [?1Bo]! 1 .
(4.6) b (D Fy) > (3n))’|ﬁi||ﬁo’! ol < cand(A) = B0

for each £ > |3y, where §; = (n — 1)|cg, |?|Bo|!(3n) ~1%l=1(B!)~1. Note that rank(F;) <
card(Ay) = (™. Therefore

rank(Fy) o o
(D Fe) < [DamFrli = Y s5(DaFy) < Z (DAOIIEL < 1M 12D 55 (Dan),
j=1 j=1 J=1

where the last < follows from (4.2). Combining this with (4.6), we obtain
en

(4.7) > si(Dp) = 60!
j=1

for each ¢ > |Gy, where § = &1 /|| M,||*.
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Now set K = (|5p] +1)". Given any k > K, there is an ¢ > || such that " < k <
(¢+1)". Applying (4.7), we have

" n—1
Sj<D./\/l) > ZSJ(DM) > st >0 <£_|_L1> k(n—l)/n > 0 k(n—l)/n‘

2n—1
j=1 j=1

From this inequality Theorem 1.2 follows. [J

5. Norm Ideals

We will now explain the meaning of Theorems 1.1 and 1.2 in the language of norm
tdeals. Recall that, for each 1 < p < 0o, the formula

4 s1(A) + s2(A) + ... + sk (A)
(5:1) 1Al = s = oo ki

defines a symmetric norm for operators [11,Section I11.14]. On a Hilbert space H, the set
+ _ ) +
C, ={A € B(H):||A], < oo}

is an ideal in B(H). It is well known that C; D C, and that C;i # C,. Indeed C} and C,
are just some of the most commonly known examples of norm ideals. More generally, we
recall the following construction.

Let ¢ be the linear space of sequences {a;};cn, where a; € R and for each sequence
a; # 0 only for a finite number of j’s. A symmetric gauge function [11,page 71] is a map
® : ¢ — [0,00) which has the following properties:

(a) ® is a norm on ¢.

(b) ®({1, 0, ..., 0, ...}) = 1.

(c) ®({a;}jen) = ®({|ar(j)|}jen) for every bijection 7 : N — N.
Each symmetric gauge function ® gives rise to the symmetric norm

|Alle = ilili O({s1(A),...,sx(A),0,...,0,...})

for operators. On any Hilbert space H, the set of operators
Co ={A€B(H):|Ale < oo}

is a norm ideal [11,page 68]. This term refers to the following properties of Cg:
e For any B, C € B(H) and A € Cy, BAC € Cg and | BAC||e < ||B||||A]|s]|C]|-
o If AeCyp, then A* € Cp and ||A*||e = || Al|a-
e For any A € Cs, ||A|| < ||A||e, and the equality holds when rank(A4) = 1.
e Cg is complete with respect to |[|.| .
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As an example, let us mention the symmetric gauge function (P;“ :¢— [0,00), 1 <
p < 00, defined as follows. For each {a;}jen € ¢, let

+ . o |a7r(1)| + |a7r(2)| + ...+ |Cl7r(]€)|
P (adien) = 00 o ok

Y

where 7 : N — N is any bijection such that |a| > |arj41)| for every j € N, which
exists because a; = 0 for all but a finite number of j’s.

Obviously, C;r is none other than the norm ideal Cy+ .

Theorems 1.1 and 1.2 set a size requirement on norm ideals of the form Cs to which
a nonzero D4 considered in this paper can belong:

Proposition 5.1. Let ® be a symmetric gauge function. If there is a submodule M of
either H2(S) or H2 such that 0 < ||Dalle < oo, then Cs D C,F.

Proof. The assumption ||[Day|le > 0 implies M # {0}. Hence, by Theorem 1.1 or Theorem
1.2, there is an € = ¢(M) > 0 such that

(5.2) $1(Dpq) + ... + si(Dag) > ekn=D/m
for every k € N. Let A € C;/. Then by (5.1) we have
(5.3) s1(A) + ... + sp(A) < |AIF QY™ + L+ BTV < 3| Al F R/
k € N. The combination of (5.2) and (5.3) gives us

s1(A) + ...+ s1(A) < BJAI} /) {s1(Dag) + ... + 51.(Dag)
k € N. By [11,Lemma III.3.1], this implies

IAlle < BIIAIL /Do

Since ||[Da||le < oo, we have ||A|l¢ < oo for each A € CF. That is, Ce D C;f. O
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