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Abstract. Let H2(S) be the Hardy space on the unit sphere S in Cn, n ≥ 2. Then
H2(S) is a natural Hilbert module over the ball algebra A(B). Let Mz1 , ..., Mzn be the
module operators corresponding to the multiplication by the coordinated functions. Each
submodule M ⊂ H2(S) gives rise to the module operators ZM,j = Mzj |M, j = 1, ..., n,
on M. In this paper we establish the following commonly believed, but never previously
proven result: whenever M 6= {0}, the sum of the commutators

[Z∗M,1, ZM,1] + ...+ [Z∗M,n, ZM,n]

does not belong to the Schatten class Cn.

1. Introduction

Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. Throughout the paper, we
assume that the complex dimension n is greater than or equal to 2. The open unit ball
{z ∈ Cn : |z| < 1} in Cn will be denoted by B. We write A(B) for the ball algebra. That
is, A(B) consists of functions which are analytic on B and continuous on the closed ball
{z ∈ Cn : |z| ≤ 1}.

Let σ be the positive, regular Borel measure on S which is invariant under the or-
thogonal group O(2n), i.e., the group of isometries on Cn ∼= R2n which fix 0. We take the
usual normalization σ(S) = 1. As usual, let H2(S) denote the Hardy space on the unit
sphere S. That is, H2(S) is the closure in L2(S, dσ) of the polynomials in the coordinate
variables z1, ..., zn. For each i ∈ {1, ..., n}, let Zi be the operator of multiplication by the
coordinate function zi on H2(S).

The study of naturally arising operators on H2(S) has a long history. In recent years,
an increasingly common approach in this study is to treat the Hardy space H2(S) as a
Hilbert module over the algebra A(B) [7], where the module operation is, of course, the
natural multiplication of functions. In this context we will call H2(S) the Hardy module
over A(B). A great advantage of the framework of Hilbert modules is that it leads to many
new and challenging questions.

A closed, linear subspaceM of H2(S) is said to be a submodule of the Hardy module
if it is invariant under the multiplication by the functions in A(B). Each submodule M
gives rise to the restricted operators

ZM,i = Zi|M, i = 1, ..., n.
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A natural question about the submodules is the Schatten class membership, or the lack
thereof, of the commutators [Z∗M,i, ZM,j ]. The purpose of this paper is to actually prove a
“negative” result in this regard. Although this result is widely believed to be true, it has
never been established in the literature. As we will see, its proof is not a trivial matter.

Recall that for each 1 ≤ p < ∞, the Schatten class Cp consists of operators A
satisfying the condition ‖A‖p < ∞, where the p-norm is given by the formula ‖A‖p =
{tr((A∗A)p/2)}1/p. In terms of the s-numbers s1(A), s2(A), ..., sk(A), ... of A (see [11,Sec-
tion II.7]), we have

‖A‖p =

( ∞∑
k=1

{sk(A)}p
)1/p

.

Also recall that for each k ∈ N,

sk(A) = inf{‖A+K‖ : rank(K) ≤ k − 1}.

It is well known that if p > n, then [Z∗i , Zj ] ∈ Cp for all i, j ∈ {1, ..., n}. It is also well
known that for each i ∈ {1, ..., n}, [Z∗i , Zi] /∈ Cn. See, for example, [10]. This leads to the
natural question, what happens if we consider ZM,1, ..., ZM,n instead of Z1, ..., Zn?

Given a submodule M, let us denote

(1.1) DM =
n∑
i=1

[Z∗M,i, ZM,i].

The main result of the paper is an estimate for the distribution of the s-numbers of DM.

Theorem 1.1. Let M be any submodule of the Hardy module H2(S). If M 6= {0}, then
there is a positive number ε = ε(M) > 0 such that

(1.2) s1(DM) + ...+ sk(DM) ≥ εk(n−1)/n

for every k ∈ N. Consequently, DM does not belong to the Schatten class Cn whenever
M 6= {0}.

In the above theorem, the conclusion DM /∈ Cn follows from (1.2) immediately. This
is because, if 1 < p <∞ and if {ak} ∈ `p+, then k−(p−1)/p

∑k
j=1 aj → 0 as k →∞.

An analogue of Theorem 1.1 also holds in the context of the Drury-Arveson space.
Recall that the Drury-Arveson space H2

n is the Hilbert space of analytic functions on B
which has the function (1−〈w, z〉)−1 as its reproducing kernel [1,2,3]. One can alternately
describe the Drury-Arveson space H2

n as the collection of analytic functions

f(z) =
∑
α∈Zn+

cαz
α
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on B satisfying the condition ∑
α∈Zn+

|cα|2
α!
|α|!

<∞.

We will also write Z1, ..., Zn for the operators of multiplication by the coordinate functions
z1, ..., zn on H2

n. With the identification of each zi with Zi, H2
n is a free Hilbert module

over the polynomial ring C[z1, ..., zn] [1]. We will refer to H2
n as the Drury-Arveson module.

A closed, linear subspace M of H2
n is said to be a submodule of the Drury-Arveson

module if it is invariant under the multiplication by the polynomials in C[z1, ..., zn]. Each
submodule M of H2

n gives rise to the restricted operators

ZM,i = Zi|M, i = 1, ..., n.

Given a submoduleM of the Drury-Arveson module H2
n, we also define the operator DM

by (1.1). Note that for M⊂ H2
n, M 6= {0}, the operator DM differs from

(1.3) 1−
n∑
i=1

ZM,iZ
∗
M,i.

In fact, (1.3) detects the “defect” of the row contraction (ZM,1, ..., ZM,n) and can even
have finite rank for submodules of the Drury-Arveson module. But the story for DM is
quite different.

Theorem 1.2. Let M be any submodule of the Drury-Arveson module H2
n. If M 6= {0},

then there is a positive number ε = ε(M) > 0 such that

s1(DM) + ...+ sk(DM) ≥ εk(n−1)/n

for every k ∈ N. Consequently, DM does not belong to the Schatten class Cn whenever
M 6= {0}.

Although Theorem 1.2 looks the same as Theorem 1.1, its proof is much easier than
the proof of Theorem 1.1. Ultimately, this is due to the freeness of H2

n as a Hilbert module
over C[z1, ..., zn]. Specifically, in the proof of Theorem 1.2 we use the fact that if M is
a submodule of H2

n and if M 6= {0}, then M contains a non-trivial multiplier of H2
n [2].

While this fact itself is not trivial, it leads to an easy proof of Theorem 1.2, as we will see.

By contrast, a multiplier for the Hardy space H2(S) is a function in H∞(S). But ifM
is a submodule of the Hardy module, it is not known whetherM∩H∞(S) contains anything
other than 0. This is the main difficulty in the proof of Theorem 1.1. In other words, in
the proof of Theorem 1.1 we need a scheme to get around a certain unboundedness.

Notwithstanding the technical merit in the proof of Theorem 1.1, it is a fair question to
ask, why should one care about these results? Or, put differently, what is the motivation for
proving Theorems 1.1 and 1.2 in the first place? We are motivated by two considerations.

The first motivation is related to what is now commonly referred to as the Arveson
conjecture. Simply stated, it is this:
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Problem 1.3. [3] For a submodule M of H2
n, do the commutators [Z∗M,i, ZM,j ] belong

to the Schatten class Cp for p > n?

In [5], Douglas proposed the analogous problem for the Bergman space. From there
it does not take too much imagination for one to think about the case of the Hardy space
H2(S), since all of these are reproducing-kernel Hilbert spaces. In all these versions of the
problem, one conspicuous feature is the lower limit p > n that one sets for the Schatten
class. One might say that this lower limit is dictated by known examples. For instance,
it is well known that [Z∗i , Zi] /∈ Cn on H2(S) and H2

n, and the same is also true on the
Bergman space of the ball B. In other words, examples show that the lower limit p > n is
necessary for some submodules. The first motivation for this investigation was to find out
whether the lower limit p > n is necessary for every submodule M 6= {0}.

The second motivation is related to extensions of the C∗-algebra C(S) by the com-
pact operators. More specifically, this stems from a paper of Douglas and Voiculescu [8].
Suppose that (T1, ..., Tn) is an essentially commuting tuple of bounded operators on a
separable Hilbert space H. Furthermore, suppose that the tuple (T1, ..., Tn) generates an
exact sequence

{0} → K → T → C(S)→ {0},

where K is the collection of compact operators, T is the C∗-algebra generated by T1, ...,
Tn and K, and the homomorphism T → C(S) is an extension of the map Ti 7→ zi, i = 1,
..., n. Such an exact sequence, of course, represents an element [τ ] in Ext(S) [4]. The class
[τ ] can be determined in the following way. There exists a 2n × 2n matrix α whose entries
are polynomials in 2n variables such that if we set

(1.4) A = α(T1, T
∗
1 , ..., Tn, T

∗
n),

then A is Fredholm and, under the identification Ext(S) ∼= Z [4], we have

[τ ] = index(A).

See page 107 in [8]. Douglas and Voiculescu proved the following index formula, which is
generally regarded as a precursor to what is now called non-commutative geometry.

Theorem 1.4. [8,Proposition 2] Suppose that the operators T1, ..., Tn satisfy the conditions

(1.5) [Ti, Tj ] ∈ Cn, [T ∗i , Tj ] ∈ Cn for all 1 ≤ i, j ≤ n

and

(1.6) 1−
n∑
i=1

T ∗i Ti ∈ Cn.

Then for the operator A given by (1.4) we have

(1.7) index(A) = tr[T1, T
∗
1 , ..., Tn, T

∗
n ],
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where [T1, T
∗
1 , ..., Tn, T

∗
n ] is the antisymmetric sum of T1, T ∗1 , ..., Tn, T ∗n .

When [8] was published, it was not known whether one can have index(A) 6= 0 for a
tuple (T1, ..., Tn) satisfying conditions (1.5) and (1.6). Later, however, Gong showed that
for any m ∈ Z, there exists a tuple (T1, ..., Tn) satisfying (1.5) and (1.6) with

index(A) = m.

Indeed Gong showed that one can even replace Schatten class Cn with Cp for any p >
n− (1/2) [12,Theorems 2.2 and 2.4].

From the view point of function-theoretical operator theory, however, Gong’s paper is
not the end of the story. It does not tell us whether index formula (1.7) can ever be applied
to canonical operator tuples associated with the sphere. Being canonical is, of course, not
something that one can precisely define. But by any standard, tuples of the form

(1.8) (T1, ..., Tn) = (ZM,1, ..., ZM,n)

must be considered canonical in the setting of the sphere, while perturbations of the above
by unspecified compact operators are certainly not. Thus one of the motivating questions
for us was whether index formula (1.7) can ever be applied in the case of (1.8). In other
words, do (1.8), (1.5) and (1.6) ever hold simultaneously? Although it is generally believed
that the answer is always negative for submodules M 6= {0} of the Hardy, Drury-Arveson
and Bergman modules, no such results have been proven until Theorems 1.1 and 1.2. But
we do not know what happens in the case of the Bergman module.

Problem 1.5. Does the analogue of Theorems 1.1 and 1.2 hold true for submodules of
the Bergman module?

Having explained the motivation for this investigation, let us turn to the techniques
involved in the proof of Theorem 1.1. This paper benefits greatly from our recent work on
Hankel operators on the sphere [9]. More specifically, the proof of Theorem 1.1 uses many
ideas in the proof of [9,Theorem 1.6]. To prove (1.2), for each k ∈ N we need to construct
an operator F with

rank(F ) ≈ k

and

(1.9) ‖F‖ ≤ C,

where C is independent of k, such that tr(DMF ) is on the order of k(n−1)/n. Of the three
requirements, (1.9) turns out to be the biggest obstacle, which we over come by using the
Schur multiplier mz introduced in [9,Section 3] and certain techniques in [14].

The rest of the paper is organized as follows. Section 2 contains some of the estimates
needed in the proof of Theorem 1.1. In Section 3 we combine these estimates and others to
complete the proof of Theorem 1.1. In Section 4 we give a proof of Theorem 1.2. Thanks
to Arveson’s paper [2], the proof of Theorem 1.2 is just a rather straightforward estimate
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using the standard orthonormal basis for H2
n. We include Theorem 1.2 in the paper partly

because its proof provides such a sharp contrast to the proof of Theorem 1.1. Finally, in
Section 5 we explain the meaning of inequality (1.2) in the language of norm ideals [11].

2. Preliminaries and Estimates

Recall that the normalized reproducing kernel for H2(S) is given by the formula

kz(ζ) =
(1− |z|2)n/2

(1− 〈ζ, z〉)n
, |ζ| ≤ 1 and |z| < 1.

Lemma 2.1. If f ∈ L2(S, dσ), then

(2.1) lim
r↑1

∫
‖(f − f(ξ))krξ‖2dσ(ξ) = 0.

Proof. Let f ∈ L2(S, dσ) and 0 < r < 1. Then∫
‖fkrξ‖2dσ(ξ) =

∫ (∫
|f(ζ)|2|krξ(ζ)|2dσ(ζ)

)
dσ(ξ)

=
∫
|f(ζ)|2

(∫
(1− r2)n

|1− r〈ζ, ξ〉|2n
dσ(ξ)

)
dσ(ζ) =

∫
|f(ζ)|2dσ(ζ) = ‖f‖2.

Therefore∫
‖(f − f(ξ))krξ‖2dσ(ξ) =

∫
(‖fkrξ‖2 − 2Re{f(ξ)〈fkrξ, krξ〉}+ |f(ξ)|2)dσ(ξ)

= 2(‖f‖2 − Re〈fr, f〉),(2.2)

where

fr(ξ) = 〈fkrξ, krξ〉 =
∫
f(ζ)

(1− r2)n

|1− r〈ζ, ξ〉|2n
dσ(ζ).

By the well-known properties of the Poisson integral on S (see, e.g., [13,Theorem 3.3.4(b)]),

(2.3) lim
r↑1
〈fr, f〉 = 〈f, f〉 = ‖f‖2.

Thus (2.1) follows from (2.2) and (2.3). �

Let us denote

(2.4) D =
n∑
i=1

[Z∗i , Zi],

and let us keep in mind that D acts on the entire Hardy space H2(S).
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In conformity with [13], we write U for the collection of unitary transformations on
Cn. Each U ∈ U induces a unitary operator WU on H2(S) by the formula

(WUh)(ζ) = h(Uζ), h ∈ H2(S).

It is straightforward to verify that

(2.5) [D,WU ] = 0 for every U ∈ U .

For each z ∈ B, we define the Schur multiplier

(2.6) mz(ζ) =
1− |z|

1− 〈ζ, z〉

as in [9]. Furthermore, for each z ∈ B we define the function

(2.7) uz(ζ) =
(1− |z|2)(n/2)+n+1

(1− 〈ζ, z〉)2n+1
.

In the proof of our next lemma, the assumption n ≥ 2 enters the proof of Theorem 1.1 in
a dramatic fashion.

Lemma 2.2. There exists a constant c2.2 > 0 which depends only on the complex dimen-
sion n such that

〈Duz, uz〉 ≥ c2.2(1− |z|2)

for every z ∈ B.

Proof. Given any z ∈ B, write ρ = |z| and define the vector ẑ = (ρ, 0, ..., 0) in B. There
exists a V ∈ U such that V ∗z = ẑ. Thus, by (2.5), we have

〈Duz, uz〉 = 〈DWV uz,WV uz〉 = 〈DuV ∗z, uV ∗z〉 = 〈Duẑ, uẑ〉.

Since [Z∗i , Zi] ≥ 0 for each i ∈ {1, ..., n}, the above implies

(2.8) 〈Duz, uz〉 ≥ 〈[Z∗2 , Z2]uẑ, uẑ〉.

Let us write ζi for the i-th component of ζ. Since ẑ = (ρ, 0, ..., 0), we have

uẑ(ζ) =
(1− ρ2)(n/2)+n+1

(1− ρζ1)2n+1
.

Since uẑ only depends on ζ1, it follows that Z∗2uẑ = 0. Thus from (2.8) we obtain

〈Duz, uz〉 ≥ 〈[Z∗2 , Z2]uẑ, uẑ〉 = 〈Z∗2Z2uẑ, uẑ〉

= ‖Z2uẑ‖2 = (1− ρ2)3n+2

∫
|ζ2|2

|1− ρζ1|4n+2
dσ(ζ).(2.9)
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To estimate the above integral, recall that, for each m ∈ N, the expansion

1
(1− v)m+1

=
∞∑
k=0

(k +m)!
k!m!

vk

holds on {v ∈ C : |v| < 1}. Since ζj1ζ2 ⊥ ζk1 ζ2 for each pair of j 6= k in Z+, we have∫
|ζ2|2

|1− ρζ1|4n+2
dσ(ζ) =

∞∑
k=0

(
(k + 2n)!
k!(2n)!

)2

ρ2k

∫
|ζk1 ζ2|2dσ(ζ)

=
∞∑
k=0

(
(k + 2n)!
k!(2n)!

)2

ρ2k k!1!(n− 1)!
(n− 1 + k + 1)!

,

where the second = follows from [13,Proposition 1.4.9]. Hence∫
|ζ2|2

|1− ρζ1|4n+2
dσ(ζ) =

(n− 1)!
(2n)!

∞∑
k=0

(k + 2n)!
k!(2n)!

ρ2k
n∏
j=1

(k + n+ j)

≥ (n− 1)!
(2n)!2n

∞∑
k=0

(k + 3n)!
k!(3n)!

ρ2k =
(n− 1)!
(2n)!2n

· 1
(1− ρ2)3n+1

.

Substituting this in (2.9) and recalling the fact that ρ = |z|, the lemma follows. �

It is elementary that if c is a complex number with |c| ≤ 1 and if 0 < t < 1, then

(2.10) 2|1− tc| ≥ |1− c|.

It is well known that the formula

(2.11) d(x, y) = |1− 〈x, y〉|1/2, x, y ∈ S,

defines a metric on S [13,page 66]. Throughout the paper, we denote

B(x, r) = {ζ ∈ S : |1− 〈ζ, x〉|1/2 < r}

for x ∈ S and r > 0. There is a constant A0 ∈ (2−n,∞) such that

(2.12) 2−nr2n ≤ σ(B(x, r)) ≤ A0r
2n

for all x ∈ S and 0 < r ≤
√

2 [13,Proposition 5.1.4]. Note that the upper bound above
also holds for r ≥

√
2.

Lemma 2.3. (i) If x, y ∈ S, x 6= y, 0 < ρ < 1, and ζ ∈ S, then

(2.13) |mρx(ζ)mρy(ζ)| ≤ 8(1− ρ)
|1− 〈x, y〉|

.
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(ii) For all x, ζ ∈ S and 0 < ρ < 1, we have |ζ − x||mρx(ζ)| ≤ 2(1− ρ)1/2.

Proof. (i) Given x 6= y in S, write t = d(x, y). Let 0 < ρ < 1 and ζ ∈ S also be given. Since
B(x, t/2) ∩ B(y, t/2) = ∅, we have either ζ /∈ B(x, t/2) or ζ /∈ B(y, t/2). If ζ /∈ B(x, t/2),
then

|mρx(ζ)| = 1− ρ
|1− ρ〈ζ, x〉|

≤ 2(1− ρ)
|1− 〈ζ, x〉|

=
2(1− ρ)
(d(ζ, x))2

≤ 2(1− ρ)
(t/2)2

=
8(1− ρ)
|1− 〈x, y〉|

.

Since |mρy(ζ)| ≤ 1, (2.13) holds in this case. Similarly, if ζ /∈ B(y, t/2), then |mρy(ζ)| ≤
8(1− ρ)|1− 〈x, y〉|−1 and |mρx(ζ)| ≤ 1. Hence (2.13) also holds in the latter case.

(ii) Let x, ζ ∈ S. Then |ζ − x|2 = 2− 2Re〈ζ, x〉. Thus for each 0 < ρ < 1 we have

|ζ − x||mρx(ζ)| ≤
√

2|1− 〈ζ, x〉| 1− ρ
|1− ρ〈ζ, x〉|

=
{
|1− 〈ζ, x〉|
|1− ρ〈ζ, x〉|

}1/2

·
{

1− ρ
|1− ρ〈ζ, x〉|

}1/2

·
√

2 ·
√

1− ρ.

Obviously, the second {· · · }1/2 above is at most 1, while the first {· · · }1/2 does not exceed√
2 according to (2.10). This completes the proof. �

Next we recall the following counting lemma:

Lemma 2.4. [14,Lemma 4.1] Let X be a set and let E be a subset of X×X. Suppose that
m is a natural number such that

card{y ∈ X : (x, y) ∈ E} ≤ m and card{y ∈ X : (y, x) ∈ E} ≤ m

for every x ∈ X. Then there exist pairwise disjoint subsets E1, E2, ..., E2m of E such that

E = E1 ∪ E2 ∪ ... ∪ E2m

and such that for each 1 ≤ j ≤ 2m, the conditions (x, y), (x′, y′) ∈ Ej and (x, y) 6= (x′, y′)
imply both x 6= x′ and y 6= y′.

For each z ∈ B, define the function

(2.14) vz(ζ) =
(

1− |z|2

1− 〈ζ, z〉

)n+1

.

The following is the key estimate in the proof of Theorem 1.1.

Lemma 2.5. There is a constant 0 < C2.5 < ∞ which depends only on the complex
dimension n such that the following estimate holds: Let 0 < t < 1 and suppose that
{yj : j ∈ J} is a subset of S satisfying the condition

(2.15) B(yi, t) ∩B(yj , t) = ∅ if i 6= j.
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For each j ∈ J , let
zj = (1− t2)1/2yj .

Let {fj : j ∈ J} be a set of functions in L2(S, dσ) satisfying the condition ‖fj‖ ≤ 1, j ∈ J .
Then the norm of the operator

F =
∑
j∈J

(vzjfj)⊗ (vzjfj)

satisfies the inequality ‖F‖ ≤ C2.5.

Proof. Let {ηj : j ∈ J} be an orthonormal set and define the operator

T =
∑
j∈J

(vzjfj)⊗ ηj .

Then F = TT ∗. Since ‖TT ∗‖ = ‖T ∗T‖, it suffices to estimate ‖T ∗T‖. We have

(2.16) T ∗T =
∑
i,j∈J
〈vzjfj , vzifi〉ηi ⊗ ηj = B +

∞∑
k=0

Yk,

where
B =

∑
j∈J
‖vzjfj‖2ηj ⊗ ηj

and
Yk =

∑
2kt≤d(yi,yj)<2k+1t

〈vzjfj , vzifi〉ηi ⊗ ηj ,

k ∈ Z+. By (2.14), ‖vz‖∞ ≤ (1 + |z|)n+1 ≤ 2n+1 for each z ∈ B. Since ‖fj‖ ≤ 1, we have
‖vzjfj‖ ≤ 2n+1, j ∈ J . Since {ηj : j ∈ J} is an orthonormal set, we conclude that

(2.17) ‖B‖ ≤ 4n+1.

Next we estimate ‖Yk‖.

For each k ∈ Z+, define

E(k) = {(i, j) ∈ J × J : 2kt ≤ d(yi, yj) < 2k+1t}.

Using the conditions ‖fj‖ ≤ 1, ‖fi‖ ≤ 1 and (2.14), we have

|〈vzjfj , vzifi〉| ≤
∫
|vzjvzi ||fjfi|dσ ≤ ‖vzjvzi‖∞ ≤ 4n+1‖mzjmzi‖n+1

∞ .

For each (i, j) ∈ E(k), it follows from Lemma 2.3(i) and the condition d(yi, yj) ≥ 2kt that

‖mzjmzi‖∞ ≤
8(1− (1− t2)1/2)

(2kt)2
≤ 8t2

22kt2
=

8
22k

.
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Hence

(2.18) |〈vzjfj , vzifi〉| ≤
(32)n+1

22k(n+1)
if (i, j) ∈ E(k).

For each i ∈ J , if d(yi, yj) < 2k+1t, then B(yj , t) ⊂ B(yi, 2k+2t). By (2.15) and the fact
that σ(B(x, t)) = σ(B(y, t)) for all x, y ∈ S, for each i ∈ J we have

card{j ∈ J : d(yi, yj) < 2k+1t} ≤ σ(B(yi, 2k+2t))
σ(B(yi, t))

≤ A0(2k+2t)2n

2−nt2n
= C122nk,

where A0 is the constant that appears in (2.12) and C1 = 25nA0. Set

(2.19) `(k) = min{` ∈ N : ` ≥ C122nk}.

According to Lemma 2.4, we can decompose E(k) as the union of pairwise disjoint subsets

E
(k)
1 , ..., E

(k)
2`(k)

such that for each ν ∈ {1, ..., 2`(k)}, if (i, j), (i′, j′) ∈ E(k)
ν and if (i, j) 6= (i′, j′), then we

have both i 6= i′ and j 6= j′. This decomposition of E(k) allows us to write

(2.20) Yk = Yk,1 + ...+ Yk,2`(k),

where
Yk,ν =

∑
(i,j)∈E(k)

ν

〈vzjfj , vzifi〉ηi ⊗ ηj ,

1 ≤ ν ≤ 2`(k). The property of E(k)
ν simply means that the projection onto the first

component, (i, j) 7→ i, is injective on E
(k)
ν . Similarly, the projection onto the second

component, (i, j) 7→ j, is also injective on each E
(k)
ν . Combining these injectivities with

the fact that {ηj : j ∈ J} is an orthonormal set and with (2.18), we obtain

‖Yk,ν‖ ≤
(32)n+1

22k(n+1)

for each ν ∈ {1, ..., 2`(k)}. Recalling (2.20) and (2.19), we now have

‖Yk‖ ≤
(32)n+1

22k(n+1)
· 2`(k) ≤ (32)n+1

22k(n+1)
· 2(C1 + 1)22nk =

2(32)n+1(C1 + 1)
22k

.

Combining this estimate with (2.16) and (2.17), we see that if we set

C2.5 = 4n+1 + 2(32)n+1(C1 + 1)
∞∑
k=0

1
22k

,

11



then ‖F‖ ≤ C2.5. �

3. Proof of Theorem 1.1

Let a submoduleM of the Hardy module H2(S) be given. Let PM be the orthogonal
projection from H2(S) onto M. Let i ∈ {1, ..., n} and h ∈ M. Then Z∗M,ih = PMZ

∗
i h

and ZM,ih = Zih, which leads to

〈[Z∗M,i, ZM,i]h, h〉 = ‖ZM,ih‖2 − ‖Z∗M,ih‖2 ≥ ‖Zih‖2 − ‖Z∗i h‖2 = 〈[Z∗i , Zi]h, h〉.

Therefore

(3.1) 〈DMh, h〉 ≥ 〈Dh, h〉 for every h ∈M.

Our proof of Theorem 1.1 is based on the realization that, with enough work and further
exploitation of the invariance of M under the multiplication by functions in A(B), (1.2)
can be deduced from (3.1). Here is how we proceed.

Suppose thatM 6= {0}. We pick an arbitrary ψ ∈M with ‖ψ‖ 6= 0. Since 0 < ‖ψ‖ <
∞, there are positive numbers 0 < a < b <∞ such that if we set

G = {ξ ∈ S : a ≤ |ψ(ξ)| ≤ b},

then σ(G) > 0. Next we set

(3.2) c3.2 =
ac

1/2
2.2√

n2n+3
,

where c2.2 is the constant that appears in Lemma 2.2. For each 0 < r < 1, define the set

Gr = {ξ ∈ G : ‖(ψ − ψ(ξ))krξ‖ ≤ c3.2}.

Obviously,

σ(G\Gr) ≤ c−2
3.2

∫
‖(ψ − ψ(ξ))krξ‖2dσ(ξ).

Thus it follows from Lemma 2.1 that there exists a 0 < ρ < 1 such that

(3.4) σ(Gr) ≥ (1/2)σ(G) for every ρ ≤ r < 1.

With this ρ we define

(3.5) δ = (1− ρ2)1/2.

Now suppose a 0 < t < δ is given. We set r(t) = (1− t2)1/2. The relation between δ
and ρ ensures ρ < r(t) < 1. By (3.4), this gives us

(3.6) σ(Gr(t)) ≥ (1/2)σ(G).

12



There is a subset {xj : j ∈ J} of Gr(t) which is maximal with respect to the property

(3.7) B(xi, t) ∩B(xj , t) = ∅ if i 6= j.

The maximality of {xj : j ∈ J} implies ∪j∈JB(xj , 2t) ⊃ Gr(t). Combining this with (2.12)
and (3.6), we see that there exist a constant 0 < c1 < ∞ which are determined by n and
σ(G), and a constant 0 < C2 <∞ which depends on n only, such that

(3.8) c1t
−2n ≤ card(J) ≤ C2t

−2n.

For each j ∈ J , define zj = (1− t2)1/2xj . Then define the operator

Ft =
∑
j∈J

(uzjψ)⊗ (uzjψ),

where uzj is defined by (2.7). Since xj ∈ Gr(t) and zj = r(t)xj , the definition of Gr(t)
ensures ‖(ψ − ψ(xj))kzj‖ ≤ c3.2 for each j ∈ J . Since Gr(t) ⊂ G, we have |ψ(xj)| ≤ b,
j ∈ J . Combining these two inequalities, we find that

(3.9) ‖ψkzj‖ ≤ c3.2 + b for each j ∈ J.

By (2.7) and (2.14), uzjψ = vzjψkzj . Thus it follows from (3.9) and Lemma 2.5 that

(3.10) ‖Ft‖ ≤ C2.5(c3.2 + b)2.

Since ψ ∈ M and since M is a submodule, we have uzjψ ∈ M for each j ∈ J . Hence Ft
is an operator on the Hilbert space M. Next we estimate tr(DMFt).

Applying (3.1), we have

(3.11) tr(DMFt) =
∑
j∈J
〈DMuzjψ, uzjψ〉 ≥

∑
j∈J
〈Duzjψ, uzjψ〉 =

∑
j∈J
‖D1/2uzjψ‖2.

We need to estimate ‖D1/2uzjψ‖2 for each j ∈ J . Obviously,

‖D1/2uzjψ‖ ≥ |ψ(xj)|‖D1/2uzj‖ − ‖D1/2(ψ − ψ(xj))uzj‖
≥ a‖D1/2uzj‖ − ‖D1/2(ψ − ψ(xj))uzj‖
≥ a{c2.2(1− |zj |2)}1/2 − ‖D1/2(ψ − ψ(xj))uzj‖

= ac
1/2
2.2 t− ‖D1/2(ψ − ψ(xj))uzj‖,(3.12)

where the third ≥ follows from Lemma 2.2.
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For each ν ∈ {1, ..., n}, write (xj)ν for the ν-th component of xj . Also, for each
g ∈ A(B), let Mg denote the operator of multiplication by g on H2(S) as usual. Then

‖D1/2(ψ − ψ(xj))uzj‖2 = 〈D(ψ − ψ(xj))uzj , (ψ − ψ(xj))uzj 〉

=
n∑
ν=1

〈[Z∗ν , Zν ](ψ − ψ(xj))uzj , (ψ − ψ(xj))uzj 〉

=
n∑
ν=1

〈[(Zν − (xj)ν)∗, Zν − (xj)ν ](ψ − ψ(xj))uzj , (ψ − ψ(xj))uzj 〉

≤
n∑
ν=1

‖(Zν − (xj)ν)(ψ − ψ(xj))uzj‖2

=
n∑
ν=1

‖(Zν − (xj)ν)Mvzj
(ψ − ψ(xj))kzj‖2,

≤
n∑
ν=1

‖(Zν − (xj)ν)Mvzj
‖2‖(ψ − ψ(xj))kzj‖2.(3.13)

By (2.14) and (2.6), ‖(Zν − (xj)ν)Mvzj
‖ ≤ 2n+1‖(Zν − (xj)ν)Mmzj

‖. On the other hand,
Lemma 2.3(ii) tells us that ‖(Zν − (xj)ν)Mmzj

‖ ≤ 2(1− r(t))1/2 ≤ 2t. Thus

‖(Zν − (xj)ν)Mvzj
‖2 ≤ 4n+2t2.

As we mentioned previously, ‖(ψ − ψ(xj))kzj‖ ≤ c3.2. Hence from (3.13) we obtain

‖D1/2(ψ − ψ(xj))uzj‖2 ≤ nc23.24n+2t2.

Taking square-root on both sides and then bringing the result into (3.12), we find that

(3.14) ‖D1/2uzjψ‖ ≥ {ac
1/2
2.2 −

√
nc3.22n+2}t = (1/2)ac1/22.2 t,

where the = follows from (3.2).

Combining (3.11), (3.14) and the lower bound in (3.8), we have

(3.15) tr(DMFt) ≥
1
4
a2c2.2t

2 · card(J) ≥ 1
4
a2c2.2t

2 · c1t−2n = c3t
2−2n,

where we set c3 = (1/4)a2c1c2.2. Let ‖.‖1 denote the norm of the trace class. Recall that
s-numbers obey the relation sk(AB) ≤ sk(A)‖B‖ [11,page 61]. Hence

(3.16) tr(DMFt) ≤ ‖DMFt‖1 =
rank(Ft)∑
`=1

s`(DMFt) ≤
rank(Ft)∑
`=1

s`(DM)‖Ft‖.
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Obviously, the upper bound in (3.8) implies rank(Ft) ≤ C2t
−2n. Combine this with (3.16),

(3.10) and (3.15), we obtain

C2.5(c3.2 + b)2
∑

1≤`≤C2t−2n

s`(DM) ≥ tr(DMFt) ≥ c3t2−2n.

Thus we have shown that, if we set c4 = {C2.5(c3.2 + b)2}−1c3, then the inequality∑
1≤`≤C2t−2n

s`(DM) ≥ c4t2−2n

holds for every 0 < t < δ.

Let K be the smallest natural number greater than C2δ
−2n. If k ≥ K, then there is

a 0 < tk < δ such that C2t
−2n
k = k. Hence

s1(DM) + ...+ sk(DM) =
∑

1≤`≤C2t
−2n
k

s`(DM) ≥ c4t2−2n
k = c4C

−(n−1)/n
2 k(n−1)/n

for each k ≥ K. Thus if we set ε = K−1c4C
−(n−1)/n
2 , then (1.2) holds for every k ∈ N.

This completes the proof of Theorem 1.1.

4. Submodules of the Drury-Arveson Module

We still assume, of course, n ≥ 2. Let {eα : α ∈ Zn+} be the standard orthonormal
basis for the Drury-Arveson space H2

n. That is, for each α ∈ Zn+,

eα(ζ) =
(
|α|!
α!

)1/2

ζα.

Recall that on H2
n, we also write Z1, ..., Zn for the operators by the coordinate functions

ζ1, ..., ζn. And, just as in Section 2, on H2
n we also have the operator

D =
n∑
i=1

[Z∗i , Zi].

Lemma 4.1. For each
f =

∑
α∈Zn+

bαeα ∈ H2
n

we have

(4.1) 〈Df, f〉 = |b0|2 + (n− 1)
∑
α∈Zn+

|bα|2

|α|+ 1
.
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Proof. This follows from the last line on page 191 in [1]. �

Proof of Theorem 1.2. Let a submodule M of the Drury-Arveson module H2
n be given.

Arveson showed that there exists a sequence {ϕ1, ..., ϕk, ...} contained inM such that each
ϕk is a multiplier of H2

n and such that the operator

Mϕ1M
∗
ϕ1

+ ...+MϕkM
∗
ϕk

+ ...

is the orthogonal projection from H2
n onto M [2,page 191]. Now suppose that M 6= {0}.

Then this result of Arveson tells us that there is a ϕ ∈M, ϕ 6= 0, which is a multiplier of
H2
n. That is, Mϕ is a bounded operator on H2

n [1,Proposition 2.2].

For each ` ∈ N, denote

A` = {(α1, ..., αn) ∈ Zn+ : ` < αi ≤ 2`, 1 ≤ i ≤ n}.

With the ϕ obtained above, we define the operator

F` =
∑
α∈A`

(ϕeα)⊗ (ϕeα),

` ∈ N. Obviously, F` = MϕQ`M
∗
ϕ, where Q` =

∑
α∈A` eα ⊗ eα, which is an orthogonal

projection. Therefore

(4.2) ‖F`‖ ≤ ‖Mϕ‖2

for every ` ∈ N. Now suppose that

ϕ =
∑
β∈Zn+

cβeβ .

Then for each α ∈ Zn+ we have

(4.3) ϕeα =
∑
β∈Zn+

cβu(α, β)eα+β ,

where

u(α, β) =
(
|β|!
β!
· |α|!
α!
· (α+ β)!
|α+ β|!

)1/2

.

For each α = (α1, ..., αn) ∈ A`, it follows from the condition ` < αi ≤ 2` for each
i ∈ {1, ..., n} that

|α|!
α!
· (α+ β)!
|α+ β|!

=
(α+ β)!/α!
|α+ β|!/|α|!

≥
(

`

2n`+ |β|

)|β|
.
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Therefore

(4.4) u(α, β) ≥
(
|β|!
β!

)1/2

·
(

`

2n`+ |β|

)|β|/2
for every α ∈ A`.

By the argument in the first paragraph of Section 3, in the present case we also have

〈DMh, h〉 ≥ 〈Dh, h〉 for every h ∈M.

Since ϕ ∈ M, we have ϕeα ∈ M for each α ∈ Zn+. Combining these facts with (4.3) and
(4.1), we have

tr(DMF`) =
∑
α∈A`

〈DMϕeα, ϕeα〉 ≥
∑
α∈A`

〈Dϕeα, ϕeα〉 = (n− 1)
∑
α∈A`

∑
β∈Zn+

|cβ |2u2(α, β)
|α+ β|+ 1

.

Since ϕ 6= 0, there is a β0 ∈ Zn+ such that cβ0 6= 0. The above gives us

(4.5) tr(DMF`) ≥ (n− 1)|cβ0 |2
∑
α∈A`

u2(α, β0)
|α+ β0|+ 1

for every ` ∈ N. Now suppose that ` > |β0|. Then it follows from (4.4) that u2(α, β0) ≥
(|β0|!/β0!) · (1/3n)|β0| when α ∈ A`. Also, if ` > |β0| and α ∈ A`, then |α + β0| + 1 =
|α|+ |β0|+ 1 ≤ 2n`+ ` ≤ 3n`. Substituting these inequalities in (4.5), we find that

(4.6) tr(DMF`) ≥
(n− 1)|cβ0 |2|β0|!

(3n)|β0|β0!
· 1

3n`
· card(A`) = δ1`

n−1

for each ` > |β0|, where δ1 = (n − 1)|cβ0 |2|β0|!(3n)−|β0|−1(β0!)−1. Note that rank(F`) ≤
card(A`) = `n. Therefore

tr(DMF`) ≤ ‖DMF`‖1 =
rank(F`)∑
j=1

sj(DMF`) ≤
`n∑
j=1

sj(DM)‖F`‖ ≤ ‖Mϕ‖2
`n∑
j=1

sj(DM),

where the last ≤ follows from (4.2). Combining this with (4.6), we obtain

(4.7)
`n∑
j=1

sj(DM) ≥ δ`n−1

for each ` > |β0|, where δ = δ1/‖Mϕ‖2.
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Now set K = (|β0| + 1)n. Given any k ≥ K, there is an ` > |β0| such that `n ≤ k <
(`+ 1)n. Applying (4.7), we have

k∑
j=1

sj(DM) ≥
`n∑
j=1

sj(DM) ≥ δ`n−1 ≥ δ
(

`

`+ 1

)n−1

k(n−1)/n ≥ δ

2n−1
k(n−1)/n.

From this inequality Theorem 1.2 follows. �

5. Norm Ideals

We will now explain the meaning of Theorems 1.1 and 1.2 in the language of norm
ideals. Recall that, for each 1 ≤ p <∞, the formula

(5.1) ‖A‖+p = sup
k≥1

s1(A) + s2(A) + ...+ sk(A)
1−1/p + 2−1/p + ...+ k−1/p

defines a symmetric norm for operators [11,Section III.14]. On a Hilbert space H, the set

C+
p = {A ∈ B(H) : ‖A‖+p <∞}

is an ideal in B(H). It is well known that C+
p ⊃ Cp and that C+

p 6= Cp. Indeed C+
p and Cp

are just some of the most commonly known examples of norm ideals. More generally, we
recall the following construction.

Let ĉ be the linear space of sequences {aj}j∈N, where aj ∈ R and for each sequence
aj 6= 0 only for a finite number of j’s. A symmetric gauge function [11,page 71] is a map
Φ : ĉ→ [0,∞) which has the following properties:

(a) Φ is a norm on ĉ.
(b) Φ({1, 0, ..., 0, ...}) = 1.
(c) Φ({aj}j∈N) = Φ({|aπ(j)|}j∈N) for every bijection π : N→ N.

Each symmetric gauge function Φ gives rise to the symmetric norm

‖A‖Φ = sup
k≥1

Φ({s1(A), ..., sk(A), 0, ..., 0, ...})

for operators. On any Hilbert space H, the set of operators

CΦ = {A ∈ B(H) : ‖A‖Φ <∞}

is a norm ideal [11,page 68]. This term refers to the following properties of CΦ:
• For any B, C ∈ B(H) and A ∈ CΦ, BAC ∈ CΦ and ‖BAC‖Φ ≤ ‖B‖‖A‖Φ‖C‖.
• If A ∈ CΦ, then A∗ ∈ CΦ and ‖A∗‖Φ = ‖A‖Φ.
• For any A ∈ CΦ, ‖A‖ ≤ ‖A‖Φ, and the equality holds when rank(A) = 1.
• CΦ is complete with respect to ‖.‖Φ.
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As an example, let us mention the symmetric gauge function Φ+
p : ĉ → [0,∞), 1 ≤

p <∞, defined as follows. For each {aj}j∈N ∈ ĉ, let

Φ+
p ({aj}j∈N) = sup

k≥1

|aπ(1)|+ |aπ(2)|+ ...+ |aπ(k)|
1−1/p + 2−1/p + ...+ k−1/p

,

where π : N → N is any bijection such that |aπ(j)| ≥ |aπ(j+1)| for every j ∈ N, which
exists because aj = 0 for all but a finite number of j’s.

Obviously, C+
p is none other than the norm ideal CΦ+

p
.

Theorems 1.1 and 1.2 set a size requirement on norm ideals of the form CΦ to which
a nonzero DM considered in this paper can belong:

Proposition 5.1. Let Φ be a symmetric gauge function. If there is a submodule M of
either H2(S) or H2

n such that 0 < ‖DM‖Φ <∞, then CΦ ⊃ C+
n .

Proof. The assumption ‖DM‖Φ > 0 impliesM 6= {0}. Hence, by Theorem 1.1 or Theorem
1.2, there is an ε = ε(M) > 0 such that

(5.2) s1(DM) + ...+ sk(DM) ≥ εk(n−1)/n

for every k ∈ N. Let A ∈ C+
n . Then by (5.1) we have

(5.3) s1(A) + ...+ sk(A) ≤ ‖A‖+n (1−1/n + ...+ k−1/n) ≤ 3‖A‖+n k(n−1)/n,

k ∈ N. The combination of (5.2) and (5.3) gives us

s1(A) + ...+ sk(A) ≤ (3‖A‖+n /ε){s1(DM) + ...+ sk(DM)},

k ∈ N. By [11,Lemma III.3.1], this implies

‖A‖Φ ≤ (3‖A‖+n /ε)‖DM‖Φ.

Since ‖DM‖Φ <∞, we have ‖A‖Φ <∞ for each A ∈ C+
n . That is, CΦ ⊃ C+

n . �
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