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Let H2
n be the Drury-Arveson space of analytic functions on the unit ball B in Cn, and

letM denote the collection of multipliers of H2
n. This corrigendum concerns the following

lemma in our original article “Multipliers and essential norm on the Drury-Arveson space”,
Proc. Amer. Math. Soc. 139 (2011), 2497-2504:

Lemma 3.1. Let f ∈ M. If there is a c > 0 such that |f(z)| ≥ c for every z ∈ B, then
1/f is also a multiplier of H2

n.

This lemma is, of course, an immediate consequence of the recently proved corona
theorem forM [7]. But in our original article, we also asserted that Lemma 3.1 also follows
from Theorem 2 in Chen’s paper [6], which claims that for g ∈ H2

n, ‖g‖2 is equivalent to

‖g‖2# = |g(0)|2 +
∫∫

|g(z)− g(w)|2

|1− 〈z, w〉|2n+1
dv(z)dv(w).

It has since been discovered that this theorem of Chen’s is false. We would like to thank
Dechao Zheng for informing us of this fact, who in turn attributes his source to Carl
Sundberg. Once one knows this, the fact that ‖g‖2 is not equivalent to ‖g‖2# can be
directly shown. For example, if one tries the special case where the complex dimension n
equals 2, one finds that ∫∫

|z1 − w1|2

|1− 〈z, w〉|5
dv(z)dv(w) =∞,

where z1 and w1 denote the first component of z and w respectively.

Thus question arises as to whether there is a proof of Lemma 3.1 that does not invoke
the corona theorem of Costea, Sawyer and Wick [7]. One might call Lemma 3.1 the “one-
function corona theorem” for M. We learned this term from Dechao Zheng, and we also
learned that there is considerable interest in finding an elementary proof of the one-function
corona theorem, a proof that does not involve hard analysis in the style of [7].

In this somewhat expanded version of corrigendum, we will give an elementary proof
of Lemma 3.1. The virtue of our proof is that it involves only soft analysis, and very little
of it indeed. What makes this proof particularly worth reporting is the fact that it is
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based on the very essence of the theory of Drury-Arveson space, namely the von Neumann
inequality for commuting row contractions.

The proof begins with some elementary facts. For each f ∈ M, we write ‖f‖M for
its multiplier norm. That is,

‖f‖M = sup{‖fg‖ : g ∈ H2
n, ‖g‖ ≤ 1}.

For each analytic function h on B and each 0 ≤ r < 1, we define the function

hr(z) = h(rz), z ∈ B.

Lemma 1. Let f ∈M. Then for each 0 ≤ r < 1, we have fr ∈M and ‖fr‖M ≤ ‖f‖M.

Proof. Let Tn denote the n-dimensional torus {(τ1, . . . , τn) : |τj | = 1, 1 ≤ j ≤ n}. Let
dmn be the Lebesgue measure on Tn with the normalization mn(Tn) = 1. For each
τ = (τ1, . . . , τn) ∈ Tn, define the unitary transformation Uτ on Cn by the formula

Uτ (z1, . . . , zn) = (τ1z1, . . . , τnzn).

Let f ∈ M. Then we obviously have ‖f‖M = ‖f ◦ Uτ‖M, τ ∈ Tn. For each 0 ≤ r < 1,
define the function

Pr(τ1, . . . , τn) =
n∏
j=1

1− r2

|1− rτ̄j |2

on Tn. By the well-known properties of the Poisson kernel, we have

Mfr =
∫
Mf◦UτPr(τ)dmn(τ).

Since the integral of Pr on Tn equals 1 and Pr ≥ 0, the lemma follows. �

For each real number −n ≤ t <∞, let H(t) be the Hilbert space of analytic functions
on B with the reproducing kernel

1
(1− 〈ζ, z〉)n+1+t

.

Alternately, one can describe H(t) as the completion of C[z1, . . . , zn] with respect to the
norm ‖ · ‖t arising from the inner product 〈·, ·〉t defined according to the following rules:
〈zα, zβ〉t = 0 whenever α 6= β,

(1) 〈zα, zα〉t =
α!∏|α|

j=1(n+ t+ j)

if α ∈ Zn+\{0}, and 〈1, 1〉t = 1. Obviously, we have H(−n) = H2
n. Moreover, H(−1) is the

Hardy space H2(S), and H(0) is the Bergman space on the unit ball.
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Lemma 2. If f ∈ M, then f is also a multiplier for every H(t), −n < t <∞. Moreover,
for each −n < t <∞ we have

‖fg‖t ≤ ‖f‖M‖g‖t whenever g ∈ H(t).

Proof. Let N be the number operator introduced by Arveson [2]. That is, Nzα = |α|zα,
α ∈ Zn+. For each −n < t < ∞, let M (t)

z1 , . . . ,M
(t)
zn denote the operators of multiplication

by the coordinate functions on H(t). Using (1), it is straightforward to verify that

M (t)
z1 M

(t)∗
z1 + · · ·+M (t)

znM
(t)∗
zn = N(n+ t+N)−1.

Thus for each −n < t < ∞, the commuting tuple (M (t)
z1 , . . . ,M

(t)
zn ) is a row contraction.

Consequently, the von Neumann inequality

‖p(M (t)
z1 , . . . ,M

(t)
zn )‖ ≤ ‖p‖M

holds for every polynomial p. See [2,8]. That is, for each polynomial p, we have

(2) ‖pg‖t ≤ ‖p‖M‖g‖t whenever g ∈ H(t).

Thus our task is to show that (2) still holds if we replace p by f ∈M. For this we use the
power series expansion

1
(1− u)n

=
∞∑
j=0

cju
j , where cj =

(j + n− 1)!
j!(n− 1)!

,

which holds when |u| < 1. Let any f ∈M be given. By the Cauchy integral formula

f(z) =
∫

f(ξ)
(1− 〈z, ξ〉)n

dσ(ξ),

where dσ is the spherical measure on S = {ξ ∈ Cn : |ξ| = 1}, for each 0 ≤ r < 1 we have

fr =
∞∑
j=0

cjr
jψj , where ψj(z) =

∫
f(ξ)〈z, ξ〉jdσ(ξ).

For each ξ ∈ S, the operator of multiplication by the function 〈z, ξ〉 is obviously a con-
traction on H(t) as well as on H2

n. Therefore ‖ψj‖M ≤
∫
|f |dσ ≤ ‖f‖∞ and, similarly,

‖M (t)
ψj
‖ ≤ ‖f‖∞ for each j ≥ 0. Thus the operators

k∑
j=0

cjr
jM

(t)
ψj
, k = 0, 1, 2, . . . ,
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form a Cauchy sequence with respect the operator norm on H(t). Hence

‖M (t)
fr
‖ = lim

k→∞

∥∥∥∥∥∥
k∑
j=0

cjr
jM

(t)
ψj

∥∥∥∥∥∥ ≤ lim inf
k→∞

∥∥∥∥∥∥
k∑
j=0

cjr
jψj

∥∥∥∥∥∥
M

,

where the ≤ follows from (2). Since the operators
∑k
j=0 cjr

jMψj , k = 0, 1, 2, . . . , converge
to Mfr on H2

n with respect to the operator norm, we have

‖M (t)
fr
‖ ≤ lim

k→∞

∥∥∥∥∥∥
k∑
j=0

cjr
jψj

∥∥∥∥∥∥
M

= ‖fr‖M ≤ ‖f‖M,

where the second ≤ follows from Lemma 1. Now, if g ∈ H(t), then frgr = (fg)r. Hence

‖(fg)r‖t = ‖M (t)
fr
gr‖t ≤ ‖f‖M‖gr‖t ≤ ‖f‖M‖g‖t.

Since this holds for every 0 ≤ r < 1, we have ‖fg‖t ≤ ‖f‖M‖g‖t as promised. �

Write R = z1∂1 + · · ·+ zn∂n, the radial derivative in n variables. We now pick a fixed
nature number m such that 2m− n ≥ 0. For each integer 0 ≤ k ≤ m, we define the norm
‖ · ‖∗,k by the formula

‖g‖2∗,k = |g(0)|2 +
∫
|(Rkg)(z)|2(1− |z|2)2m−ndv(z).

For each α ∈ Zn+, we have Rzα = |α|zα and∫
|zα|2(1− |z|2)2m−ndv(z) =

n!(2m− n)!α!
(|α|+ 2m)!

.

Comparing this with (1), for each 0 ≤ k ≤ m there are 0 < ck ≤ Ck <∞ such that

(3) ck‖g‖∗,k ≤ ‖g‖2m−n−2k ≤ Ck‖g‖∗,k for every g ∈ H(2m−n−2k).

In particular, ‖ · ‖∗,m is equivalent to the norm on the Drury-Arveson space H2
n.

Proposition 3. Suppose that Y1, . . . , YK are operators satisfying the following conditions:
(a) For each 1 ≤ j ≤ K, either Yj = R or Yj = Mfj for some fj ∈M.
(b) Y1 = R.
(c) card{j : Yj = R, 1 ≤ j ≤ K} = m.

Then there is a constant C = C(Y1, . . . , YK) such that

(4)
∫
|(Y1 · · ·YKg)(z)|2(1− |z|2)2m−ndv(z) ≤ C‖g‖2

for every g ∈ H2
n, where ‖ · ‖ denotes the norm on H2

n.
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Proof. We use an induction on K. If K = m, then, of course, (4) holds by virtue of (3) in
the case k = m. Now suppose that ` ≥ m and that the proposition has been proved for all
m ≤ K ≤ `. Consider the case K = `+ 1. Let B denote the collection of j’s in {1, . . . ,K}
such that Yj = Mfj for some fj ∈ M. Then B 6= ∅. Let j0 be the smallest integer in B.
If B = {j : j0 ≤ j ≤ K}, then

Y1 · · ·YK = RmMfj0 ···fK ,

and (4) again follows from (3) and the assumption that fj0 , . . . , fK are multipliers of H2
n.

Let us suppose that B 6= {j : j0 ≤ j ≤ K}. Then the induction hypothesis gives us a
C1 such that

(5)
∫
|(Y1 · · ·Yj0−1Yj0+1 · · ·YKh)(z)|2(1− |z|2)2m−ndv(z) ≤ C1‖h‖2

for every h ∈ H2
n. Now, given a g ∈ H2

n, write

g̃ = Yj0+1 · · ·YKg.

Then
Y1 · · ·YKg = Rj0−1(fj0 g̃).

Since B 6= {j : j0 ≤ j ≤ K}, there is at least one j ∈ {j0 + 1, . . . ,K} such that Yj = R.
Thus g̃(0) = 0. Applying (3) and Lemma 2, we have∫

|(Y1 · · ·YKg)(z)|2(1− |z|2)2m−ndv(z) =
∫
|(Rj0−1(fj0 g̃))(z)|2(1− |z|2)2m−ndv(z)

≤ c−2
j0−1‖fj0 g̃‖

2
2m−n−2j0+2 ≤ c−2

j0−1‖fj0‖
2
M‖g̃‖22m−n−2j0+2

≤ (Cj0−1/cj0−1)2‖fj0‖2M
∫
|(Rj0−1g̃)(z)|2(1− |z|2)2m−ndv(z)

= (Cj0−1/cj0−1)2‖fj0‖2M
∫
|(Y1 · · ·Yj0−1Yj0+1 · · ·YKg)(z)|2(1− |z|2)2m−ndv(z).

Combining this with (5), the induction on K is complete. �

With the above preparation, we now have

An elementary proof of Lemma 3.1. Let f be given as in the lemma. By (3), it
suffices to show that there is a 0 < C <∞ such that∫

|(RmMf−1g)(z)|2(1− |z|2)2m−ndv(z) ≤ C‖g‖2

for every g ∈ H2
n. By Proposition 3 and the assumption |f | ≥ c > 0 on B, this inequality

will follow if we can prove the following assertion: the operator RmMf−1 is the sum of a
finite number terms of the form

aMf−νY1 · · ·YK ,
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where a ∈ R, ν ∈ N, and the operators Y1, . . . , YK satisfy the conditions
(a) for each 1 ≤ j ≤ K, either Yj = R or Yj = Mf ;
(b) Y1 = R;
(c) card{j : Yj = R, 1 ≤ j ≤ K} = m.

To prove this, note that for each natural number k, we have the commutation relation

RMf−k = (k + 1)Mf−kR− kMf−k−1RMf .

Obviously, the above assertion about RmMf−1 follows from this identity and an easy
induction on m. �
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