
COMMUTATORS AND LOCALIZATION ON
THE DRURY-ARVESON SPACE

QUANLEI FANG AND JINGBO XIA

Abstract. Let f be a multiplier for the Drury-Arveson space H2
n of the unit ball, and let ζ1, ...,

ζn denote the coordinate functions. We show that for each 1 ≤ i ≤ n, the commutator [M∗
f ,Mζi

]
belongs to the Schatten class Cp, p > 2n. This leads to a localization result for multipliers.

1. Introduction

Let B denote the open unit ball {z : |z| < 1} in Cn. Throughout the paper, the complex dimen-
sion n is assumed to be greater than or equal to 2. A multivariable analogue of the classical Hardy
space of the unit circle is the Drury-Arveson space H2

n on B [3, 9]. Because of its close relation
to a number of topics in operator theory, among which we mention the von Neumann inequal-
ity for commuting row contractions, H2

n has been the subject of intense study of late [2-7,10,12,13].

The space H2
n is a reproducing kernel Hilbert space with the kernel

K(z, w) =
1

1− 〈z, w〉
, z, w ∈ B,

which is a multivariable generalization of the one-variable Szegö kernel. An orthonormal basis of
H2
n is given by {eα : α ∈ Zn

+}, where

eα(ζ) =

√
|α|!
α!

ζα.

In this paper we use the standard multi-index notation: For α = (α1, . . . , αn) ∈ Zn
+,

α! = α1!α2! · · ·αn!, |α| = α1 + · · ·+ αn, ζα = ζα1
1 · · · ζαnn .

For functions f, g ∈ H2
n with Taylor expansions

f(ζ) =
∑
α∈Zn+

cαζ
α and g(ζ) =

∑
α∈Zn+

dαζ
α,

the inner product is given by

〈f, g〉 =
∑
α∈Zn+

α!

|α|!
cαdα.

Throughout the paper, we let Mζ1 , . . . ,Mζn denote the operators of multiplication by the coor-
dinate functions ζ1, . . . , ζn on H2

n. With the identification of each ζi with each Mζi , H
2
n is often

called the Drury-Arveson module over the polynomial ring C[ζ1, . . . , ζn].

A holomorphic function f on B is called a multiplier for the space H2
n if fH2

n ⊂ H2
n. If f is a

multiplier, then the multiplication operator Mf defined by Mf (g) = fg is necessarily bounded on
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2 COMMUTATORS AND LOCALIZATION

H2
n [3], and the multiplier norm of f is defined to be the operator norm of Mf . In [3], Arveson

showed that, when n ≥ 2, the collection of multipliers of H2
n is strictly smaller than H∞. On

H2
n, multipliers can be used to express orthogonal projections. Suppose that E is a submodule

of the Drury-Arveson module, i.e., E is a closed linear subspace of H2
n which is invariant under

Mζ1 , . . . ,Mζn . Then there exist multipliers {f1, . . . , fk, . . . } of H2
n such that the operator

Mf1M
∗
f1

+ · · ·+MfkM
∗
fk

+ · · ·

is the orthogonal projection from H2
n onto E (see page 191 in [4]).

Among the recent results related to multipliers, we would like to mention the following devel-
opments. Interpolation problems for multipliers and model theory related to the Drury-Arveson
space also have been intensely studied over the past decade or so [5, 6, 10, 12, 13]. Recently,
Arcozzi, Rochberg and Sawyer gave a characterization of the multipliers in terms of Carleson
measures for H2

n [2]. In another study, Costea, Sawyer and Wick [7] proved a corona theorem for
the Drury-Averson space multipliers.

Since H2
n is a natural analogue of the Hardy space, it is natural to take a list of Hardy-space

results and try to determine which ones have analogues on H2
n and which ones do not. Commu-

tators are certainly very high on any such list. One prominent part of the theory of the Hardy
space is the Toeplitz operators on it. Since there is no L2 associated with H2

n, the only analogue of
Toeplitz operators on H2

n are the multipliers. In this paper we are interested in the commutators
of the form [M∗

f ,Mζi ], where f is a multiplier for the Drury-Arveson space. Since the story about
the commutators of the form [M∗

f ,Mζi ] is well known on the Hardy space, one would certainly like

to know the analogous story on H2
n.

Recall that for each 1 ≤ p < ∞, the Schatten class Cp consists of operators A satisfying the
condition ‖A‖p <∞, where the p-norm is given by the formula

‖A‖p = {tr((A∗A)p/2)}1/p.
Arveson showed in his seminal paper [3] that commutators of the form [M∗

ζj
,Mζi ] all belong to Cp,

p > n. As the logical next step, one certainly expects a Schatten class result for commutators on
H2
n involving multipliers other than the simplest coordinate functions. The following is the main

result of the paper:

Theorem 1.1. Let f be a multiplier for the Drury-Arveson space H2
n. For each 1 ≤ i ≤ n, the

commutator [M∗
f ,Mζi ] belongs to the Schatten class Cp, p > 2n. Moreover, for each 2n < p <∞,

there is a constant C which depends only on p and n such that

‖[M∗
f ,Mζi ]‖p ≤ C‖Mf‖

for every multiplier f of H2
n and every 1 ≤ i ≤ n.

This Schatten-class result has C∗-algebraic implications.

Throughout the paper, we denote the unit sphere {z ∈ Cn : |z| = 1} in Cn by S.

Let Tn be the C∗-algebra generated by Mζ1 , · · · , Mζn on H2
n. Recall that Tn was introduced by

Arveson in [3]. In more ways than one, Tn is the analogue of the C∗-algebra generated by Toeplitz
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operators with continuous symbols. Indeed Arveson showed that there is an exact sequence

{0} → K → Tn
τ−→ C(S)→ {0}, (1.1)

where K is the collection of compact operators on H2
n. But there is another natural C∗-algebra on

H2
n which is also related to “Toeplitz operators”, where the symbols are not necessarily continuous.

We define
TMn = the C∗-algebra generated by {Mf : fH2

n ⊂ H2
n}.

Theorem 1.1 tells us that Tn is contained in the essential center of TMn, in analogy with the
classic situation on the Hardy space of the unit sphere S. This opens the door for us to use the
classic localization technique [8] to analyze multipliers.

Recall that the essential norm of a bounded operator A on a Hilbert space H is

‖A‖Q = inf{‖A+K‖ : K is compact on H}.
Alternately, ‖A‖Q = ‖π(A)‖, where π denotes the quotient map from B(H) to the Calkin algebra
Q = B(H)/K(H).

To state our localization result, we need to introduce a class of Schur multipliers. For each
z ∈ B, let

sz(ζ) =
1− |z|

1− 〈ζ, z〉
. (1.2)

The reason we call sz a Schur multiplier is that the norm of the operator Msz on H2
n is 1, as we

will see in Section 2. Using Theorem 1.1, we will prove

Theorem 1.2. Let A ∈ TMn. Then for each ξ ∈ S, the limit

lim
r↑1
‖AMsrξ‖ (1.3)

exists. Moreover, we have
‖A‖Q = sup

ξ∈S
lim
r↑1
‖AMsrξ‖.

The C∗-algebraic meaning of the “localized limit” (1.3) will be explained in Section 6. Alter-
nately, we can state Theorem 1.2 in a version which may be better suited for applications:

Theorem 1.3. For each A ∈ TMn, we have

‖A‖Q = lim
r↑1

sup
r≤|z|<1

‖AMsz‖.

The rest of the paper is organized as follows. Section 2 begins with an orthogonal decom-
position of H2

n. This decomposition allows us to obtain the subnormality of certain multipliers.
We then use this decomposition to make a number of norm estimates. In Section 3 we derive a
“quasi-resolution” of the identity operator of H2

n, which plays the key role in the proof of Theorem
1.1. In Section 4 we estimate the Schatten p-norm and the operator norm of certain finite-rank
operators which arise from the “quasi-resolution”. With this preparation, the proof of Theorem
1.1 is completed in Section 5. Section 6 deals with localization and proves Theorems 1.2 and 1.3.

In terms of techniques, the reader will notice that this paper is quite different from previous
works on the Drury-Arveson space. This is highlighted by the fact that the unit sphere S and the
spherical measure dσ play a prominent role in our estimates. Many of the techniques we use in this
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paper are inspired by our earlier work on Hankel operators [11]. The best example to illustrate
this is the idea of using “quasi-resolution” of the identity operator. This interchangeability of
techniques serves to show that there is indeed much in common between the Hardy space and the
Drury-Arveson space. This view was one of the motivating factors which started this investigation.

2. Estimates for Certain Multipliers

First of all, let us introduce the subset B = {(0, β2, . . . , βn) : β2, . . . , βn ∈ Z+} of Zn
+. As we

indicated in Section 1, we denote the components of ζ by ζ1, . . . , ζn. For each β ∈ B, define the
closed linear subspace

Hβ = span{ζk1 ζβ : k ≥ 0}
of H2

n. Then we have the orthogonal decompostion

H2
n =

⊕
β∈B

Hβ.

For each β ∈ B, we have an orthonormal basis {ek,β : k ≥ 0} for Hβ, where

ek,β(ζ) =

√
(k + |β|)!
k!β!

ζk1 ζ
β. (2.1)

It is well known that H0 = H2
1 , the Hardy space associated with the unit circle T . For our proofs,

we need to identify each Hβ, β 6= 0, as a weighted Bergman space on the unit disc.

Denote D = {z ∈ C : |z| < 1}, the open unit disc in the complex plane. Let dA be the area
measure on D with the normalization A(D) = 1. For each integer m ≥ 0, let

B(m) = L2
a(D, (1− |z|2)mdA(z)), (2.2)

the usual weighted Bergman space of weight m. It is well known that the standard orthonormal

basis for B(m) is {e(m)
k : k ∈ Z+}, where

e
(m)
k (z) =

√
(k +m+ 1)!

k!m!
zk. (2.3)

For each β ∈ B\{0}, define the unitary operator Wβ : Hβ → B(|β|−1) by the formula

Wβek,β = e
(|β|−1)
k , k ∈ Z+. (2.4)

Using (2.1) and (2.3), it is straightforward to verify that the weighted shift Mζ1|Hβ is unitarily
equivalent to Mz on B(|β|−1). More precisely, if β ∈ B\{0}, then

WβMζ1hβ = MzWβhβ for every hβ ∈ Hβ. (2.5)

The operator Mζ1 |H0 is, of course, the unilateral shift.

Lemma 2.1. For each individual i ∈ {1, . . . , n}, the multiplication operator Mζi is subnormal on
H2
n. Moreover, each Mζi has a normal extension of norm 1.

Proof. This is actually a known fact. See [1]. But this fact also follows from (2.5) for Mζ1 . By the
obvious symmetry, the entire lemma follows from (2.5). �
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For each z ∈ B, define the multiplier

mz(ζ) =
1− |z|2

1− 〈ζ, z〉
. (2.6)

Obviously, mz is just a minor modification of the Schur multiplier sz defined in (1.2). For many
purposes, it is easier to work with mz than sz, as we will see. The proof of Theorem 1.1 involves
the subnormality of Mmkz

and an estimate for ‖Mmzmw‖.

Let U denote the collection of unitary transformations on Cn. It is obvious that if f is a
multiplier for H2

n and if U ∈ U , then the function f ◦ U is also a multiplier for H2
n. Moreover, the

multiplication operators

Mf and Mf◦U

are unitarily equivalent on H2
n. This fact will be used several times.

Corollary 2.2. For all k ∈ Z+ and z ∈ B, the operator Mmkz
is subnormal on H2

n.

Proof. Given a z ∈ B, pick a U ∈ U such that

U∗z = (|z|, 0, . . . , 0).

Then for each k ∈ Z+ we have

mk
z(Uζ) = mk

U∗z(ζ) =

(
1− |z|2

1− |z|ζ1

)k
.

By Lemma 2.1 and the above-mentioned unitary equivalence, Mmkz
has a normal extension. �

The following lemma provides a key estimate:

Lemma 2.3. If 0 < s < 1, then the norm of the operator of multiplication by the function

ζ2
1− sζ1

on H2
n does not exceed

2√
1− s.

Proof. Consider an arbitrary hβ ∈ Hβ, where β = (0, β2, . . . , βn). Then

hβ(ζ) =
∞∑
k=0

ckζ
k
1 ζ

β.

First we assume that β 6= 0. By (2.4), we have

(Wβhβ)(z) =

√
β!

(|β| − 1)!

∞∑
k=0

ckz
k, z ∈ D,

which is a vector in B(|β|−1). Denote e2 = (0, 1, 0, . . . , 0). Since ζ2ζ
β = ζβ+e2 , we have

(Wβ+e2ζ2hβ)(z) =

√
(β + e2)!

|β|!

∞∑
k=0

ckz
k, z ∈ D,
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which is a vector in B(|β|). Now suppose that

hβ(ζ) = (1− sζ1)−1fβ(ζ),

where

fβ(ζ) =
∞∑
k=0

akζ
k
1 ζ

β.

For z ∈ D and 0 < s < 1, we have |1− sz| ≥ 1− |z| and |1− sz| ≥ 1− s. Thus the above yields

‖ζ2(1− sζ1)−1fβ‖2H2
n

= ‖ζ2hβ‖2H2
n

= ‖Wβ+e2ζ2hβ‖2B(|β|)

=
(β + e2)!

|β|!

∫
D

∣∣∣∣∣
∞∑
k=0

ckz
k

∣∣∣∣∣
2

(1− |z|2)|β|dA(z)

=
(β + e2)!

|β|!

∫
D

∣∣∣∣∣ 1

1− sz

∞∑
k=0

akz
k

∣∣∣∣∣
2

(1− |z|2)|β|dA(z)

≤ 2

1− s
· (β + e2)!

|β|!

∫
D

∣∣∣∣∣
∞∑
k=0

akz
k

∣∣∣∣∣
2

(1− |z|2)|β|−1dA(z)

=
2

1− s
· β2 + 1

|β|
· β!

(|β| − 1)!

∫
D

∣∣∣∣∣
∞∑
k=0

akz
k

∣∣∣∣∣
2

(1− |z|2)|β|−1dA(z)

=
2

1− s
· β2 + 1

|β|
‖Wβfβ‖2B(|β|−1)

=
2

1− s
· β2 + 1

|β|
‖fβ‖2H2

n
≤ 4

1− s
‖fβ‖2H2

n
.

Thus we have shown that for β 6= 0, the norm of the restriction of the operator of multiplication
by ζ2(1− sζ1)−1 to Hβ does not exceed 2(1− s)−1/2. Next we consider the case where β = 0.

We know that H0 = H2
1 , the Hardy space on the unit circle T . Let h ∈ H0. Then

h(ζ) =
∞∑
k=0

ckζ
k
1 .

We have

(We2ζ2h)(z) =
∞∑
k=0

ckz
k, z ∈ D,

which is a vector in the unweighted Bergman space B(0). Now suppose

h(ζ) = (1− sζ1)−1f(ζ)

for some

f(ζ) =
∞∑
k=0

akζ
k
1 .



COMMUTATORS AND LOCALIZATION 7

Using the polar decomposition of dA, we see that

‖ζ2(1− sζ1)−1f‖2H2
n

= ‖We2ζ2h‖2B(0) =

∫
D

∣∣∣∣∣
∞∑
k=0

ckz
k

∣∣∣∣∣
2

dA(z) =

∫
D

∣∣∣∣∣ 1

1− sz

∞∑
k=0

akz
k

∣∣∣∣∣
2

dA(z)

= 2

∫ 1

0

r

∫
T

∣∣∣∣∣ 1

1− srτ

∞∑
k=0

ak(rτ)k

∣∣∣∣∣
2

dm(τ)dr

≤ 2

∫ 1

0

1

(1− sr)2
dr

∞∑
k=0

|ak|2 = 2

∫ 1

0

1

(1− sr)2
dr‖f‖2H2

n

=
2

1− s
‖f‖2H2

n
.

Thus we have shown that the norm of the restriction of the operator of multiplication by ζ2(1 −
sζ1)

−1 to H0 does not exceed
√

2(1− s)−1/2.

Obviously, if fβ ∈ Hβ, fβ′ ∈ Hβ′ and β 6= β′, then

ζ2
1− sζ1

fβ ⊥
ζ2

1− sζ1
fβ′ .

Thus it follows from the above two paragraphs that the norm of Mζ2/(1−sζ1) on the entire H2
n does

not exceed 2(1− s)−1/2. This completes the proof. �

The proof of Theorem 1.1 involves Möbius transform. For each z ∈ B\{0}, let

ϕz(ζ) =
1

1− 〈ζ, z〉

{
z − 〈ζ, z〉

|z|2
z − (1− |z|2)1/2

(
ζ − 〈ζ, z〉

|z|2
z

)}
. (2.7)

Then ϕz is an involution, i.e., ϕz ◦ ϕz = id. Recall that

kz(ζ) =
(1− |z|2)1/2

1− 〈ζ, z〉
, z, ζ ∈ B, (2.8)

is the normalized reproducing kernel for H2
n. Define the operator Uz by the formula

(Uzf)(ζ) = f(ϕz(ζ))kz(ζ), f ∈ H2
n, (2.9)

for each z ∈ B\{0}. Using Theorem 2.2.2 in [14], it is straightforward to verify that

〈Uzkx, Uzky〉 =
(1− |x|2)1/2(1− |y|2)1/2

1− 〈y, x〉
= 〈kx, ky〉

for all z ∈ B\{0} and x, y ∈ B. Therefore each Uz is a unitary operator on H2
n.

Recall the elementary fact that if c is a complex number with |c| ≤ 1 and if 0 < t < 1, then

2|1− tc| ≥ |1− c|. (2.10)

This equality will be used frequently in the sequel.

Lemma 2.4. Let z, w ∈ B be such that |z| = |w|. Then

‖Mmwmz‖ ≤ 48
1− |z|2

|1− 〈z, w〉|
.
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Proof. If z = w, then the conclusion is a trivial consequence of Lemma 2.1. So let us assume
z 6= w. Using the unitary operator defined by (2.9), we see that

‖Mmwmz‖ = ‖M(mwmz)◦ϕz‖.
Thus we only need to estimate the norm of M(mwmz)◦ϕz . By Theorem 2.2.2 in [14],

1− 〈ϕz(ζ), z〉 = 1− 〈ϕz(ζ), ϕz(0)〉 =
1− |z|2

1− 〈ζ, z〉
,

which leads to

mz(ϕz(ζ)) = 1− 〈ζ, z〉.
Write λ = ϕz(w). Then w = ϕz(λ). Using the above-cited theorem,

1− 〈ϕz(ζ), w〉 = 1− 〈ϕz(ζ), ϕz(λ)〉 =
(1− |z|2)(1− 〈ζ, λ〉)

(1− 〈ζ, z〉)(1− 〈z, λ〉)
.

Since 1− |w|2 = 1− |z|2, this gives us

mw(ϕz(ζ))mz(ϕz(ζ)) = (1− 〈z, λ〉)(1− 〈ζ, z〉)2

1− 〈ζ, λ〉
. (2.11)

Since we know that

1− 〈z, λ〉 = 1− 〈ϕz(0), ϕz(w)〉 =
1− |z|2

1− 〈z, w〉
,

we only need to consider the operator of multiplication by F (ζ) = (1− 〈ζ, z〉)2/(1− 〈ζ, λ〉).

Write s = |λ| = |ϕz(w)|. Let U : Cn → Cn be a unitary transformation such that

U∗λ = (s, 0, 0, . . . , 0) and

U∗z = (a, b, 0, . . . , 0),

where a = 〈z, λ/s〉 and |b|2 = |z|2 − |〈z, λ/s〉|2. Since 1− |w|2 = 1− |z|2, we have

2(1− s) ≥ 1− s2 = 1− |ϕz(w)|2 =
(1− |z|2)2

|1− 〈w, z〉|2
. (2.12)

Since

1− sa = 1− 〈λ, z〉 =
1− |z|2

1− 〈w, z〉
,

(2.10) gives us

|1− a| ≤ 2|1− sa| = 2
1− |z|2

|1− 〈w, z〉|
. (2.13)

Also,

|b|2 ≤ 1− |〈z, λ〉|2 ≤ 2(1− |〈z, λ〉|) ≤ 2
1− |z|2

|1− 〈z, w〉|
. (2.14)

Since ‖MF‖ = ‖MF◦U‖, it suffices to estimate the latter. We have

(1− 〈Uζ, z〉)2

1− 〈Uζ, λ〉
=

(1− aζ1 − bζ2)2

1− sζ1
=

(1− aζ1)2

1− sζ1
− 2b

(1− aζ1)ζ2
1− sζ1

+
b2ζ2

2

1− sζ1
= G1(ζ)− 2bG2(ζ) +G3(ζ). (2.15)
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Write the first term in (2.15) as

G1(ζ) =
(1− a)2

1− sζ1
+ 2a(1− a)

1− ζ1
1− sζ1

+ a2 (1− ζ1)2

1− sζ1
= G11(ζ) + 2a(1− a)G12(ζ) + a2G13(ζ).

By (2.10) and Lemma 2.1, we have ‖MG12‖ ≤ 2. Similarly, ‖MG13‖ ≤ 4. For G11, Lemma 2.1
yields

‖MG11‖ ≤
|1− a|2

1− s
≤ 8,

where the second ≤ follows from (2.12) and (2.13). Therefore we conclude that

‖MG1‖ ≤ 20. (2.16)

For the second term in (2.15), we have

G2(ζ) =
(1− aζ1)ζ2

1− sζ1
= (1− a)

ζ2
1− sζ1

+ a
(1− ζ1)
1− sζ1

ζ2 = G21(ζ) +G22(ζ).

By Lemma 2.3, (2.12) and (2.13),

‖MG21‖ ≤
2|1− a|√

1− s
≤ 4
√

2 < 8.

By (2.10) and Lemma 2.1, ‖MG22‖ ≤ 2. Therefore

‖MG2‖ ≤ 10. (2.17)

Since

G3(ζ) = b2
ζ2

1− sζ1
· ζ2,

by Lemma 2.3, (2.12) and (2.14),

‖MG3‖ ≤
2|b|2√
1− s

≤ 8. (2.18)

Combining (2.16),(2.17),(2.18), and (2.15), we now have ‖MF‖ = ‖MF◦U‖ ≤ 48. Recalling (2.11),
the proof is complete. �

Lemma 2.5. For every z ∈ B and every i ∈ {1, . . . , n}, the norm of the operator of multiplication
by the function

(ζi − zi)mz(ζ)

on H2
n does not exceed

3n
√

1− |z|2,
where zi is the i-th component of z.

Proof. Let z ∈ B and i ∈ {1, . . . , n} be given, and write G(ζ) = (ζi − zi)mz(ζ). Let ẑ =
(|z|, 0, . . . , 0). Then there is a unitary operator U : Cn → Cn such that U∗z = ẑ. Since ‖MG‖ =
‖MG◦U‖, it suffices to estimate the latter. We have

G(Uζ) = ((Uζ)i − zi)mz(Uζ) = ((Uζ)i − (Uẑ)i)mẑ(ζ) = (U(ζ − ẑ))i
1− |z|2

1− |z|ζ1

= (ui1(ζ1 − |z|) + ui2ζ2 + · · ·+ uinζn)
1− |z|2

1− |z|ζ1
, (2.19)



10 COMMUTATORS AND LOCALIZATION

where
∑n

k=1 |uik|2 = 1. By Lemma 2.1, the norm of the operator of multiplication by (ζ1 −
|z|)/(1 − |z|ζ1) does not exceed 1. By Lemma 2.3, for each 2 ≤ j ≤ n, the norm of the operator
of multiplication by ζj/(1− |z|ζ1) does not exceed 2(1− |z|)−1/2. Therefore

‖MG◦U‖ ≤ (1− |z|2) + (n− 1)(1− |z|2) · 2√
1− |z|

≤ 3n
√

1− |z|2.

This completes the proof. �

The next lemma will be needed in Section 6 when we deal with localization.

Lemma 2.6. For each h ∈ H2
n, we have

lim
|z|↑1
‖szh‖ = 0,

where sz was defined in (1.2).

Proof. Write

br(ζ) =
1− r

1− rζ1
for each 0 ≤ r < 1. We first show that for each h ∈ H2

n,

lim
r↑1
‖brh‖ = 0. (2.20)

For this, we use the orthogonal decomposition H2
n = ⊕β∈BHβ introduced at the beginning of the

section. First consider any

h0(ζ) =
∞∑
k=0

ckζ
k
1

in H0. Then

‖brh0‖2 =

∫
T

∣∣∣∣∣ 1− r
1− rτ

∞∑
k=0

ckτ
k

∣∣∣∣∣
2

dm(τ).

As r ↑ 1, (1−r)/(1−rτ)→ 0 for every τ ∈ T\{1}. Thus it follows from the dominated convergence
theorem that

lim
r↑1
‖brh0‖ = 0. (2.21)

Next we consider an hβ ∈ Hβ, where β ∈ B\{0}. Suppose that

hβ(ζ) =
∞∑
k=0

akζ
k
1 ζ

β.

As we saw in the proof of Lemma 2.3,

‖brhβ‖2 =
β!

(|β| − 1)!

∫
D

∣∣∣∣∣ 1− r
1− rz

∞∑
k=0

akz
k

∣∣∣∣∣
2

(1− |z|2)|β|−1dA(z).

As r ↑ 1, (1− r)/(1− rz)→ 0 for every z ∈ D. Thus it follows from the dominated convergence
theorem that

lim
r↑1
‖brhβ‖ = 0. (2.22)

For each β ∈ B, brHβ ⊂ Hβ. Therefore (2.20) follows from (2.21) and (2.22).
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Recall that we denote the collection of unitary transformations on Cn by U . For each h ∈ H2
n,

the collection of vectors {h ◦U : U ∈ U} is a compact subset of H2
n. Therefore (2.20) implies that

lim
r↑1

sup
U∈U
‖br · h ◦ U‖ = 0. (2.23)

For each z ∈ B, there is a Vz ∈ U such that V ∗z z = (|z|, 0, . . . , 0). Hence

‖szh‖ = ‖(szh) ◦ Vz‖ = ‖sV ∗z z · h ◦ Vz‖ = ‖b|z| · h ◦ Vz‖.
The lemma obviously follows from this identity and (2.23). �

3. A Quasi-resolution of the Identity Operator

Let N be an integer greater than or equal to n/2. For each z ∈ B, define the function

ψz,N(ζ) =
(1− |z|2)(1/2)+N

(1− 〈ζ, z〉)1+N
.

Then we have the relation
ψz,N = mN

z kz,

where mz and kz were given by (2.6) and (2.8) respectively. In this sense ψz,N is a modified version
of kz. The main difference between these two functions is that ψz,N “decays much faster”. The
reader will clearly see the meaning of this statement in the subsequent proofs.

Let dλ be the Möbius invariant measure on B. That is,

dλ(z) =
dv(z)

(1− |z|2)n+1
,

where dv is the volume measure on B with the normalization v(B) = 1. Let dσ be the positive,
regular Borel measure on the unit sphere S which is invariant under the orthogonal group O(2n),
i.e., the group of isometries on Cn ∼= R2n which fix 0. We normalize σ such that σ(S) = 1.

Theorem 3.1. Let N be an integer greater than or equal to n/2. Then the self-adjoint operator

RN =

∫
ψz,N ⊗ ψz,Ndλ(z)

is both bounded and invertible on the Drury-Arveson space H2
n. In other words, there exist constants

0 < a(N) ≤ b(N) <∞ which only depend on N and the complex dimension n such that

a(N) ≤ RN ≤ b(N)

on H2
n.

Proof. For each z ∈ B, define the function gz ∈ H2
n by the formula

gz(ζ) = 〈ζ, z〉.
Write Cm

k for the binomial coefficient m!/(k!(m− k)!) as usual. Then

ψz,N = (1− |z|2)(1/2)+N

∞∑
k=0

Ck+N
k gkz ,

and consequently

ψz,N ⊗ ψz,N = (1− |z|2)1+2N

∞∑
j,k=0

Ck+N
k Cj+N

j gkz ⊗ gjz.
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For each 0 < ρ < 1, define Bρ = {z : |z| < ρ}. Since both dλ and Bρ are invariant under the
substitution z → eiθz, θ ∈ R, we have∫

Bρ

(1− |z|2)1+2Ngkz ⊗ gjzdλ(z) =

∫
Bρ

(1− |eiθz|2)1+2Ngkeiθz ⊗ g
j
eiθz

dλ(z)

= ei(j−k)θ
∫

Bρ

(1− |z|2)1+2Ngkz ⊗ gjzdλ(z).

This implies that ∫
Bρ

(1− |z|2)1+2Ngkz ⊗ gjzdλ(z) = 0 if k 6= j.

Therefore ∫
Bρ

ψz,N ⊗ ψz,Ndλ(z) =
∞∑
k=0

(Ck+N
k )2

∫
Bρ

(1− |z|2)1+2Ngkz ⊗ gkzdλ(z).

Since

gkz (ζ) = 〈ζ, z〉k =
∑
|α|=k

k!

α!
zαζα,

we have

gkz ⊗ gkz =
∑

|α|=|β|=k

(k!)2

α!β!
zαzβζα ⊗ ζβ.

By the radial-spherical decomposition of dλ, it is obvious that∫
Bρ

(1− |z|2)1+2Nzαzβdλ(z) = 0 if α 6= β.

Therefore∫
Bρ

(1− |z|2)1+2Ngkz ⊗ gkzdλ(z) =
∑
|α|=k

(k!)2

(α!)2

∫
Bρ

(1− |z|2)1+2N |zα|2dλ(z)ζα ⊗ ζα.

Consequently∫
Bρ

ψz,N ⊗ ψz,Ndλ(z) =
∞∑
k=0

(Ck+N
k )2

∑
|α|=k

(k!)2

(α!)2

∫
Bρ

(1− |z|2)1+2N |zα|2dλ(z)ζα ⊗ ζα. (3.1)

Notice that if |α| = k, then∫
Bρ

(1− |z|2)1+2N |zα|2dλ(z) =

∫
Bρ

(1− |z|2)2N−n|zα|2dv(z)

=

∫ ρ

0

(1− r2)2N−n2nr2k+2n−1dr

∫
S

|ξα|2dσ(ξ)

=

∫ ρ

0

(1− r2)2N−n2nr2k+2n−1dr
(n− 1)!α!

(n− 1 + k)!
, (3.2)

where the third = follows from Proposition 1.4.9 in [14]. Since 2N − n ≥ 0, we can integrate by
parts to obtain

2

∫ 1

0

(1− r2)2N−nr2k+2n−1dr =

∫ 1

0

(1− x)2N−nxn−1+kdx =
(2N − n)!(n− 1 + k)!

(2N + k)!
.
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Letting ρ ↑ 1 in (3.1) and (3.2), we see that∫
ψz,N ⊗ ψz,Ndλ(z) =

∞∑
k=0

bk,N
∑
|α|=k

k!

α!
ζα ⊗ ζα, (3.3)

where

bk,N = (Ck+N
k )2k!

(2N − n)!n!

(2N + k)!
=

(2N − n)!n!

(N !)2
· {(k +N)!}2

k!(2N + k)!
.

Using Stirling’s formula, it is straightforward to verify that there exist 0 < a(N) ≤ b(N) < ∞
which depend only on N and n such that

a(N) ≤ bk,N ≤ b(N) (3.4)

for every k ≥ 0. Since we can write the identity operator on H2
n as

1 =
∞∑
k=0

∑
|α|=k

k!

α!
ζα ⊗ ζα,

the lemma follows from (3.3) and (3.4). �

4. Three Lemmas

It is well known that the formula

d(x, y) = |1− 〈x, y〉|1/2, x, y ∈ S,
defines a metric on the unit sphere S [14]. Throughout the paper, we write

B(x, r) = {y ∈ S : |1− 〈x, y〉|1/2 < r}
for x ∈ S and r > 0. By Proposition 5.1.4 in [14], there is a constant A0 ∈ (2−n,∞) such that

2−nr2n ≤ σ(B(x, r)) ≤ A0r
2n (4.1)

for all x ∈ S and 0 < r ≤
√

2. Note that the upper bound actually holds for all r > 0.

Before getting to the main estimates of the section, let us recall:

Lemma 4.1 (Lemma 4.1 in [15]). Let X be a set and let E be a subset of X ×X. Suppose that
m is a natural number such that

card{y ∈ X : (x, y) ∈ E} ≤ m and card{y ∈ X : (y, x) ∈ E} ≤ m

for every x ∈ X. Then there exist pairwise disjoint subsets E1, E2, ..., E2m of E such that

E = E1 ∪ E2 ∪ ... ∪ E2m

and such that for each 1 ≤ j ≤ 2m, the conditions (x, y), (x′, y′) ∈ Ej and (x, y) 6= (x′, y′) imply
both x 6= x′ and y 6= y′.

For each z ∈ B, define the functions

uz(ζ) = mn+3
z (ζ) =

(
1− |z|2

1− 〈ζ, z〉

)n+3

and vz(ζ) = mn+4
z (ζ) =

(
1− |z|2

1− 〈ζ, z〉

)n+4

. (4.2)

The proofs of our next three lemmas have much in common. More specifically, they all use a
counting argument based on Lemma 4.1. However, because the estimates involved vary in details,
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it is difficult to reduce them to one. Therefore we present all three proofs.

It should be pretty clear from Lemma 2.1 that ‖Msz‖ = 1 for each z ∈ B. Therefore ‖Mmz‖ =
1 + |z|. This fact will be used several times in this section.

Lemma 4.2. Let 2n < p < ∞. Then there is a C4.2(p) which depends only on p and n such
that the following estimate holds: Suppose that 0 < t < 1 and that {ξj : j ∈ J} is a subset of S
satisfying the condition

B(ξi, t) ∩B(ξj, t) = ∅ for all i 6= j. (4.3)

Define zj = (1 − t2)1/2ξj, j ∈ J . Let {fj : j ∈ J} be a set of vectors in H2
n with norm at most 1,

and let {ej : j ∈ J} be an orthonormal set. For each ν ∈ {1, . . . , n}, define the operator

Eν =
∑
j∈J

(M∗
ζν−(zj)ν

vzjfj)⊗ ej,

where (zj)ν denotes the ν-th component of zj. Then ‖Eν‖p ≤ C4.2(p)t
1−(2n/p).

Proof. Let ν ∈ {1, . . . , n} be given. By Lemma 2.1, Mζν has a normal extension. More precisely,
there is a Hilbert space Lν containing H2

n and a normal operator Mν on Lν such that

Mνh = Mζνh, for each h ∈ H2
n. (4.4)

Let Pν : Lν → H2
n be the orthogonal projection. Define the operator

Ẽν =
∑
j∈J

{(M∗
ν − (zj)ν)vzjfj} ⊗ ej.

Since M∗
ζν

= PνM
∗
ν |H2

n, we have

Eν = PνẼν .

Thus it suffices to estimate ‖Ẽν‖p.

For the convenience of the reader, we will denote the inner product and the norm on Lν by
〈·, ·〉Lν and ‖ · ‖Lν respectively, whereas those on the subspace H2

n will still be denoted by 〈·, ·〉 and
‖ · ‖. We have

Ẽ∗νẼν =
∑
i,j∈J

〈(M∗
ν − (zj)ν)vzjfj, (M

∗
ν − (zi)ν)vzifi〉Lνei ⊗ ej = B +

∞∑
k=0

Yk, (4.5)

where
B =

∑
j∈J

‖(M∗
ν − (zj)ν)vzjfj‖2Lνej ⊗ ej

and
Yk =

∑
2kt≤d(ξi,ξj)<2k+1t

〈(M∗
ν − (zj)ν)vzjfj, (M

∗
ν − (zi)ν)vzifi〉Lνei ⊗ ej,

k ∈ Z+. Next we estimate ‖B‖p/2 and ‖Yk‖p/2.

For ‖B‖p/2, note that by the normality of Mν and (4.4), we have

‖(M∗
ν − (zj)ν)vzjfj‖Lν = ‖(Mν − (zj)ν)vzjfj‖Lν = ‖Mζν−(zj)νvzjfj‖

= ‖Mζν−(zj)νMmzj
uzjfj‖ ≤ 2n+3‖M(ζν−(zj)ν)mzj

‖.
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Applying Lemma 2.5, the above yields

‖(M∗
ν − (zj)ν)vzjfj‖Lν ≤ 2n+33n

√
1− |zj|2 = 2n+33nt.

By (4.1) and (4.3), card(J) ≤ 2nt−2n. Therefore

‖B‖p/2p/2 =
∑
j∈J

‖(M∗
ν − (zj)ν)vzjfj‖

p
Lν
≤ (2n+33nt)p · card(J) ≤ (2n+33n)p2ntp−2n.

If we set C = (2n+33n)222n/p, then

‖B‖p/2 ≤ ((2n+33n)p2ntp−2n)2/p = Ct2(1−(2n/p)). (4.6)

For ‖Yk‖p/2, note that by the normality of Mν and (4.4), we have

〈(M∗
ν − (zj)ν)vzjfj, (M

∗
ν − (zi)ν)vzifi〉Lν

= 〈(Mν − (zi)ν)vzjfj, (Mν − (zj)ν)vzifi〉Lν
= 〈Mζν−(zi)νvzjfj,Mζν−(zj)νvzifi〉
= 〈Mζν−(zi)νvzjfj,Muzi

Mζν−(zj)νmzifi〉
= 〈M∗

uzi
Mζν−(zi)νvzjfj,Mζν−(zj)νmzifi〉.

By the Cauchy-Schwarz inequality,

|〈(M∗
ν − (zj)ν)vzjfj, (M

∗
ν − (zi)ν)vzifi〉Lν | ≤ ‖M∗

uzi
Mζν−(zi)νvzjfj‖‖Mζν−(zj)νmzifi‖. (4.7)

The two norms above need to be estimated separately, which is the most subtle part of the proof.

For the first norm in (4.7), we use Corollary 2.2. Since Muzi
is subnormal, it is hyponormal.

Therefore

‖M∗
uzi
Mζν−(zi)νvzjfj‖ ≤ ‖Muzi

Mζν−(zi)νvzjfj‖
= ‖Mn+2

mzimzj
M(ζν−(zi)ν)mzi

m2
zj
fj‖

≤ 4‖Mmzimzj
‖n+2‖M(ζν−(zi)ν)mzi

‖.

Applying Lemma 2.4 to the first factor and Lemma 2.5 to the second factor, we have

‖M∗
uzi
Mζν−(zi)νvzjfj‖ ≤ 4(48)n+2

(
t2

|1− 〈zi, zj〉|

)n+2

· 3nt ≤ 12n(96)n+2

(
t2

|1− 〈ξi, ξj〉|

)n+2

t.

(4.8)
For the second norm in (4.7), we use Lemma 2.5 again:

‖Mζν−(zj)νmzifi‖ ≤ ‖M(ζν−(zi)ν)mzi
fi‖+ ‖M((zi)ν−(zj)ν)mzi

fi‖

≤ 3n
√

1− |zi|2 + |(zi)ν − (zj)ν |‖Mmzi
‖

≤ 3nt+ 2|zi − zj| ≤ 3nt+ 4|1− 〈ξi, ξj〉|1/2

= 3nt+ 4
|1− 〈ξi, ξj〉|1/2

t
· t. (4.9)
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Bringing (4.8) and (4.9) into (4.7), we obtain

|〈(M∗
ν − (zj)ν)vzjfj, (M

∗
ν − (zi)ν)vzifi〉Lν |

≤ C1

{(
t2

|1− 〈ξi, ξj〉|

)n+2

+

(
t2

|1− 〈ξi, ξj〉|

)n+(3/2)
}
t2,

where C1 = 48n2(96)n+2. For any pair of i, j such that d(ξi, ξj) ≥ 2kt, the above gives us

|〈(M∗
ν − (zj)ν)vzjfj, (M

∗
ν − (zi)ν)vzifi〉Lν | ≤

2C1

22k(n+(3/2))
t2. (4.10)

For each i ∈ J , if d(ξi, ξj) < 2k+1t, then B(ξj, t) ⊂ B(ξi, 2
k+2t). By (4.3) and the fact that

σ(B(x, t)) = σ(B(y, t)) for all x, y ∈ S, for each i ∈ J we have

card{j ∈ J : d(ξi, ξj) < 2k+1t} ≤ σ(B(ξi, 2
k+2t))

σ(B(ξi, t))
≤ A0(2

k+2t)2n

2−nt2n
= C22

2nk, (4.11)

where A0 is the constant that appears in (4.1) and C2 = 25nA0. Set

`(k) = min{` ∈ N : ` ≥ C22
2nk}. (4.12)

According to Lemma 4.1, we can decompose

E (k) = {(i, j) ∈ J × J : 2kt ≤ d(ξi, ξj) < 2k+1t}

as the union of pairwise disjoint subsets

E (k)
1 , ..., E (k)

2`(k)

such that for each m ∈ {1, ..., 2`(k)}, if (i, j), (i′, j′) ∈ E (k)
m and if (i, j) 6= (i′, j′), then we have both

i 6= i′ and j 6= j′. This decomposition of E (k) allows us to write

Yk = Yk,1 + ...+ Yk,2`(k), (4.13)

where

Yk,m =
∑

(i,j)∈E(k)m

〈(M∗
ν − (zj)ν)vzjfj, (M

∗
ν − (zi)ν)vzifi〉Lνei ⊗ ej,

1 ≤ m ≤ 2`(k).

The property of E (k)
m simply means that the projection onto the first component, (i, j) 7→ i, is

injective on E (k)
m . Similarly, the projection onto the second component, (i, j) 7→ j, is also injective

on each E (k)
m . Combining these injectivities with the fact that {ej : j ∈ J} is an orthonormal set

and with (4.10), we obtain

‖Yk,m‖p/2p/2 =
∑

(i,j)∈E(k)m

|〈(M∗
ν − (zj)ν)vzjfj, (M

∗
ν − (zi)ν)vzifi〉Lν |p/2

≤
(

2C1

22k(n+(3/2))
t2
)p/2

· card(J)

≤
(

2C1

22k(n+(3/2))

)p/2
· tp · 2nt−2n =

C3

2pk(n+(3/2))
tp−2n,
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where C3 = (2C1)
p/22n. Setting C4 = C

2/p
3 , the above yields

‖Yk,m‖p/2 ≤
C4

22k(n+(3/2))
t2(1−(2n/p))

for each m ∈ {1, ..., 2`(k)}. Recalling (4.12) and (4.13), we now have

‖Yk‖p/2 ≤
C4

22k(n+(3/2))
t2(1−(2n/p)) · 2(1 + C22

2nk) ≤ 2C4(1 + C2)

23k
t2(1−(2n/p)).

Combining this with (4.5) and (4.6), we see that

‖Ẽ∗νẼν‖p/2 ≤

(
C +

∞∑
k=0

2C4(1 + C2)

23k

)
t2(1−(2n/p)).

Since ‖Ẽν‖p = ‖Ẽ∗νẼν‖
1/2
p/2 and ‖Eν‖p ≤ ‖Ẽν‖p, this completes the proof. �

If we replace the operator M∗
ζν−(zj)ν

in the above lemma by Mζν−(zj)ν , with an easier proof, we

obtain the same type of estimate:

Lemma 4.3. Let 2n < p < ∞. Then there is a C4.3(p) which depends only on p and n such
that the following estimate holds: Suppose that 0 < t < 1 and that {ξj : j ∈ J} is a subset of S
satisfying the condition

B(ξi, t) ∩B(ξj, t) = ∅ for all i 6= j. (4.14)

Define zj = (1 − t2)1/2ξj, j ∈ J . Let {fj : j ∈ J} be a set of vectors in H2
n with norm at most 1,

and let {ej : j ∈ J} be an orthonormal set. For each ν ∈ {1, . . . , n}, define

Eν =
∑
j∈J

(Mζν−(zj)νvzjfj)⊗ ej,

where (zj)ν denotes the ν-th component of zj. Then ‖Eν‖p ≤ C4.3(p)t
1−(2n/p).

Proof. We have

E∗νEν =
∑
i,j∈J

〈Mζν−(zj)νvzjfj,Mζν−(zi)νvzifi〉ei ⊗ ej = B +
∞∑
k=0

Yk, (4.15)

where
B =

∑
j∈J

‖Mζν−(zj)νvzjfj‖2ej ⊗ ej

and
Yk =

∑
2kt≤d(ξi,ξj)<2k+1t

〈Mζν−(zj)νvzjfj,Mζν−(zi)νvzifi〉ei ⊗ ej,

k ∈ Z+. As in the previous lemma, we need to estimate ‖B‖p/2 and ‖Yk‖p/2.

For ‖B‖p/2, by Lemma 2.5 we have

‖Mζν−(zj)νvzjfj‖ ≤ 2n+3‖M(ζν−(zj)ν)mzj
‖ ≤ 2n+33n

√
1− |zj|2 = 2n+33nt.

By (4.1) and (4.14), card(J) ≤ 2nt−2n. Therefore

‖B‖p/2p/2 =
∑
j∈J

‖Mζν−(zj)νvzjfj‖p ≤ (2n+33nt)p · card(J) ≤ (2n+33n)p2ntp−2n.
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Consequently,

‖B‖p/2 ≤
(
(2n+33n)p2ntp−2n

)2/p
= Ct2(1−(2n/p)). (4.16)

For ‖Yk‖p/2, note that

〈Mζν−(zj)νvzjfj,Mζν−(zi)νvzifi〉 = 〈M∗
uzi
Mζν−(zj)νvzjfj,Mζν−(zi)νmzifi〉.

By the Cauchy-Schwarz inequality,

|〈Mζν−(zj)νvzjfj,Mζν−(zi)νvzifi〉| ≤ ‖M∗
uzi
Mζν−(zj)νvzjfj‖‖Mζν−(zi)νmzifi‖. (4.17)

As before, we will estimate the two norms above separately.

For the first norm in (4.17), it follows from Corollary 2.2 that

‖M∗
uzi
Mζν−(zj)νvzjfj‖ ≤ ‖Muzi

Mζν−(zj)νvzjfj‖
= ‖Mn+3

mzimzj
M(ζν−(zj)ν)mzj

fj‖

≤ ‖Mmzimzj
‖n+3‖M(ζν−(zj)ν)mzj

‖.

Applying Lemma 2.4 to the first factor and Lemma 2.5 to the second factor, we have

‖M∗
uzi
Mζν−(zj)νvzjfj‖ ≤ (48)n+3

(
t2

|1− 〈zi, zj〉|

)n+3

·3nt ≤ 3n(96)n+3

(
t2

|1− 〈ξi, ξj〉|

)n+3

t. (4.18)

For the second norm in (4.17), we use Lemma 2.5 again:

‖Mζν−(zi)νmzifi‖ ≤ ‖M(ζν−(zi)ν)mzi
‖ ≤ 3n

√
1− |zi|2 = 3nt. (4.19)

Bringing (4.18) and (4.19) into (4.17), we obtain

|〈Mζν−(zj)νvzjfj,Mζν−(zi)νvzifi〉| ≤ C1

(
t2

|1− 〈ξi, ξj〉|

)n+3

t2,

where C1 = 9n2(96)n+3. For any pair of i, j such that d(ξi, ξj) ≥ 2kt, the above gives us

|〈Mζν−(zj)νvzjfj,Mζν−(zi)νvzifi〉| ≤
C1

22k(n+3)
t2. (4.20)

Set

`(k) = min{` ∈ N : ` ≥ C22
2nk},

where C2 = 25nA0. Then, by (4.11),

card{j ∈ J : d(ξi, ξj) < 2k+1t} ≤ `(k). (4.21)

According to Lemma 4.1, we can decompose

E (k) = {(i, j) ∈ J × J : 2kt ≤ d(ξi, ξj) < 2k+1t}
as the union of pairwise disjoint subsets

E (k)
1 , ..., E (k)

2`(k)

such that for each m ∈ {1, ..., 2`(k)}, if (i, j), (i′, j′) ∈ E (k)
m and if (i, j) 6= (i′, j′), then we have both

i 6= i′ and j 6= j′. This decomposition of E (k) allows us to write

Yk = Yk,1 + ...+ Yk,2`(k), (4.22)
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where

Yk,m =
∑

(i,j)∈E(k)m

〈Mζν−(zj)νvzjfj,Mζν−(zi)νvzifi〉ei ⊗ ej,

1 ≤ m ≤ 2`(k).

By the property of E (k)
m and (4.20), we have

‖Yk,m‖p/2p/2 =
∑

(i,j)∈E(k)m

|〈Mζν−(zj)νvzjfj,Mζν−(zi)νvzifi〉|p/2

≤
(

C1

22k(n+3)
t2
)p/2

· card(J) ≤
(

C1

22k(n+3)

)p/2
· tp · 2nt−2n =

C3

2pk(n+3)
tp−2n,

where C3 = C1
p/22n. Setting C4 = C

2/p
3 , the above yields

‖Yk,m‖p/2 ≤
C4

22k(n+3)
t2(1−(2n/p))

for each m ∈ {1, ..., 2`(k)}. Recalling (4.21) and (4.22), we now have

‖Yk‖p/2 ≤
C4

22k(n+3)
t2(1−(2n/p)) · 2(1 + C22

2nk) ≤ 2C4(1 + C2)

26k
t2(1−(2n/p)).

Combining this with (4.16) and (4.15), we see that

‖E∗νEν‖p/2 ≤

(
C +

∞∑
k=0

2C4(1 + C2)

26k

)
t2(1−(2n/p)).

Since ‖Eν‖p = ‖E∗νEν‖
1/2
p/2, this completes the proof. �

The last lemma of this section is about operator norm.

Lemma 4.4. There is a C4.4 which depends only on n such that the following estimate holds:
Suppose that 0 < t < 1 and that {ξj : j ∈ J} is a subset of S satisfying the condition

B(ξi, t) ∩B(ξj, t) = ∅ for all i 6= j.

Define zj = (1 − t2)1/2ξj, j ∈ J . Let {fj : j ∈ J} be a set of vectors in H2
n with norm at most 1,

and let {ej : j ∈ J} be an orthonormal set. Then the operator

E =
∑
j∈J

(vzjfj)⊗ ej

satisfies the estimate ‖E‖ ≤ C4.4.

Proof. It suffices to estimate ‖E∗E‖. We have

E∗E =
∑
i,j∈J

〈vzjfj, vzifi〉ei ⊗ ej = B +
∞∑
k=0

Yk, (4.23)

where

B =
∑
j∈J

‖vzjfj‖2ej ⊗ ej
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and
Yk =

∑
2kt≤d(ξi,ξj)<2k+1t

〈vzjfj, vzifi〉ei ⊗ ej,

k ∈ Z+. By Lemma 2.1 and (4.2), ‖Mvz‖ ≤ (1 + |z|)n+4 ≤ 2n+4 for each z ∈ B. Since ‖fj‖ ≤ 1,
we have ‖vzjfj‖ ≤ 2n+4, j ∈ J . Since {ej : j ∈ J} is an orthonormal set, we conclude that

‖B‖ ≤ 4n+4. (4.24)

Next we estimate ‖Yk‖. For each k ∈ Z+, define

E (k) = {(i, j) ∈ J × J : 2kt ≤ d(ξi, ξj) < 2k+1t}.
Now, since ‖fj‖ ≤ 1 and ‖fi‖ ≤ 1, from Corollary 2.2 we obtain

|〈vzjfj, vzifi〉| = |〈M∗
vzi
Mvzj

fj, fi〉| ≤ ‖M∗
vzi
Mvzj

‖ ≤ ‖Mvzi
Mvzj
‖ = ‖Mn+4

mzimzj
‖.

For each (i, j) ∈ E (k), it follows from Lemma 2.4 and the condition d(ξi, ξj) ≥ 2kt that

‖Mn+4
mzimzj

‖ ≤
(

48
1− |zi|2

|1− 〈zi, zj〉|

)n+4

≤
(

96
1− |zi|2

|1− 〈ξi, ξj〉|

)n+4

≤ C1

22k(n+4)
,

where C1 = (96)n+4. Hence

|〈vzjfj, vzifi〉| ≤
C1

22k(n+4)
for each (i, j) ∈ E (k). (4.25)

Set `(k) = min{` ∈ N : ` ≥ C22
2nk} as before, where C2 = 25nA0. Then, by (4.11),

card{j ∈ J : d(ξi, ξj) < 2k+1t} ≤ `(k).

According to Lemma 4.1, we can decompose E (k) as the union of pairwise disjoint subsets

E (k)
1 , ..., E (k)

2`(k)

such that for each m ∈ {1, ..., 2`(k)}, if (i, j), (i′, j′) ∈ E (k)
m and if (i, j) 6= (i′, j′), then we have both

i 6= i′ and j 6= j′. This decomposition of E (k) allows us to write

Yk = Yk,1 + ...+ Yk,2`(k), (4.26)

where
Yk,m =

∑
(i,j)∈E(k)m

〈vzjfj, vzifi〉ei ⊗ ej,

1 ≤ m ≤ 2`(k). By the property of E (k)
m and (4.25), we have

‖Yk,m‖ ≤
C1

22k(n+4)

for each m ∈ {1, ..., 2`(k)}. By (4.26) and the definition of `(k),

‖Yk‖ ≤
C1

22k(n+4)
· 2`(k) ≤ C1

22k(n+4)
· 2(C2 + 1)22nk =

2C1(C2 + 1)

28k
.

Combining this estimate with (4.23) and (4.24), we see that if we set

C4.4 =

{
4n+4 + 2C1(C2 + 1)

∞∑
k=0

1

28k

}1/2

,

then ‖E‖ ≤ C4.4.
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�

5. Spherical Decomposition

Before we get to the proof of Theorem 1.1, we want to recall an elementary fact:

Lemma 5.1. Let H be a separable Hilbert space. Suppose that {X , µ} is a measure space and that
A is a weakly measurable B(H)-valued function on X . If A(x) ∈ Cp for every x, 1 < p <∞, then∥∥∥∥∫

X
A(x)dµ(x)

∥∥∥∥
p

≤
∫
X
‖A(x)‖pdµ(x).

This lemma follows easily from the duality between Cp and Cp/(p−1). We omit the details.

Proof of Theorem 1.1. Recall that for each integer N ≥ n/2, Theorem 3.1 provides an operator

RN =

∫
ψz,N ⊗ ψz,Ndλ(z)

which is both bounded and invertible on H2
n. We will only use the case where N = n + 4. That

is, for the rest of the section, we will denote

R = Rn+4.

Similarly, we write
ψz = ψz,n+4.

This gives us the relation
ψz = vzkz, (5.1)

where vz was given in (4.2). Next we express R in a slightly different form, a form which is more
convenient for subsequent estimates. Since

R =

∫ 1

0

2nr2n−1

∫
ψrξ ⊗ ψrξdσ(ξ)

dr

(1− r2)n+1
,

making the substitution t = (1− r2)1/2, we have

R =

∫ 1

0

2n(1− t2)n−1Tt
dt

t
, (5.2)

where

Tt =
1

t2n

∫
ψ(1−t2)1/2ξ ⊗ ψ(1−t2)1/2ξdσ(ξ), (5.3)

0 < t < 1. We then decompose each Tt, which involves spherical decomposition.

Let a 0 < t < 1 be given. Then there is a subset {x1, . . . , xm(t)} of S which is maximal with
respect to the property

B(xi, t/2) ∩B(xj, t/2) = ∅ whenever i 6= j.

The maximality implies that
m(t)⋃
j=1

B(xj, t) = S.
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There are Borel sets G1, . . . , Gm(t) in S such that

Gj ⊂ B(xj, t) for each j ∈ {1, . . . ,m(t)},
Gi ∩Gj = ∅ whenever i 6= j, and

∪m(t)
j=1 Gj = S. (5.4)

For any i, j, if B(xi, 2t) ∩ B(xj, 2t) 6= ∅, then d(xi, xj) < 4t, which implies B(xj, t/2) ⊂ B(xi, 5t).
It follows that for each i ∈ {1, . . . ,m(t)},

card{j : 1 ≤ j ≤ m(t), B(xi, 2t) ∩B(xj, 2t) 6= ∅}

≤ σ(B(xi, 5t))

σ(B(xi, t/2))
≤ A0(5t)

2n

2−n(t/2)2n
= 23n52nA0 = C1. (5.5)

Let L be the smallest integer which is greater than C1. Then we have the decomposition

{1, . . . ,m(t)} = J1 ∪ · · · ∪ JL,
where J1, . . . , JL are pairwise disjoint and, for each 1 ≤ ` ≤ L, J` has the property that

B(xi, 2t) ∩B(xj, 2t) = ∅ if i, j ∈ J` and i 6= j. (5.6)

The J`’s are obtained through a well-known method. One starts with a maximal subset J1 of
{1, . . . ,m(t)} which has property (5.6). If {1, . . . ,m(t)}\J1 6= ∅, one similarly picks a maximal
subset J2 of {1, . . . ,m(t)}\J1, and so on. The maximality of each J` and (5.5) ensure that this
process stops after at most L steps.

There exist an x ∈ S and unitary transformations U1, . . . , Um(t) on Cn such that xj = Ujx for
j = 1, . . . ,m(t). Then we can write

1

t2n
=

C(t)

σ(B(x, t))
, where C(t) ≤ A0

by (4.1). Therefore by (5.3) and (5.4),

Tt =
C(t)

σ(B(x, t))

m(t)∑
j=1

∫
B(xj ,t)

χGj(ξ)ψ(1−t2)1/2ξ ⊗ ψ(1−t2)1/2ξdσ(ξ)

=
C(t)

σ(B(x, t))

∫
B(x,t)

m(t)∑
j=1

χGj(Ujξ)ψ(1−t2)1/2Ujξ ⊗ ψ(1−t2)1/2Ujξdσ(ξ)

=
C(t)

σ(B(x, t))

∫
B(x,t)

L∑
`=1

Y`(ξ)dσ(ξ), (5.7)

where
Y`(ξ) =

∑
j∈J`

χGj(Ujξ)ψ(1−t2)1/2Ujξ ⊗ ψ(1−t2)1/2Ujξ.

If ξ ∈ B(x, t), then Ujξ ∈ B(xj, t). Therefore by (5.6), for each ξ ∈ B(x, t) we have

B(Uiξ, t) ∩B(Ujξ, t) = ∅ if i, j ∈ J` and i 6= j. (5.8)

To ease the notation, let us denote

zj(ξ) = (1− t2)1/2Ujξ (5.9)
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for j = 1, . . . ,m(t) and ξ ∈ B(x, t). Thus

Y`(ξ) =
∑
j∈J`

χGj(Ujξ)ψzj(ξ) ⊗ ψzj(ξ). (5.10)

Now let a multiplier f of H2
n be given. Then by (5.1),

MfY`(ξ) =
∑
j∈J`

χGj(Ujξ)(fψzj(ξ))⊗ ψzj(ξ) =
∑
j∈J`

χGj(Ujξ)(vzj(ξ)fzj(ξ))⊗ ψzj(ξ),

where fzj(ξ) = fkzj(ξ). We have ‖fzj(ξ)‖ ≤ ‖Mf‖. Let a ν ∈ {1, . . . , n} be given. Then

[M∗
ζν ,MfY`(ξ)] =

∑
j∈J`

χGj(Ujξ)(M
∗
ζν−(zj(ξ))ν

vzj(ξ)fzj(ξ))⊗ ψzj(ξ)

−
∑
j∈J`

χGj(Ujξ)(vzj(ξ)fzj(ξ))⊗ (Mζν−(zj(ξ))νψzj(ξ)), (5.11)

where (zj(ξ))ν denotes the ν-th component of zj(ξ). Let 2n < p < ∞ also be given. We will
estimate the Schatten p-norm of the above two terms.

Let {ej : j ∈ J`} be an orthonormal set. We have∑
j∈J`

χGj(Ujξ)(M
∗
ζν−(zj(ξ))ν

vzj(ξ)fzj(ξ))⊗ ψzj(ξ) = EνA
∗,

where
Eν =

∑
j∈J`

(M∗
ζν−(zj(ξ))ν

vzj(ξ)fzj(ξ))⊗ ej

and
A =

∑
j∈J`

χGj(Ujξ)ψzj(ξ) ⊗ ej =
∑
j∈J`

χGj(Ujξ)(vzj(ξ)kzj(ξ))⊗ ej.

Conditions (5.8) and (5.9) enable us to apply the lemmas in Section 4 here. By Lemma 4.2, we
have ‖Eν‖p ≤ C4.2(p)t

1−(2n/p)‖Mf‖. On the other hand, Lemma 4.4 tells us ‖A‖ ≤ C4.4. Therefore∥∥∥∥∥∑
j∈J`

χGj(Ujξ)(M
∗
ζν−(zj(ξ))ν

vzj(ξ)fzj(ξ))⊗ ψzj(ξ)

∥∥∥∥∥
p

≤ C4.4C4.2(p)‖Mf‖t1−(2n/p). (5.12)

Similarly, ∑
j∈J`

χGj(Ujξ)(vzj(ξ)fzj(ξ))⊗ (Mζν−(zj(ξ))νψzj(ξ)) = BF ∗ν ,

where
Fν =

∑
j∈J`

(Mζν−(zj(ξ))νψzj(ξ))⊗ ej =
∑
j∈J`

(Mζν−(zj(ξ))νvzj(ξ)kzj(ξ))⊗ ej

and
B =

∑
j∈J`

χGj(Ujξ)(vzj(ξ)fzj(ξ))⊗ ej.

By Lemma 4.3, ‖Fν‖p ≤ C4.3(p)t
1−(2n/p). By Lemma 4.4, ‖B‖ ≤ C4.4‖Mf‖. Therefore∥∥∥∥∥∑

j∈J`

χGj(Ujξ)(vzj(ξ)fzj(ξ))⊗ (Mζν−(zj(ξ))νψzj(ξ))

∥∥∥∥∥
p

≤ C4.4C4.3(p)‖Mf‖t1−(2n/p). (5.13)
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Let C2 = C4.4C4.2(p) + C4.4C4.3(p). Then, combining (5.11), (5.12) and (5.13), we have

‖[M∗
ζν ,MfY`(ξ)]‖p ≤ C2‖Mf‖t1−(2n/p).

Thus ∥∥∥∥∥
[
M∗

ζν ,Mf

L∑
`=1

Y`(ξ)

]∥∥∥∥∥
p

≤ C2L‖Mf‖t1−(2n/p).

Recalling (5.7) and the fact that C(t) ≤ A0, and using Lemma 5.1, we obtain

‖[M∗
ζν ,MfTt]‖p =

C(t)

σ(B(x, t))

∥∥∥∥∥
∫
B(x,t)

[
M∗

ζν ,Mf

L∑
`=1

Y`(ξ)

]
dσ(ξ)

∥∥∥∥∥
p

≤ A0C2L‖Mf‖t1−(2n/p).

Recalling (5.2) and using Lemma 5.1 again, we find that

‖[M∗
ζν ,MfR]‖p =

∥∥∥∥∫ 1

0

2n(1− t2)n−1[M∗
ζν ,MfTt]

dt

t

∥∥∥∥
p

≤
∫ 1

0

2n(1− t2)n−1‖[M∗
ζν ,MfTt]‖p

dt

t

≤ A0C2L‖Mf‖
∫ 1

0

2n(1− t2)n−1t1−(2n/p)dt

t
= C(n, p)‖Mf‖. (5.14)

Note that the condition p > 2n ensures C(n, p) <∞. The above in particular implies

‖[M∗
ζν , R]‖p ≤ C(n, p). (5.15)

Getting to the commutator that we are interested in, we have

[M∗
ζν ,Mf ] = [M∗

ζν ,MfRR
−1] = [M∗

ζν ,MfR]R−1 +Mf [R,M
∗
ζν ]R

−1.

Now it follows from (5.14) and (5.15) that

‖[M∗
ζν ,Mf ]‖p ≤ C(n, p)‖Mf‖‖R−1‖+ ‖Mf‖C(n, p)‖R−1‖ = 2C(n, p)‖Mf‖‖R−1‖.

Since Theorem 3.1 asserts that ‖R−1‖ <∞, this completes the proof of Theorem 1.1. �

6. Localization

Let us recall Arveson’s exact sequence (1.1), in particular the homomorphism τ . According to
Theorem 5.7 in [3],

τ(Mζj) = ζj (6.1)

for each j ∈ {1, . . . , n}. Define the quotient C∗-algebras

T̂n = Tn/K and T̂ Mn = TMn/K.

Let τ̂ : T̂n → C(S) be the isomorphism induced by τ . Thus S is the maximal ideal space of T̂n.

Theorem 1.1 asserts that T̂n is contained in the center of T̂ Mn.

For each ξ ∈ S, let Îξ be the ideal in T̂ Mn generated by

{b ∈ T̂n : τ̂(b)(ξ) = 0}. (6.2)
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By Douglas’ localization theorem (see Theorem 7.47 in [8]), we have⋂
ξ∈S

Îξ = {0}.

An elementary C∗-algebraic argument then yields

‖a‖ = sup
ξ∈S
‖a+ Îξ‖ (6.3)

for every a ∈ T̂ Mn. Let π : TMn → T̂Mn be the quotient map. For each ξ ∈ S, let Iξ be the

inverse image of Îξ under π. Since TMn ⊃ K and since Iξ 6= {0}, we have Iξ ⊃ K. By (6.2), Iξ
is the ideal in TMn generated by

{B ∈ Tn : τ(B)(ξ) = 0}. (6.4)

It follows from (6.3) that

‖A‖Q = sup
ξ∈S
‖A+ Iξ‖ (6.5)

for every A ∈ TMn.

Lemma 6.1. Let ξ ∈ S. Then the linear span of operators of the form

TMζj−ξj +K,

where j ∈ {1, . . . , n}, ξj is the j-th component of ξ, T ∈ TMn, and K ∈ K, is dense in Iξ.

Proof. Let Z ∈ Iξ and ε > 0 be given. By (6.4), there are B1, . . . , Bm ∈ Tn with τ(B1)(ξ) = · · · =
τ(Bm)(ξ) = 0 and X1, . . . , Xm, Y1, . . . , Ym ∈ TMn such that

‖Z − (X1B1Y1 + · · ·+XmBmYm)‖ ≤ ε.

But, by Theorem 1.1, there is a K1 ∈ K such that

X1B1Y1 + · · ·+XmBmYm = X1Y1B1 + · · ·+XmYmBm +K1.

Therefore

‖Z − (X1Y1B1 + · · ·+XmYmBm +K1)‖ ≤ ε. (6.6)

Let B ∈ Tn be such that τ(B)(ξ) = 0. Then τ(B) lies in the ideal in C(S) generated by
ζ1 − ξ1, . . . , ζn − ξn. Let δ > 0 be given. By (6.1), there exist T1, . . . , Tn ∈ Tn and a K ∈ K such
that

‖B − (T1Mζ1−ξ1 + · · ·+ TnMζn−ξn +K)‖ ≤ δ. (6.7)

The conclusion of the lemma follows from (6.6) and (6.7). �

Proposition 6.2. For every A ∈ TMn and every ξ ∈ S, we have

lim
r↑1
‖AMsrξ‖ = ‖A+ Iξ‖.
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Proof. Let ξ ∈ S be given. We first show that

lim
r↑1
‖WMsrξ‖ = 0 (6.8)

for every W ∈ Iξ. Applying Lemma 2.5, we have

lim
r↑1
‖M(ζj−ξj)Msrξ‖ = lim

r↑1
‖M(ζj−ξj)srξ‖ ≤ lim

r↑1
{‖M(ζj−rξj)srξ‖+ |rξj − ξj|‖Msrξ‖} = 0 (6.9)

for each j ∈ {1, . . . , n}, where ξj is the j-th component of ξ. Let K be a compact operator. Then
Corollary 2.2 gives us ‖KMsrξ‖ = ‖M∗

srξ
K∗‖ ≤ ‖MsrξK

∗‖. Since K∗ is also compact, it follows
from Lemma 2.6 that

lim
r↑1
‖KMsrξ‖ ≤ lim

r↑1
‖MsrξK

∗‖ = 0. (6.10)

Combining (6.9), (6.10) and Lemma 6.1, (6.8) is proved.

Let A ∈ TMn be given. Then by (6.8), for every W ∈ Iξ we have

lim sup
r↑1

‖AMsrξ‖ = lim sup
r↑1

‖(A+W )Msrξ‖ ≤ ‖A+W‖.

Since this holds for every W ∈ Iξ, it follows that

lim sup
r↑1

‖AMsrξ‖ ≤ ‖A+ Iξ‖. (6.11)

Next we show that

‖AMsrξ‖ ≥ ‖A+ Iξ‖ (6.12)

for every 0 < r < 1. Note that, since |ξ| = 1,

1− srξ(ζ) = 1− 1− r
1− r〈ζ, ξ〉

=
r〈ξ − ζ, ξ〉
1− r〈ζ, ξ〉

. (6.13)

This and (6.1) together imply 1−Msrξ ∈ Iξ. Thus A− AMsrξ ∈ Iξ, which clearly implies (6.12).
The proposition follows from (6.11) and (6.12). �

Proof of Theorem 1.2. It follows immediately from Proposition 6.2 and (6.5). �

Proof of Theorem 1.3. Let A ∈ TMn be given. Then we obviously have

sup
ξ∈S

lim
r↑1
‖AMsrξ‖ ≤ lim

r↑1
sup

r≤|z|<1

‖AMsz‖.

By Theorem 1.2, the proof of Theorem 1.3 is reduced to the proof of the inequality

lim
r↑1

sup
r≤|z|<1

‖AMsz‖ ≤ ‖A‖Q. (6.14)

Let K be a compact operator. By the subnormality of Msz and Lemma 2.6, we have

lim
|z|↑1
‖KMsz‖ = lim

|z|↑1
‖M∗

szK
∗‖ ≤ lim

|z|↑1
‖MszK

∗‖ = 0.

Therefore for each compact operator K we have

lim
r↑1

sup
r≤|z|<1

‖AMsz‖ = lim
r↑1

sup
r≤|z|<1

‖(A+K)Msz‖ ≤ ‖A+K‖.

This clearly implies (6.14). Hence the theorem follows. �
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Remark 1. There is a “left version” for Theorems 1.2 and 1.3. That is, if we replace AMsrξ by
MsrξA in Theorem 1.2 (resp. AMsz by MszA in Theorem 1.3), then the same statement holds. The
point is that by Lemma 6.1 and Theorem 1.1, the linear span of operators of the form Mζj−ξjT +K
is also dense in Iξ. Using this “left version” of Lemma 6.1, the proof of the left version of Theorems
1.2 and 1.3 is the same as the right version.

Remark 2. Theorems 1.2 and 1.3 are better suited for application to the problem of determining
compactness than their left version.
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