A CLOSER LOOK AT A POISSON-LIKE CONDITION ON THE DRURY-ARVESON SPACE

Quanlei Fang and Jingbo Xia

Abstract. Let \mathcal{M} be the collection of the multipliers of the Drury-Arveson space H_{n}^{2}, $n \geq 2$. In a recent paper [1], Aleman et al showed that for $f \in H_{n}^{2}$, the condition $\sup _{|z|<1} \operatorname{Re}\left\langle f, K_{z} f\right\rangle<\infty$ is sufficient for the membership $f \in \mathcal{M}$. We show that this condition is not necessary for $f \in \mathcal{M}$. Moreover, we show that the condition $\sup _{|z|<1} \operatorname{Re}\left\langle f, K_{z} f\right\rangle$ $<\infty$ only captures a nowhere dense subset of \mathcal{M}.

1. Introduction

Denote $\mathbf{B}=\left\{z \in \mathbf{C}^{n}:|z|<1\right\}$, the unit ball in \mathbf{C}^{n}. In this paper, the complex dimension n is always assumed to be greater than or equal to 2. Recall that the DruryArveson space H_{n}^{2} is the Hilbert space of analytic functions on \mathbf{B} that has the function

$$
\begin{equation*}
K_{z}(\zeta)=\frac{1}{1-\langle\zeta, z\rangle}, \tag{1.1}
\end{equation*}
$$

$z, \zeta \in \mathbf{B}$, as its reproducing kernel [2,3,7]. Equivalently, H_{n}^{2} can be described as the Hilbert space of analytic functions on \mathbf{B} where the inner product is given by

$$
\langle h, g\rangle=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} \frac{\alpha!}{|\alpha|!} a_{\alpha} \overline{b_{\alpha}}
$$

for

$$
h(\zeta)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} a_{\alpha} \zeta^{\alpha} \quad \text { and } \quad g(\zeta)=\sum_{\alpha \in \mathbf{Z}_{+}^{n}} b_{\alpha} \zeta^{\alpha}
$$

Here and throughout, we follow the standard multi-index notation [9, page 3].
Perhaps, the most fascinating aspect of the Drury-Arveson space is its collection of multipliers, which were introduced by Arveson. A function $f \in H_{n}^{2}$ is said to be a multiplier of the Drury-Arveson space if $f h \in H_{n}^{2}$ for every $h \in H_{n}^{2}$ [2]. We will write \mathcal{M} for the collection of the multipliers of H_{n}^{2}. If $f \in \mathcal{M}$, then the multiplication operator M_{f} is bounded on H_{n}^{2} [2], and the multiplier norm $\|f\|_{\mathcal{M}}$ is defined to be the operator norm $\left\|M_{f}\right\|$ on H_{n}^{2}.

[^0]An enduring challenge in the theory of the Drury-Arveson space, since its very inception, has been the quest for a good characterization of the membership in \mathcal{M}. In other words, we are asking a very instinctive question, what does a general $f \in \mathcal{M}$ look like?

One's first instinct is to turn to the normalized reproducing kernel for possible answers. By (1.1), the normalized reproducing kernel for H_{n}^{2} is given by the formula

$$
k_{z}(\zeta)=\frac{\left(1-|z|^{2}\right)^{1 / 2}}{1-\langle\zeta, z\rangle}
$$

$z, \zeta \in \mathbf{B}$. For example, anyone who gives any thought about multipliers is likely to examine the condition

$$
\begin{equation*}
\sup _{|z|<1}\left\|f k_{z}\right\|<\infty \tag{1.2}
\end{equation*}
$$

for $f \in H_{n}^{2}$. In other words, one might ask, does (1.2) imply the membership $f \in \mathcal{M}$? Conditions of this type are now called "reproducing-kernel thesis" [8] and are among the first things that one would check when it comes to boundedness. But as it turns out, (1.2) is not sufficient for the membership $f \in \mathcal{M}$ [5].

Recently in [1], Aleman et al examined a different condition, one that is in terms of the unnormalized reproducing kernel K_{z}. They showed that for $f \in H_{n}^{2}$, the condition

$$
\begin{equation*}
\sup _{|z|<1} \operatorname{Re}\left\langle f, K_{z} f\right\rangle<\infty \tag{1.3}
\end{equation*}
$$

is sufficient to imply the membership $f \in \mathcal{M}$ [1,Corollary 4.6]. This naturally leads to the question, is (1.3) necessary for the membership $f \in \mathcal{M}$?

In the same paper, Aleman et al showed that on the Dirichlet space $D_{\alpha}, 0<\alpha<1$, on the unit disc in \mathbf{C}, the analogue of condition (1.3) is not necessary for the multipliers of D_{α} [1,Proposition 4.8]. But that does not settle the question for the Drury-Arveson space H_{n}^{2}, particularly in view of the fact that [1,Proposition 4.8] deals with a one-variable situation. We will settle this question for the Drury-Arveson space.

Theorem 1.1. The function

$$
\begin{equation*}
\varphi(\zeta)=\frac{\zeta_{2}}{\sqrt{1-\zeta_{1}}} \tag{1.4}
\end{equation*}
$$

$\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbf{B}$, is a multiplier of the Drury-Arveson space H_{n}^{2}. Moreover, there is a constant $c_{1.1}>0$ such that

$$
\begin{equation*}
\sup _{|z|=r} \operatorname{Re}\left\langle\varphi, K_{z} \varphi\right\rangle \geq c_{1.1}\left(1+\log \frac{1}{1-r}\right) \tag{1.5}
\end{equation*}
$$

for every $0 \leq r<1$. In particular,

$$
\sup _{|z|<1} \operatorname{Re}\left\langle\varphi, K_{z} \varphi\right\rangle=\infty
$$

We will see that the function φ given by (1.4), simple as it is, is already "extremal" among the multipliers of H_{n}^{2} in that lower bound (1.5) is actually sharp. The fact that there are such extremal functions in \mathcal{M} has consequences.

Definition 1.2. Let \mathcal{F} denote the collection of $f \in \mathcal{M}$ satisfying the condition

$$
\sup _{|z|<1} \operatorname{Re}\left\langle f, K_{z} f\right\rangle<\infty
$$

Theorem 1.3. With respect to the multiplier norm $\|\cdot\|_{\mathcal{M}}, \mathcal{F}$ is nowhere dense in \mathcal{M}.
The actual situation is even more shocking. We will see that for each $f \in \mathcal{M}$, there are just two possibilities: either f belongs to the interior of $\mathcal{M} \backslash \mathcal{F}$ outright, or $f+\xi \varphi$ belongs to the interior of $\mathcal{M} \backslash \mathcal{F}$ for every $\xi \in \mathbf{C} \backslash\{0\}$.

The rest of the paper is organized as follows. We will prove Theorem 1.1 in Section 2. Then in Section 3, we prove an upper bound for the growth of $\operatorname{Re}\left\langle f, K_{z} f\right\rangle,|z| \uparrow 1$, for $f \in \mathcal{M}$. Using this upper bound and (1.5), we prove Theorem 1.3 in Section 4.

2. Estimates on the unit disc

Let D denote the unit disc $\{w \in \mathbf{C}:|w|<1\}$ in the complex plane \mathbf{C}. We write $d A$ for the area measure on \mathbf{C} with the normalization $A(D)=1$.

Proposition 2.1. The measure

$$
\begin{equation*}
d \mu(w)=\frac{1}{|1-w|} d A(w) \tag{2.1}
\end{equation*}
$$

defined on the unit disc D is a Carleson measure for the one-variable Hardy space $H^{2}=H_{1}^{2}$.
Proof. For each pair of $\theta \in \mathbf{R}$ and $0<\rho \leq 1$, define the sector

$$
S(\theta, \rho)=\left\{r e^{i t}: 1-\rho \leq r<1 \text { and }|t-\theta|<\rho\right\}
$$

in D. It is well known that, to show that $d \mu$ is a Carleson measure for the one-variable Hardy space $H^{2}=H_{1}^{2}$, it suffices to find a constant $0<C<\infty$ such that

$$
\begin{equation*}
\mu(S(\theta, \rho)) \leq C \rho \tag{2.2}
\end{equation*}
$$

for all $\theta \in \mathbf{R}$ and $0<\rho \leq 1$. See, e.g., [6,pages 238, 239].
To prove (2.2), for $\xi \in \mathbf{C}$ and $a>0$ we define

$$
\Delta(\xi, a)=\{w \in \mathbf{C}:|w-\xi|<a\}
$$

Consider any $w \in S(\theta, \rho)$. That is, $w=r e^{i t}$ with $1-\rho \leq r<1$ and $|t-\theta|<\rho$. Then

$$
\left|w-e^{i \theta}\right| \leq\left|w-e^{i t}\right|+\left|e^{i t}-e^{i \theta}\right|=1-r+\left|1-e^{i(\theta-t)}\right| \leq \rho+|\theta-t|<2 \rho .
$$

That is, we have

$$
\begin{equation*}
S(\theta, \rho) \subset \Delta\left(e^{i \theta}, 2 \rho\right) \cap D \tag{2.3}
\end{equation*}
$$

for all $\theta \in \mathbf{R}$ and $0<\rho \leq 1$. For any $\theta \in \mathbf{R}$ and $a>0$, we have $\Delta\left(e^{i \theta}, a\right) \cap D=$ $e^{i \theta}\{\Delta(1, a) \cap D\}$, consequently

$$
A\left(\Delta\left(e^{i \theta}, a\right) \cap D\right)=A(\Delta(1, a) \cap D) .
$$

This implies that for any $\theta \in \mathbf{R}$ and $a>0$, we have

$$
\begin{equation*}
A\left(\left\{\Delta\left(e^{i \theta}, a\right) \backslash \Delta(1, a)\right\} \cap D\right)=A\left(\left\{\Delta(1, a) \backslash \Delta\left(e^{i \theta}, a\right)\right\} \cap D\right) \tag{2.4}
\end{equation*}
$$

Obviously, if $w \in \Delta\left(e^{i \theta}, a\right) \backslash \Delta(1, a)$ and $w^{\prime} \in \Delta(1, a) \backslash \Delta\left(e^{i \theta}, a\right)$, then $|1-w| \geq a>\left|1-w^{\prime}\right|$. Combining this fact with (2.3), (2.1) and (2.4), for $\theta \in \mathbf{R}$ and $0<\rho \leq 1$ we have

$$
\begin{align*}
\mu(S(\theta, \rho)) & \leq \mu\left(\Delta\left(e^{i \theta}, 2 \rho\right) \cap D\right) \\
& =\mu\left(\Delta\left(e^{i \theta}, 2 \rho\right) \cap \Delta(1,2 \rho) \cap D\right)+\mu\left(\left\{\Delta\left(e^{i \theta}, 2 \rho\right) \backslash \Delta(1,2 \rho)\right\} \cap D\right) \\
& \leq \mu\left(\Delta\left(e^{i \theta}, 2 \rho\right) \cap \Delta(1,2 \rho) \cap D\right)+\mu\left(\left\{\Delta(1,2 \rho) \backslash \Delta\left(e^{i \theta}, 2 \rho\right)\right\} \cap D\right) \\
& =\mu(\Delta(1,2 \rho) \cap D) . \tag{2.5}
\end{align*}
$$

On the other hand, by (2.1) and the translation invariance of $d A$, we have

$$
\mu(\Delta(1,2 \rho) \cap D) \leq \int_{\Delta(1,2 \rho)} \frac{d A(w)}{|1-w|}=\int_{\Delta(0,2 \rho)} \frac{1}{|w|} d A(w)=2 \int_{0}^{2 \rho} \frac{1}{r} r d r=4 \rho
$$

Combining this with (2.5), we obtain $\mu(S(\theta, \rho)) \leq 4 \rho$ for all $\theta \in \mathbf{R}$ and $0<\rho \leq 1$. This proves (2.2) and completes the proof of the proposition.

As it turns out, the key to the proof of Theorem 1.1 is an orthogonal decomposition for the Drury-Arveson space H_{n}^{2} that we introduced in [4], which we now recall.

Define the subset $\mathcal{B}=\left\{\left(0, \beta_{2}, \ldots, \beta_{n}\right): \beta_{2}, \ldots, \beta_{n} \in \mathbf{Z}_{+}\right\}$of \mathbf{Z}_{+}^{n}. As before, write $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$. The definition of \mathcal{B} ensures that for $\beta, \beta^{\prime} \in \mathcal{B}$ and $k, k^{\prime} \in \mathbf{Z}_{+}$, we have

$$
\begin{equation*}
\left\langle\zeta_{1}^{k} \zeta^{\beta}, \zeta_{1}^{k^{\prime}} \zeta^{\beta^{\prime}}\right\rangle=0 \quad \text { whenever } \quad(k, \beta) \neq\left(k^{\prime}, \beta^{\prime}\right) \tag{2.6}
\end{equation*}
$$

For each $\beta \in \mathcal{B}$, define the closed linear subspace

$$
H_{\beta}=\overline{\operatorname{span}\left\{\zeta_{1}^{k} \zeta^{\beta}: k \geq 0\right\}}
$$

of H_{n}^{2}. Then we have the orthogonal decomposition

$$
\begin{equation*}
H_{n}^{2}=\bigoplus_{\beta \in \mathcal{B}} H_{\beta} \tag{2.7}
\end{equation*}
$$

Obviously, H_{0} is the one-variable Hardy space $H^{2}=H_{1}^{2}$, which is where Proposition 2.1 will be applied.

If $\beta \in \mathcal{B} \backslash\{0\}, H_{\beta}$ can be naturally identified with a weighted Bergman space on D. Indeed it is elementary to verify that if $\beta \in \mathcal{B} \backslash\{0\}$, then

$$
\begin{equation*}
\left\|\zeta_{1}^{k} \zeta^{\beta}\right\|^{2}=\frac{\beta!}{(|\beta|-1)!} \int_{D}\left|w^{k}\right|^{2}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w) \tag{2.8}
\end{equation*}
$$

for every $k \in \mathbf{Z}_{+}$.
Let \mathbf{T} denote the unit circle $\{\tau \in \mathbf{C}:|\tau|=1\}$. Write $d m$ for the Lebesgue measure on \mathbf{T} with the normalization $m(\mathbf{T})=1$. Given $h, g \in H_{n}^{2},(2.7)$ gives us the representation

$$
h(\zeta)=\sum_{\beta \in \mathcal{B}} h_{\beta}\left(\zeta_{1}\right) \zeta^{\beta} \quad \text { and } \quad g(\zeta)=\sum_{\beta \in \mathcal{B}} g_{\beta}\left(\zeta_{1}\right) \zeta^{\beta}
$$

where h_{β} and g_{β} are one-variable analytic functions, $\beta \in \mathcal{B}$. By (2.6) and (2.8), we have

$$
\begin{equation*}
\langle h, g\rangle=\int_{\mathbf{T}} h_{0} \overline{g_{0}} d m+\sum_{\beta \in \mathcal{B} \backslash\{0\}} \frac{\beta!}{(|\beta|-1)!} \int_{D} h_{\beta}(w) \overline{g_{\beta}(w)}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w) . \tag{2.9}
\end{equation*}
$$

Arveson taught us that $\langle h, g\rangle$ cannot be expressed as a single integral [2,Corollary 2]. That notwithstanding, (2.9) expresses $\langle h, g\rangle$ as a sum of convenient integrals, which was one of the crucial observations in [4].

Another ingredient in the proof of Theorem 1.1 is a particular Forelli-Rudin estimate. Recall that we have

$$
\begin{equation*}
\int_{D} \frac{1-|w|^{2}}{|1-r w|^{3}} d A(w) \approx 1+\log \frac{1}{1-r} \tag{2.10}
\end{equation*}
$$

for $0 \leq r<1$. See, e.g., [9,Proposition 1.4.10].
In our analysis of $\operatorname{Re}\left\langle f, K_{z} f\right\rangle$, the identity

$$
\begin{equation*}
\operatorname{Re} \frac{1}{1-w}=\frac{1}{2} \cdot \frac{1-|w|^{2}}{|1-w|^{2}}+\frac{1}{2}, \quad w \in D \tag{2.11}
\end{equation*}
$$

plays a special role. In fact, (2.11) plays a role that is very much like, but not exactly the same as, the Poisson kernel. This explains the phrase "Poisson-like condition" in the title of the paper.

Proof of Theorem 1.1. Let us first show that $\varphi \in \mathcal{M}$. Denote $e_{2}=(0,1,0, \ldots, 0)$. Given any $h \in H_{n}^{2}$, (2.7) provides the representation

$$
\begin{equation*}
h(\zeta)=\sum_{\beta \in \mathcal{B}} h_{\beta}\left(\zeta_{1}\right) \zeta^{\beta} \tag{2.12}
\end{equation*}
$$

Then

$$
(\varphi h)(\zeta)=\sum_{\beta \in \mathcal{B}} \frac{h_{\beta}\left(\zeta_{1}\right)}{\sqrt{1-\zeta_{1}}} \zeta^{\beta+e_{2}}
$$

and (2.9) gives us

$$
\begin{equation*}
\|\varphi h\|^{2}=\int_{D} \frac{\left|h_{0}(w)\right|^{2}}{|1-w|} d A(w)+\sum_{\beta \in \mathcal{B} \backslash\{0\}} \frac{\left(\beta+e_{2}\right)!}{|\beta|!} \int_{D} \frac{\left|h_{\beta}(w)\right|^{2}}{|1-w|}\left(1-|w|^{2}\right)^{|\beta|} d A(w) \tag{2.13}
\end{equation*}
$$

By Proposition 2.1, there is a constant $0<C<\infty$ such that

$$
\int_{D} \frac{\left|h_{0}(w)\right|^{2}}{|1-w|} d A(w) \leq C \int_{\mathbf{T}}\left|h_{0}\right|^{2} d m
$$

Obviously, $1-|w| \leq|1-w|$ for every $w \in D$. Hence if $\beta \in \mathcal{B} \backslash\{0\}$, then

$$
\int_{D} \frac{\left|h_{\beta}(w)\right|^{2}}{|1-w|}\left(1-|w|^{2}\right)^{|\beta|} d A(w) \leq 2 \int_{D}\left|h_{\beta}(w)\right|^{2}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w)
$$

For $\beta \in \mathcal{B} \backslash\{0\}$, if we write $\beta=\left(0, \beta_{2}, \ldots, \beta_{n}\right)$, then

$$
\frac{\left(\beta+e_{2}\right)!}{|\beta|!}=\frac{\beta_{2}+1}{|\beta|} \cdot \frac{\beta!}{(|\beta|-1)!} \leq 2 \frac{\beta!}{(|\beta|-1)!}
$$

Substituting these three inequalities in (2.13), we find that

$$
\|\varphi h\|^{2} \leq C \int_{\mathbf{T}}\left|h_{0}\right|^{2} d m+4 \sum_{\beta \in \mathcal{B} \backslash\{0\}} \frac{\beta!}{(|\beta|-1)!} \int_{D}\left|h_{\beta}(w)\right|^{2}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w)
$$

By (2.9), this means $\|\varphi h\|^{2} \leq C_{1}\|h\|^{2}$, where $C_{1}=\max \{C, 4\}$. Hence φ is a multiplier of the Drury-Arveson space H_{n}^{2}.

To prove (1.5), let us denote $e_{1}=(1,0, \ldots, 0)$. For $0 \leq r<1$, we have

$$
K_{r e_{1}}(\zeta)=\frac{1}{1-r \zeta_{1}} \quad \text { and } \quad\left(K_{r e_{1}} \varphi\right)(\zeta)=\frac{\zeta_{2}}{\left(1-r \zeta_{1}\right) \sqrt{1-\zeta_{1}}}
$$

Thus (2.9) gives us

$$
\left\langle\varphi, K_{r e_{1}} \varphi\right\rangle=\int_{D} \frac{d A(w)}{(1-r \bar{w})|1-w|}
$$

Applying (2.11), we obtain

$$
\operatorname{Re}\left\langle\varphi, K_{r e_{1}} \varphi\right\rangle=\int_{D} \operatorname{Re}\left(\frac{1}{1-r \bar{w}}\right) \frac{d A(w)}{|1-w|}=\frac{1}{2} \int_{D}\left(\frac{1-|r w|^{2}}{|1-r w|^{2}}+1\right) \frac{d A(w)}{|1-w|} .
$$

For $0 \leq r<1$ and $w \in D$, it is elementary that $|1-w| \leq 2|1-r w|$. Hence

$$
\operatorname{Re}\left\langle\varphi, K_{r e_{1}} \varphi\right\rangle \geq \frac{1}{4} \int_{D} \frac{1-|r w|^{2}}{|1-r w|^{3}} d A(w)+\frac{1}{4} \geq \frac{1}{4} \int_{D} \frac{1-|w|^{2}}{|1-r w|^{3}} d A(w)+\frac{1}{4} .
$$

Combining this with (2.10), (1.5) follows. This completes the proof of Theorem 1.1.

3. A necessary condition for the membership $f \in \mathcal{M}$

Having proved Theorem 1.1, our next task is to derive an upper bound for the growth of $\operatorname{Re}\left\langle f, K_{z} f\right\rangle$ as $|z| \uparrow 1$. For each $j \in \mathbf{Z}_{+}$, define

$$
\rho_{j}=1-2^{-j}
$$

Proposition 3.1. Let $h \in H_{n}^{2}$. If $z \in \mathbf{B}$ satisfies the condition $1-2^{-k} \leq|z|<1-2^{-k-1}$ for some $k \in \mathbf{Z}_{+}$, then

$$
\operatorname{Re}\left\langle h, K_{z} h\right\rangle \leq 10\left(\left\|h k_{z}\right\|^{2}+\sum_{j=0}^{k}\left\|h k_{\rho_{j} z}\right\|^{2}\right) .
$$

Proof. First, consider $z=r e_{1}$, where $e_{1}=(1,0, \ldots, 0)$ and $1-2^{-k} \leq r<1-2^{-k-1}$ for some $k \in \mathbf{Z}_{+}$. Given an $h \in H_{n}^{2}$, we again represent it in the form (2.12). Then by (2.9),

$$
\left\langle h, K_{r e_{1}} h\right\rangle=\int_{\mathbf{T}} \frac{\left|h_{0}(\tau)\right|^{2}}{1-r \bar{\tau}} d m(\tau)+\sum_{\beta \in \mathcal{B} \backslash\{0\}} \frac{\beta!}{(|\beta|-1)!} \int_{D} \frac{\left|h_{\beta}(w)\right|^{2}}{1-r \bar{w}}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w) .
$$

Combining this with (2.11), we find that

$$
\begin{align*}
\operatorname{Re}\left\langle h, K_{r e_{1}} h\right\rangle= & \frac{1}{2}\|h\|^{2}+\frac{1}{2}\left\|h_{0} k_{r e_{1}}\right\|^{2} \\
& +\frac{1}{2} \sum_{\beta \in \mathcal{B} \backslash\{0\}} \frac{\beta!}{(|\beta|-1)!} \int_{D}\left|h_{\beta}(w)\right|^{2} \frac{1-|r w|^{2}}{|1-r w|^{2}}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w) . \tag{3.1}
\end{align*}
$$

Since $1-|r w|^{2}=1-r^{2}+r^{2}\left(1-|w|^{2}\right)$, the above gives us

$$
\operatorname{Re}\left\langle h, K_{r e_{1}} h\right\rangle=\frac{1}{2}\|h\|^{2}+\frac{1}{2}\left\|h k_{r e_{1}}\right\|^{2}
$$

$$
\begin{equation*}
+\frac{r^{2}}{2} \sum_{\beta \in \mathcal{B} \backslash\{0\}} \frac{\beta!}{(|\beta|-1)!} \int_{D}\left|h_{\beta}(w)\right|^{2} \frac{1-|w|^{2}}{|1-r w|^{2}}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w) . \tag{3.2}
\end{equation*}
$$

To proceed further, we decompose the unit disc D. For each $j \in \mathbf{Z}_{+}$, we define

$$
R_{j}=\left\{w \in \mathbf{C}: 1-2^{-j-1} \leq|w|<1\right\} \text { and } D_{j}=\left\{w \in \mathbf{C}: 1-2^{-j} \leq|w|<1-2^{-j-1}\right\}
$$

Since $D=D_{0} \cup \cdots \cup D_{k} \cup R_{k}$, from (3.2) we obtain

$$
\begin{equation*}
\operatorname{Re}\left\langle h, K_{r e_{1}} h\right\rangle=\frac{1}{2}\|h\|^{2}+\frac{1}{2}\left\|h k_{r e_{1}}\right\|^{2}+\frac{r^{2}}{2} A_{k}+\frac{r^{2}}{2} \sum_{j=0}^{k} B_{j}, \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{k}=\sum_{\beta \in \mathcal{B} \backslash\{0\}} \frac{\beta!}{(|\beta|-1)!} \int_{R_{k}}\left|h_{\beta}(w)\right|^{2} \frac{1-|w|^{2}}{|1-r w|^{2}}\left(1-\left.|w|^{2}\right|^{|\beta|-1} d A(w) \quad\right. \text { and } \\
& B_{j}=\sum_{\beta \in \mathcal{B} \backslash\{0\}} \frac{\beta!}{(|\beta|-1)!} \int_{D_{j}}\left|h_{\beta}(w)\right|^{2} \frac{1-|w|^{2}}{|1-r w|^{2}}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w)
\end{aligned}
$$

for $j=0, \ldots, k$. Let us first consider A_{k}. For $w \in R_{k}$, we have $1-|w|^{2} \leq 2 \cdot 2^{-k-1}<$ $2(1-r) \leq 2\left(1-r^{2}\right)$. Combining this with (2.9), we see that

$$
\begin{equation*}
A_{k} \leq 2\left\|h k_{r e_{1}}\right\|^{2} \tag{3.4}
\end{equation*}
$$

On the other hand, if $w \in D_{j}$, then $1-|w|^{2} \leq 2 \cdot 2^{-j}=2\left(1-\rho_{j}\right) \leq 2\left(1-\left(\rho_{j} r\right)^{2}\right)$. Also, for $w \in D_{j}$, we have $|1-r w| \geq 1-|w|>2^{-j-1}=(1 / 2)\left(1-\rho_{j}\right)$. Thus if $w \in D_{j}$, then $\left|1-\rho_{j} r w\right| \leq 1-\rho_{j}+|1-r w| \leq 3|1-r w|$. Hence the inequality

$$
\frac{1-|w|^{2}}{|1-r w|^{2}} \leq 18 \frac{1-\left(\rho_{j} r\right)^{2}}{\left|1-\rho_{j} r w\right|^{2}}
$$

holds when $w \in D_{j}$. Applying (2.9) once more, we have

$$
\begin{equation*}
B_{j} \leq 18\left\|h k_{\rho_{j} r e_{1}}\right\|^{2} \tag{3.5}
\end{equation*}
$$

for $j=0, \ldots, k$. Combining (3.3), (3.4) and (3.5), we obtain

$$
\operatorname{Re}\left\langle h, K_{r e_{1}} h\right\rangle \leq\|h\|^{2}+2\left\|h k_{r e_{1}}\right\|^{2}+9 \sum_{j=0}^{k}\left\|h k_{\rho_{j} r e_{1}}\right\|^{2} .
$$

Since $\rho_{0}=0$ and k_{0} is the constant function 1 , this proves the proposition in the case where $z=r e_{1}$ and $1-2^{-k} \leq r<1-2^{-k-1}$ for some $k \in \mathbf{Z}_{+}$.

Now consider the general case. That is $z=r u$, where $1-2^{-k} \leq r<1-2^{-k-1}$ for some $k \in \mathbf{Z}_{+}$and u is a unit vector in \mathbf{C}^{n}. Let $U: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be a unitary transformation such that $U e_{1}=u$. Then it gives rise to the unitary operator W on H_{n}^{2} by the formula

$$
\begin{equation*}
(W g)(\zeta)=g(U \zeta) \tag{3.6}
\end{equation*}
$$

$g \in H_{n}^{2}$. We have $W K_{z}=K_{r e_{1}}, W k_{z}=k_{r e_{1}}$ and $W k_{\rho_{j} z}=k_{\rho_{j} r e_{1}}$ for $j=0, \ldots, k$. Given an $h \in H_{n}^{2}$, we write $\eta=W h$. Applying the special case proved above, we have

$$
\begin{aligned}
\operatorname{Re}\left\langle h, K_{z} h\right\rangle & =\operatorname{Re}\left\langle W h, W K_{z} h\right\rangle=\operatorname{Re}\left\langle\eta, K_{r e_{1}} \eta\right\rangle \\
& \leq 10\left(\left\|\eta k_{r e_{1}}\right\|^{2}+\sum_{j=0}^{k}\left\|\eta k_{\rho_{j} r e_{j}}\right\|^{2}\right) \\
& =10\left(\left\|W\left(h k_{z}\right)\right\|^{2}+\sum_{j=0}^{k}\left\|W\left(h k_{\rho_{j} z}\right)\right\|^{2}\right)=10\left(\left\|h k_{z}\right\|^{2}+\sum_{j=0}^{k}\left\|h k_{\rho_{j} z}\right\|^{2}\right) .
\end{aligned}
$$

This completes the proof of the proposition.
Note that if $1-2^{-k} \leq|z|<1-2^{-k-1}, k \in \mathbf{Z}_{+}$, then $k+2 \approx 1-\log (1-|z|)$. Thus from Proposition 3.1 we immediately obtain

Corollary 3.2. There is a constant $0<C_{3.2}<\infty$ such that

$$
\operatorname{Re}\left\langle f, K_{z} f\right\rangle \leq C_{3.2}\|f\|_{\mathcal{M}}^{2}\left(1+\log \frac{1}{1-|z|}\right)
$$

for all $f \in \mathcal{M}$ and $z \in \mathbf{B}$.
Thus lower bound (1.5) is sharp. The above upper bound motivates us to introduce
Definition 3.3. An element $h \in H_{n}^{2}$ is said to be in the class $\left(H_{n}^{2}\right)_{\log }$ if there is a constant $C=C(h) \in(0, \infty)$ such that

$$
\operatorname{Re}\left\langle h, K_{z} h\right\rangle \leq C\left(1+\log \frac{1}{1-|z|}\right)
$$

for every $z \in \mathbf{B}$.
Proposition 3.4. The condition $f \in\left(H_{n}^{2}\right)_{\log }$ is necessary, but not sufficient, for the membership $f \in \mathcal{M}$. That is, $\left(H_{n}^{2}\right)_{\log } \supset \mathcal{M}$ and $\left(H_{n}^{2}\right)_{\log } \neq \mathcal{M}$.

Proof. Obviously, the inclusion $\left(H_{n}^{2}\right)_{\mathrm{log}} \supset \mathcal{M}$ follows from Corollary 3.2. To prove that $\left(H_{n}^{2}\right)_{\log } \neq \mathcal{M}$, we apply [5, Theorem 1.2], which provides an $f \in H_{n}^{2}$ such that $f \notin \mathcal{M}$ and yet $\|f\|^{\prime}<\infty$, where

$$
\|f\|^{\prime}=\sup _{|z|<1}\left\|f k_{z}\right\|
$$

By Proposition 3.1, we have

$$
\operatorname{Re}\left\langle f, K_{z} f\right\rangle \leq 10\left(\|f\|^{\prime}\right)^{2}(k+2)
$$

if $1-2^{-k} \leq|z|<1-2^{-k-1}, k \in \mathbf{Z}_{+}$. Since $\|f\|^{\prime}<\infty$, this implies $f \in\left(H_{n}^{2}\right)_{\log }$.

4. A non-commutative Poisson kernel

Recall that when $f \in \mathcal{M}$, we write M_{f} for the operator of multiplication by f on H_{n}^{2}. In particular, $\left(M_{\langle\zeta, z\rangle} h\right)(\zeta)=\langle\zeta, z\rangle h(\zeta), h \in H_{n}^{2}$. For $z \in \mathbf{B}$, we have $\left\|M_{\langle\zeta, z\rangle}\right\|=|z|<1$. Thus for each $z \in \mathbf{B}$, we can define the "defect operator"

$$
Q_{z}=\left(1-M_{\langle\zeta, z\rangle}^{*} M_{\langle\zeta, z\rangle}\right)^{1 / 2}
$$

Proposition 4.1. For $h \in H_{n}^{2}$ and $z \in \mathbf{B}$, we have

$$
\operatorname{Re}\left\langle h, K_{z} h\right\rangle=\frac{1}{2}\left(\|h\|^{2}+\left\|Q_{z} M_{K_{z}} h\right\|^{2}\right) .
$$

Proof. Again, we first consider the case $z=r e_{1}$, where $0 \leq r<1$ and $e_{1}=(1,0, \ldots, 0)$. In this case $M_{\langle\zeta, z\rangle}=M_{r \zeta_{1}}$. Given an $h \in H_{n}^{2}$, we write it in the form (2.12). Then the corresponding decompositions for $M_{K_{r e_{1}}} h$ and $M_{r \zeta_{1}} M_{K_{r e_{1}}} h$ are

$$
\begin{equation*}
\left(M_{K_{r e_{1}}} h\right)(\zeta)=\sum_{\beta \in \mathcal{B}} \frac{h_{\beta}\left(\zeta_{1}\right)}{1-r \zeta_{1}} \zeta^{\beta} \quad \text { and } \quad\left(M_{r \zeta_{1}} M_{K_{r e_{1}}} h\right)(\zeta)=\sum_{\beta \in \mathcal{B}} \frac{r \zeta_{1} h_{\beta}\left(\zeta_{1}\right)}{1-r \zeta_{1}} \zeta^{\beta} . \tag{4.1}
\end{equation*}
$$

Since the restriction of $M_{\zeta_{1}}$ to $H_{0}=H^{2}$ is an isometry, we have

$$
\begin{equation*}
\left\|h_{0} k_{r e_{1}}\right\|^{2}=\left\|M_{K_{r e_{1}}} h_{0}\right\|^{2}-r^{2}\left\|M_{K_{r e_{1}}} h_{0}\right\|^{2}=\left\|M_{K_{r e_{1}}} h_{0}\right\|^{2}-\left\|M_{r \zeta_{1}} M_{K_{r e_{1}}} h_{0}\right\|^{2} \tag{4.2}
\end{equation*}
$$

For each $\beta \in \mathcal{B} \backslash\{0\}$, we have

$$
\begin{align*}
& \int_{D}\left|h_{\beta}(w)\right|^{2} \frac{1-|r w|^{2}}{|1-r w|^{2}}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w) \\
& 3) \quad=\int_{D}\left|\frac{h_{\beta}(w)}{1-r w}\right|^{2}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w)-\int_{D}\left|\frac{r w h_{\beta}(w)}{1-r w}\right|^{2}\left(1-|w|^{2}\right)^{|\beta|-1} d A(w) . \tag{4.3}
\end{align*}
$$

Substituting (4.2) and (4.3) in (3.1), it now follows from (2.9) and (4.1) that

$$
\begin{align*}
\operatorname{Re}\left\langle h, K_{r e_{1}} h\right\rangle & =\frac{1}{2}\left(\|h\|^{2}+\left\|M_{K_{r e_{1}}} h\right\|^{2}-\left\|M_{r \zeta_{1}} M_{K_{r e_{1}}} h\right\|^{2}\right) \\
& =\frac{1}{2}\left(\|h\|^{2}+\left\langle\left(1-M_{r \zeta_{1}}^{*} M_{r \zeta_{1}}\right) M_{K_{r e_{1}}} h, M_{K_{r e_{1}}} h\right\rangle\right) \\
& =\frac{1}{2}\left(\|h\|^{2}+\left\|Q_{r e_{1}} M_{K_{r e_{1}}} h\right\|^{2}\right) . \tag{4.4}
\end{align*}
$$

This proves the proposition the special case $z=r e_{1}$, where $0 \leq r<1$ and $e_{1}=(1,0, \ldots, 0)$.
Now consider the general case. That is, $z=r u$, where $0 \leq r<1$ and u is a unit vector in \mathbf{C}^{n}. Again, let $U: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be a unitary transformation such that $U e_{1}=u$, and let W be the unitary operator on H_{n}^{2} defined by (3.6). We have $W M_{\langle\zeta, z\rangle}=M_{r \zeta_{1}} W$. Taking adjoints, since W is a unitary operator, we see that $W M_{\langle\zeta, z\rangle}^{*}=M_{r \zeta_{1}}^{*} W$. Thus

$$
W Q_{z}=Q_{r e_{1}} W
$$

Given an $h \in H_{n}^{2}$, we write $\eta=W h$. Repeating the argument in the proof of Proposition 3.1 and applying (4.4), we obtain

$$
\begin{aligned}
\operatorname{Re}\left\langle h, K_{z} h\right\rangle & =\operatorname{Re}\left\langle W h, W K_{z} h\right\rangle=\operatorname{Re}\left\langle\eta, K_{r e_{1}} \eta\right\rangle=\frac{1}{2}\left(\|\eta\|^{2}+\left\|Q_{r e_{1}} M_{K_{r e_{1}}} \eta\right\|^{2}\right) \\
& =\frac{1}{2}\left(\|W h\|^{2}+\left\|W Q_{z} M_{K_{z}} h\right\|^{2}\right)=\frac{1}{2}\left(\|h\|^{2}+\left\|Q_{z} M_{K_{z}} h\right\|^{2}\right)
\end{aligned}
$$

This completes the proof of the proposition.
For any normed space \mathcal{N} and any $x, y \in \mathcal{N}$, we always have

$$
\|x+y\|^{2} \leq 2\|x\|^{2}+2\|y\|^{2}
$$

Thus Proposition 4.1 immediately implies the following "quasi triangle inequality":
Corollary 4.2. For all $h, g \in H_{n}^{2}$ and $z \in \mathbf{B}$, we have

$$
\operatorname{Re}\left\langle h+g, K_{z}(h+g)\right\rangle \leq 2 \operatorname{Re}\left\langle h, K_{z} h\right\rangle+2 \operatorname{Re}\left\langle g, K_{z} g\right\rangle
$$

Proposition 4.3. Let $f \in \mathcal{M}$. Suppose that there is a $c>0$ and a sequence $\left\{r_{k}\right\}$ in $(0,1)$ such that $\lim _{k \rightarrow \infty} r_{k}=1$ and

$$
\begin{equation*}
\sup _{|z|=r_{k}} \operatorname{Re}\left\langle f, K_{z} f\right\rangle \geq c \log \frac{1}{1-r_{k}} \tag{4.5}
\end{equation*}
$$

for every $k \geq 1$. Then f belongs to the interior of $\mathcal{M} \backslash \mathcal{F}$.
Proof. We need to find an $\epsilon>0$ such that if $\gamma \in \mathcal{M}$ and $\|\gamma\|_{\mathcal{M}}<\epsilon$, then $f+\gamma \in \mathcal{M} \backslash \mathcal{F}$. To do this, consider any $\gamma \in \mathcal{M}$. Applying Corollary 4.2 to the case where $h=f+\gamma$ and $g=-\gamma$, we have

$$
\operatorname{Re}\left\langle f, K_{z} f\right\rangle \leq 2 \operatorname{Re}\left\langle f+\gamma, K_{z}(f+\gamma)\right\rangle+2 \operatorname{Re}\left\langle\gamma, K_{z} \gamma\right\rangle
$$

for every $z \in \mathbf{B}$. Applying Corollary 3.2 to $\operatorname{Re}\left\langle\gamma, K_{z} \gamma\right\rangle$, we obtain

$$
\operatorname{Re}\left\langle f, K_{z} f\right\rangle \leq 2 \operatorname{Re}\left\langle f+\gamma, K_{z}(f+\gamma)\right\rangle+2 C_{3.2}\|\gamma\|_{\mathcal{M}}^{2}\left(1+\log \frac{1}{1-|z|}\right)
$$

$z \in \mathbf{B}$. Combining this with (4.5), we find that

$$
2 \sup _{|z|=r_{k}} \operatorname{Re}\left\langle f+\gamma, K_{z}(f+\gamma)\right\rangle \geq\left(c-2 C_{3.2}\|\gamma\|_{\mathcal{M}}^{2}\right) \log \frac{1}{1-r_{k}}-2 C_{3.2}\|\gamma\|_{\mathcal{M}}^{2}
$$

for every $k \geq 1$. Now pick an $\epsilon>0$ such that $2 C_{3.2} \epsilon^{2}<c / 2$. For $\gamma \in \mathcal{M}$ satisfying the condition $\|\gamma\|_{\mathcal{M}}<\epsilon$, the above gives us

$$
2 \sup _{|z|=r_{k}} \operatorname{Re}\left\langle f+\gamma, K_{z}(f+\gamma)\right\rangle \geq \frac{c}{2} \log \frac{1}{1-r_{k}}-2 C_{3.2} \epsilon^{2} .
$$

Since this holds for every $k \geq 1$ and since $\lim _{k \rightarrow \infty} r_{k}=1$, we conclude that $f+\gamma \in \mathcal{M} \backslash \mathcal{F}$. This proves the proposition.

Proposition 4.4. Let $f \in \mathcal{M}$. Suppose that f has the property that for every $\epsilon>0$, there is an $r(\epsilon) \in(0,1)$ such that

$$
\begin{equation*}
\operatorname{Re}\left\langle f, K_{z} f\right\rangle \leq \epsilon \log \frac{1}{1-|z|} \quad \text { whenever } r(\epsilon) \leq|z|<1 \tag{4.6}
\end{equation*}
$$

Then for every $\xi \in \mathbf{C} \backslash\{0\}, f+\xi \varphi$ belongs to the interior of $\mathcal{M} \backslash \mathcal{F}$.
Proof. Given any $\xi \in \mathbf{C} \backslash\{0\}$, we pick an $\epsilon=\epsilon(\xi)>0$ such that $2 \epsilon<|\xi|^{2} c_{1.1} / 2$, where $c_{1.1}$ is the constant provided by Theorem 1.1. Applying Corollary 4.2 to the case where $h=f+\xi \varphi$ and $g=-f$, we obtain

$$
|\xi|^{2} \operatorname{Re}\left\langle\varphi, K_{z} \varphi\right\rangle \leq 2 \operatorname{Re}\left\langle f+\xi \varphi, K_{z}(f+\xi \varphi)\right\rangle+2 \operatorname{Re}\left\langle f, K_{z} f\right\rangle,
$$

$z \in$ B. Applying Theorem 1.1 on the left and (4.6) on the right, if $r(\epsilon) \leq r<1$, then

$$
\begin{aligned}
|\xi|^{2} c_{1.1} \log \frac{1}{1-r} & \leq|\xi|^{2} \sup _{|z|=r} \operatorname{Re}\left\langle\varphi, K_{z} \varphi\right\rangle \\
& \leq 2 \sup _{|z|=r}^{\operatorname{Re}}\left\langle f+\xi \varphi, K_{z}(f+\xi \varphi)\right\rangle+2 \epsilon \log \frac{1}{1-r}
\end{aligned}
$$

Since $2 \epsilon<|\xi|^{2} c_{1.1} / 2$, the obvious cancellation leads to

$$
\frac{|\xi|^{2} c_{1.1}}{2} \log \frac{1}{1-r} \leq 2 \sup _{|z|=r} \operatorname{Re}\left\langle f+\xi \varphi, K_{z}(f+\xi \varphi)\right\rangle
$$

for every $r(\epsilon) \leq r<1$. This shows that the function $f+\xi \varphi$ satisfies condition (4.5). By Proposition 4.3,f+ $\varphi \varphi$ is in the interior of $\mathcal{M} \backslash \mathcal{F}$ as promised.
Proof of Theorem 1.3. Let \mathcal{U} denote the interior of $\mathcal{M} \backslash \mathcal{F}$. Since $\mathcal{F} \subset \mathcal{M} \backslash \mathcal{U}$, it suffices to show that $\mathcal{M} \backslash \mathcal{U}$ is nowhere dense in \mathcal{M}. Since $\mathcal{M} \backslash \mathcal{U}$ is closed, the desired conclusion will follow if we can show that \mathcal{U} is dense in \mathcal{M}.

Consider any $f \in \mathcal{M}$. If f satisfies condition (4.5), then Proposition 4.3 tells us that $f \in \mathcal{U}$. If f fails condition (4.5), then f has no choice but to satisfy condition (4.6), in which case Proposition 4.4 provides the inclusion $\{f+\xi \varphi: \xi \in \mathbf{C} \backslash\{0\}\} \subset \mathcal{U}$. Thus we see that in either case, f is in the closure of \mathcal{U}. This completes the proof.

References

1. A. Aleman, M. Hartz, J. McCarthy and S. Richter, Factorizations induced by complete Nevanlinna-Pick factors, Adv. Math. 335 (2018), 372-404.
2. W. Arveson, Subalgebras of C^{*}-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), 159-228.
3. S. Drury, A generalization of von Neumann's inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978), 300-304.
4. Q. Fang and J. Xia, Commutators and localization on the Drury-Arveson space, J. Funct. Anal. 260 (2011), 639-673.
5. Q. Fang and J. Xia, On the problem of characterizing multipliers for the Drury-Arveson space, Indiana Univ. Math. J. 64 (2015), 663-696.
6. J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
7. A. Lubin, Weighted shifts and products of subnormal operators, Indiana Univ. Math.
J. 26 (1977), 839-845.
8. M. Mitkovski and B. Wick, A reproducing kernel thesis for operators on Bergman-type function spaces, J. Funct. Anal. 267 (2014), 2028-2055.
9. W. Rudin, Function theory in the unit ball of \mathbf{C}^{n}, Springer-Verlag, New York, 1980.

Quanlei Fang
Department of Mathematics and Computer Science, Bronx Community College, CUNY, Bronx, NY 10453
E-mail: quanlei.fang@bcc.cuny.edu
Jingbo Xia
Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260
E-mail: jxia@acsu.buffalo.edu

[^0]: 2010 Mathematics Subject Classification. Primary 46E25, 47B32.
 Key words and phrases. Drury-Arveson space, Multiplier.

