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Abstract. Let M be the collection of the multipliers of the Drury-Arveson space H2
n,

n ≥ 2. In a recent paper [1], Aleman et al showed that for f ∈ H2
n, the condition

sup|z|<1 Re〈f,Kzf〉 <∞ is sufficient for the membership f ∈M. We show that this condi-
tion is not necessary for f ∈M. Moreover, we show that the condition sup|z|<1 Re〈f,Kzf〉
< ∞ only captures a nowhere dense subset of M.

1. Introduction

Denote B = {z ∈ Cn : |z| < 1}, the unit ball in Cn. In this paper, the complex
dimension n is always assumed to be greater than or equal to 2. Recall that the Drury-
Arveson space H2

n is the Hilbert space of analytic functions on B that has the function

(1.1) Kz(ζ) =
1

1− 〈ζ, z〉
,

z, ζ ∈ B, as its reproducing kernel [2,3,7]. Equivalently, H2
n can be described as the Hilbert

space of analytic functions on B where the inner product is given by

〈h, g〉 =
∑
α∈Zn

+

α!

|α|!
aαbα

for

h(ζ) =
∑
α∈Zn

+

aαζ
α and g(ζ) =

∑
α∈Zn

+

bαζ
α.

Here and throughout, we follow the standard multi-index notation [9,page 3].

Perhaps, the most fascinating aspect of the Drury-Arveson space is its collection of
multipliers, which were introduced by Arveson. A function f ∈ H2

n is said to be a multiplier
of the Drury-Arveson space if fh ∈ H2

n for every h ∈ H2
n [2]. We will write M for the

collection of the multipliers of H2
n. If f ∈ M, then the multiplication operator Mf is

bounded on H2
n [2], and the multiplier norm ‖f‖M is defined to be the operator norm

‖Mf‖ on H2
n.
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An enduring challenge in the theory of the Drury-Arveson space, since its very incep-
tion, has been the quest for a good characterization of the membership in M. In other
words, we are asking a very instinctive question, what does a general f ∈M look like?

One’s first instinct is to turn to the normalized reproducing kernel for possible answers.
By (1.1), the normalized reproducing kernel for H2

n is given by the formula

kz(ζ) =
(1− |z|2)1/2

1− 〈ζ, z〉
,

z, ζ ∈ B. For example, anyone who gives any thought about multipliers is likely to examine
the condition

(1.2) sup
|z|<1

‖fkz‖ <∞

for f ∈ H2
n. In other words, one might ask, does (1.2) imply the membership f ∈ M?

Conditions of this type are now called “reproducing-kernel thesis” [8] and are among the
first things that one would check when it comes to boundedness. But as it turns out, (1.2)
is not sufficient for the membership f ∈M [5].

Recently in [1], Aleman et al examined a different condition, one that is in terms of
the unnormalized reproducing kernel Kz. They showed that for f ∈ H2

n, the condition

(1.3) sup
|z|<1

Re〈f,Kzf〉 <∞

is sufficient to imply the membership f ∈M [1,Corollary 4.6]. This naturally leads to the
question, is (1.3) necessary for the membership f ∈M?

In the same paper, Aleman et al showed that on the Dirichlet space Dα, 0 < α < 1,
on the unit disc in C, the analogue of condition (1.3) is not necessary for the multipliers
of Dα [1,Proposition 4.8]. But that does not settle the question for the Drury-Arveson
space H2

n, particularly in view of the fact that [1,Proposition 4.8] deals with a one-variable
situation. We will settle this question for the Drury-Arveson space.

Theorem 1.1. The function

(1.4) ϕ(ζ) =
ζ2√

1− ζ1
,

ζ = (ζ1, . . . , ζn) ∈ B, is a multiplier of the Drury-Arveson space H2
n. Moreover, there is a

constant c1.1 > 0 such that

(1.5) sup
|z|=r

Re〈ϕ,Kzϕ〉 ≥ c1.1
(

1 + log
1

1− r

)
for every 0 ≤ r < 1. In particular,

sup
|z|<1

Re〈ϕ,Kzϕ〉 =∞.
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We will see that the function ϕ given by (1.4), simple as it is, is already “extremal”
among the multipliers of H2

n in that lower bound (1.5) is actually sharp. The fact that
there are such extremal functions in M has consequences.

Definition 1.2. Let F denote the collection of f ∈M satisfying the condition

sup
|z|<1

Re〈f,Kzf〉 <∞.

Theorem 1.3. With respect to the multiplier norm ‖ · ‖M, F is nowhere dense in M.

The actual situation is even more shocking. We will see that for each f ∈ M, there
are just two possibilities: either f belongs to the interior of M\F outright, or f + ξϕ
belongs to the interior of M\F for every ξ ∈ C\{0}.

The rest of the paper is organized as follows. We will prove Theorem 1.1 in Section
2. Then in Section 3, we prove an upper bound for the growth of Re〈f,Kzf〉, |z| ↑ 1, for
f ∈M. Using this upper bound and (1.5), we prove Theorem 1.3 in Section 4.

2. Estimates on the unit disc

Let D denote the unit disc {w ∈ C : |w| < 1} in the complex plane C. We write dA
for the area measure on C with the normalization A(D) = 1.

Proposition 2.1. The measure

(2.1) dµ(w) =
1

|1− w|
dA(w)

defined on the unit disc D is a Carleson measure for the one-variable Hardy space H2 = H2
1 .

Proof. For each pair of θ ∈ R and 0 < ρ ≤ 1, define the sector

S(θ, ρ) = {reit : 1− ρ ≤ r < 1 and |t− θ| < ρ}

in D. It is well known that, to show that dµ is a Carleson measure for the one-variable
Hardy space H2 = H2

1 , it suffices to find a constant 0 < C <∞ such that

(2.2) µ(S(θ, ρ)) ≤ Cρ

for all θ ∈ R and 0 < ρ ≤ 1. See, e.g., [6,pages 238, 239].

To prove (2.2), for ξ ∈ C and a > 0 we define

∆(ξ, a) = {w ∈ C : |w − ξ| < a}.

Consider any w ∈ S(θ, ρ). That is, w = reit with 1− ρ ≤ r < 1 and |t− θ| < ρ. Then

|w − eiθ| ≤ |w − eit|+ |eit − eiθ| = 1− r + |1− ei(θ−t)| ≤ ρ+ |θ − t| < 2ρ.
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That is, we have

(2.3) S(θ, ρ) ⊂ ∆(eiθ, 2ρ) ∩D

for all θ ∈ R and 0 < ρ ≤ 1. For any θ ∈ R and a > 0, we have ∆(eiθ, a) ∩ D =
eiθ{∆(1, a) ∩D}, consequently

A(∆(eiθ, a) ∩D) = A(∆(1, a) ∩D).

This implies that for any θ ∈ R and a > 0, we have

(2.4) A({∆(eiθ, a)\∆(1, a)} ∩D) = A({∆(1, a)\∆(eiθ, a)} ∩D).

Obviously, if w ∈ ∆(eiθ, a)\∆(1, a) and w′ ∈ ∆(1, a)\∆(eiθ, a), then |1−w| ≥ a > |1−w′|.
Combining this fact with (2.3), (2.1) and (2.4), for θ ∈ R and 0 < ρ ≤ 1 we have

µ(S(θ, ρ)) ≤ µ(∆(eiθ, 2ρ) ∩D)

= µ(∆(eiθ, 2ρ) ∩∆(1, 2ρ) ∩D) + µ({∆(eiθ, 2ρ)\∆(1, 2ρ)} ∩D)

≤ µ(∆(eiθ, 2ρ) ∩∆(1, 2ρ) ∩D) + µ({∆(1, 2ρ)\∆(eiθ, 2ρ)} ∩D)

= µ(∆(1, 2ρ) ∩D).(2.5)

On the other hand, by (2.1) and the translation invariance of dA, we have

µ(∆(1, 2ρ) ∩D) ≤
∫

∆(1,2ρ)

dA(w)

|1− w|
=

∫
∆(0,2ρ)

1

|w|
dA(w) = 2

∫ 2ρ

0

1

r
rdr = 4ρ.

Combining this with (2.5), we obtain µ(S(θ, ρ)) ≤ 4ρ for all θ ∈ R and 0 < ρ ≤ 1. This
proves (2.2) and completes the proof of the proposition. �

As it turns out, the key to the proof of Theorem 1.1 is an orthogonal decomposition
for the Drury-Arveson space H2

n that we introduced in [4], which we now recall.

Define the subset B = {(0, β2, . . . , βn) : β2, . . . , βn ∈ Z+} of Zn+. As before, write
ζ = (ζ1, . . . , ζn). The definition of B ensures that for β, β′ ∈ B and k, k′ ∈ Z+, we have

(2.6) 〈ζk1 ζβ , ζk
′

1 ζ
β′
〉 = 0 whenever (k, β) 6= (k′, β′).

For each β ∈ B, define the closed linear subspace

Hβ = span{ζk1 ζβ : k ≥ 0}

of H2
n. Then we have the orthogonal decomposition

(2.7) H2
n =

⊕
β∈B

Hβ .
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Obviously, H0 is the one-variable Hardy space H2 = H2
1 , which is where Proposition 2.1

will be applied.

If β ∈ B\{0}, Hβ can be naturally identified with a weighted Bergman space on D.
Indeed it is elementary to verify that if β ∈ B\{0}, then

(2.8) ‖ζk1 ζβ‖2 =
β!

(|β| − 1)!

∫
D

|wk|2(1− |w|2)|β|−1dA(w)

for every k ∈ Z+.

Let T denote the unit circle {τ ∈ C : |τ | = 1}. Write dm for the Lebesgue measure
on T with the normalization m(T) = 1. Given h, g ∈ H2

n, (2.7) gives us the representation

h(ζ) =
∑
β∈B

hβ(ζ1)ζβ and g(ζ) =
∑
β∈B

gβ(ζ1)ζβ ,

where hβ and gβ are one-variable analytic functions, β ∈ B. By (2.6) and (2.8), we have

(2.9) 〈h, g〉 =

∫
T

h0g0dm+
∑

β∈B\{0}

β!

(|β| − 1)!

∫
D

hβ(w)gβ(w)(1− |w|2)|β|−1dA(w).

Arveson taught us that 〈h, g〉 cannot be expressed as a single integral [2,Corollary 2]. That
notwithstanding, (2.9) expresses 〈h, g〉 as a sum of convenient integrals, which was one of
the crucial observations in [4].

Another ingredient in the proof of Theorem 1.1 is a particular Forelli-Rudin estimate.
Recall that we have

(2.10)

∫
D

1− |w|2

|1− rw|3
dA(w) ≈ 1 + log

1

1− r

for 0 ≤ r < 1. See, e.g., [9,Proposition 1.4.10].

In our analysis of Re〈f,Kzf〉, the identity

(2.11) Re
1

1− w
=

1

2
· 1− |w|2

|1− w|2
+

1

2
, w ∈ D,

plays a special role. In fact, (2.11) plays a role that is very much like, but not exactly the
same as, the Poisson kernel. This explains the phrase “Poisson-like condition” in the title
of the paper.

Proof of Theorem 1.1. Let us first show that ϕ ∈ M. Denote e2 = (0, 1, 0, . . . , 0). Given
any h ∈ H2

n, (2.7) provides the representation

(2.12) h(ζ) =
∑
β∈B

hβ(ζ1)ζβ .
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Then

(ϕh)(ζ) =
∑
β∈B

hβ(ζ1)√
1− ζ1

ζβ+e2 ,

and (2.9) gives us

(2.13) ‖ϕh‖2 =

∫
D

|h0(w)|2

|1− w|
dA(w) +

∑
β∈B\{0}

(β + e2)!

|β|!

∫
D

|hβ(w)|2

|1− w|
(1− |w|2)|β|dA(w).

By Proposition 2.1, there is a constant 0 < C <∞ such that∫
D

|h0(w)|2

|1− w|
dA(w) ≤ C

∫
T

|h0|2dm.

Obviously, 1− |w| ≤ |1− w| for every w ∈ D. Hence if β ∈ B\{0}, then∫
D

|hβ(w)|2

|1− w|
(1− |w|2)|β|dA(w) ≤ 2

∫
D

|hβ(w)|2(1− |w|2)|β|−1dA(w).

For β ∈ B\{0}, if we write β = (0, β2, . . . , βn), then

(β + e2)!

|β|!
=
β2 + 1

|β|
· β!

(|β| − 1)!
≤ 2

β!

(|β| − 1)!
.

Substituting these three inequalities in (2.13), we find that

‖ϕh‖2 ≤ C
∫
T

|h0|2dm+ 4
∑

β∈B\{0}

β!

(|β| − 1)!

∫
D

|hβ(w)|2(1− |w|2)|β|−1dA(w).

By (2.9), this means ‖ϕh‖2 ≤ C1‖h‖2, where C1 = max{C, 4}. Hence ϕ is a multiplier of
the Drury-Arveson space H2

n.

To prove (1.5), let us denote e1 = (1, 0, . . . , 0). For 0 ≤ r < 1, we have

Kre1(ζ) =
1

1− rζ1
and (Kre1ϕ)(ζ) =

ζ2

(1− rζ1)
√

1− ζ1
.

Thus (2.9) gives us

〈ϕ,Kre1ϕ〉 =

∫
D

dA(w)

(1− rw)|1− w|
.

Applying (2.11), we obtain

Re〈ϕ,Kre1ϕ〉 =

∫
D

Re

(
1

1− rw

)
dA(w)

|1− w|
=

1

2

∫
D

(
1− |rw|2

|1− rw|2
+ 1

)
dA(w)

|1− w|
.
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For 0 ≤ r < 1 and w ∈ D, it is elementary that |1− w| ≤ 2|1− rw|. Hence

Re〈ϕ,Kre1ϕ〉 ≥
1

4

∫
D

1− |rw|2

|1− rw|3
dA(w) +

1

4
≥ 1

4

∫
D

1− |w|2

|1− rw|3
dA(w) +

1

4
.

Combining this with (2.10), (1.5) follows. This completes the proof of Theorem 1.1. �

3. A necessary condition for the membership f ∈M

Having proved Theorem 1.1, our next task is to derive an upper bound for the growth
of Re〈f,Kzf〉 as |z| ↑ 1. For each j ∈ Z+, define

ρj = 1− 2−j .

Proposition 3.1. Let h ∈ H2
n. If z ∈ B satisfies the condition 1− 2−k ≤ |z| < 1− 2−k−1

for some k ∈ Z+, then

Re〈h,Kzh〉 ≤ 10

(
‖hkz‖2 +

k∑
j=0

‖hkρjz‖2
)
.

Proof. First, consider z = re1, where e1 = (1, 0, . . . , 0) and 1 − 2−k ≤ r < 1 − 2−k−1 for
some k ∈ Z+. Given an h ∈ H2

n, we again represent it in the form (2.12). Then by (2.9),

〈h,Kre1h〉 =

∫
T

|h0(τ)|2

1− rτ
dm(τ) +

∑
β∈B\{0}

β!

(|β| − 1)!

∫
D

|hβ(w)|2

1− rw
(1− |w|2)|β|−1dA(w).

Combining this with (2.11), we find that

Re〈h,Kre1h〉 =
1

2
‖h‖2 +

1

2
‖h0kre1‖2

+
1

2

∑
β∈B\{0}

β!

(|β| − 1)!

∫
D

|hβ(w)|2 1− |rw|2

|1− rw|2
(1− |w|2)|β|−1dA(w).(3.1)

Since 1− |rw|2 = 1− r2 + r2(1− |w|2), the above gives us

Re〈h,Kre1h〉 =
1

2
‖h‖2 +

1

2
‖hkre1‖2

+
r2

2

∑
β∈B\{0}

β!

(|β| − 1)!

∫
D

|hβ(w)|2 1− |w|2

|1− rw|2
(1− |w|2)|β|−1dA(w).(3.2)

To proceed further, we decompose the unit disc D. For each j ∈ Z+, we define

Rj = {w ∈ C : 1− 2−j−1 ≤ |w| < 1} and Dj = {w ∈ C : 1− 2−j ≤ |w| < 1− 2−j−1}.

7



Since D = D0 ∪ · · · ∪Dk ∪Rk, from (3.2) we obtain

(3.3) Re〈h,Kre1h〉 =
1

2
‖h‖2 +

1

2
‖hkre1‖2 +

r2

2
Ak +

r2

2

k∑
j=0

Bj ,

where

Ak =
∑

β∈B\{0}

β!

(|β| − 1)!

∫
Rk

|hβ(w)|2 1− |w|2

|1− rw|2
(1− |w|2)|β|−1dA(w) and

Bj =
∑

β∈B\{0}

β!

(|β| − 1)!

∫
Dj

|hβ(w)|2 1− |w|2

|1− rw|2
(1− |w|2)|β|−1dA(w)

for j = 0, . . . , k. Let us first consider Ak. For w ∈ Rk, we have 1 − |w|2 ≤ 2 · 2−k−1 <
2(1− r) ≤ 2(1− r2). Combining this with (2.9), we see that

(3.4) Ak ≤ 2‖hkre1‖2.

On the other hand, if w ∈ Dj , then 1 − |w|2 ≤ 2 · 2−j = 2(1 − ρj) ≤ 2(1 − (ρjr)
2). Also,

for w ∈ Dj , we have |1 − rw| ≥ 1 − |w| > 2−j−1 = (1/2)(1 − ρj). Thus if w ∈ Dj , then
|1− ρjrw| ≤ 1− ρj + |1− rw| ≤ 3|1− rw|. Hence the inequality

1− |w|2

|1− rw|2
≤ 18

1− (ρjr)
2

|1− ρjrw|2

holds when w ∈ Dj . Applying (2.9) once more, we have

(3.5) Bj ≤ 18‖hkρjre1‖2

for j = 0, . . . , k. Combining (3.3), (3.4) and (3.5), we obtain

Re〈h,Kre1h〉 ≤ ‖h‖2 + 2‖hkre1‖2 + 9
k∑
j=0

‖hkρjre1‖2.

Since ρ0 = 0 and k0 is the constant function 1, this proves the proposition in the case
where z = re1 and 1− 2−k ≤ r < 1− 2−k−1 for some k ∈ Z+.

Now consider the general case. That is z = ru, where 1 − 2−k ≤ r < 1 − 2−k−1 for
some k ∈ Z+ and u is a unit vector in Cn. Let U : Cn → Cn be a unitary transformation
such that Ue1 = u. Then it gives rise to the unitary operator W on H2

n by the formula

(3.6) (Wg)(ζ) = g(Uζ),
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g ∈ H2
n. We have WKz = Kre1 , Wkz = kre1 and Wkρjz = kρjre1 for j = 0, . . . , k. Given

an h ∈ H2
n, we write η = Wh. Applying the special case proved above, we have

Re〈h,Kzh〉 = Re〈Wh,WKzh〉 = Re〈η,Kre1η〉

≤ 10

(
‖ηkre1‖2 +

k∑
j=0

‖ηkρjrej‖2
)

= 10

(
‖W (hkz)‖2 +

k∑
j=0

‖W (hkρjz)‖2
)

= 10

(
‖hkz‖2 +

k∑
j=0

‖hkρjz‖2
)
.

This completes the proof of the proposition. �

Note that if 1− 2−k ≤ |z| < 1− 2−k−1, k ∈ Z+, then k + 2 ≈ 1− log(1− |z|). Thus
from Proposition 3.1 we immediately obtain

Corollary 3.2. There is a constant 0 < C3.2 <∞ such that

Re〈f,Kzf〉 ≤ C3.2‖f‖2M
(

1 + log
1

1− |z|

)
for all f ∈M and z ∈ B.

Thus lower bound (1.5) is sharp. The above upper bound motivates us to introduce

Definition 3.3. An element h ∈ H2
n is said to be in the class (H2

n)log if there is a constant
C = C(h) ∈ (0,∞) such that

Re〈h,Kzh〉 ≤ C
(

1 + log
1

1− |z|

)
for every z ∈ B.

Proposition 3.4. The condition f ∈ (H2
n)log is necessary, but not sufficient, for the

membership f ∈M. That is, (H2
n)log ⊃M and (H2

n)log 6=M.

Proof. Obviously, the inclusion (H2
n)log ⊃ M follows from Corollary 3.2. To prove that

(H2
n)log 6=M, we apply [5,Theorem 1.2], which provides an f ∈ H2

n such that f /∈M and
yet ‖f‖′ <∞, where

‖f‖′ = sup
|z|<1

‖fkz‖.

By Proposition 3.1, we have

Re〈f,Kzf〉 ≤ 10(‖f‖′)2(k + 2)

if 1− 2−k ≤ |z| < 1− 2−k−1, k ∈ Z+. Since ‖f‖′ <∞, this implies f ∈ (H2
n)log. �

4. A non-commutative Poisson kernel
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Recall that when f ∈M, we write Mf for the operator of multiplication by f on H2
n.

In particular, (M〈ζ,z〉h)(ζ) = 〈ζ, z〉h(ζ), h ∈ H2
n. For z ∈ B, we have ‖M〈ζ,z〉‖ = |z| < 1.

Thus for each z ∈ B, we can define the “defect operator”

Qz = (1−M∗〈ζ,z〉M〈ζ,z〉)
1/2.

Proposition 4.1. For h ∈ H2
n and z ∈ B, we have

Re〈h,Kzh〉 =
1

2
(‖h‖2 + ‖QzMKz

h‖2).

Proof. Again, we first consider the case z = re1, where 0 ≤ r < 1 and e1 = (1, 0, . . . , 0).
In this case M〈ζ,z〉 = Mrζ1 . Given an h ∈ H2

n, we write it in the form (2.12). Then the
corresponding decompositions for MKre1

h and Mrζ1MKre1
h are

(4.1) (MKre1
h)(ζ) =

∑
β∈B

hβ(ζ1)

1− rζ1
ζβ and (Mrζ1MKre1

h)(ζ) =
∑
β∈B

rζ1hβ(ζ1)

1− rζ1
ζβ .

Since the restriction of Mζ1 to H0 = H2 is an isometry, we have

(4.2) ‖h0kre1‖2 = ‖MKre1
h0‖2 − r2‖MKre1

h0‖2 = ‖MKre1
h0‖2 − ‖Mrζ1MKre1

h0‖2.

For each β ∈ B\{0}, we have∫
D

|hβ(w)|2 1− |rw|2

|1− rw|2
(1− |w|2)|β|−1dA(w)

=

∫
D

∣∣∣∣ hβ(w)

1− rw

∣∣∣∣2(1− |w|2)|β|−1dA(w)−
∫
D

∣∣∣∣rwhβ(w)

1− rw

∣∣∣∣2(1− |w|2)|β|−1dA(w).(4.3)

Substituting (4.2) and (4.3) in (3.1), it now follows from (2.9) and (4.1) that

Re〈h,Kre1h〉 =
1

2
(‖h‖2 + ‖MKre1

h‖2 − ‖Mrζ1MKre1
h‖2)

=
1

2
(‖h‖2 + 〈(1−M∗rζ1Mrζ1)MKre1

h,MKre1
h〉)

=
1

2
(‖h‖2 + ‖Qre1MKre1

h‖2).(4.4)

This proves the proposition the special case z = re1, where 0 ≤ r < 1 and e1 = (1, 0, . . . , 0).

Now consider the general case. That is, z = ru, where 0 ≤ r < 1 and u is a unit
vector in Cn. Again, let U : Cn → Cn be a unitary transformation such that Ue1 = u,
and let W be the unitary operator on H2

n defined by (3.6). We have WM〈ζ,z〉 = Mrζ1W .
Taking adjoints, since W is a unitary operator, we see that WM∗〈ζ,z〉 = M∗rζ1W . Thus

WQz = Qre1W.
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Given an h ∈ H2
n, we write η = Wh. Repeating the argument in the proof of Proposition

3.1 and applying (4.4), we obtain

Re〈h,Kzh〉 = Re〈Wh,WKzh〉 = Re〈η,Kre1η〉 =
1

2
(‖η‖2 + ‖Qre1MKre1

η‖2)

=
1

2
(‖Wh‖2 + ‖WQzMKz

h‖2) =
1

2
(‖h‖2 + ‖QzMKz

h‖2).

This completes the proof of the proposition. �

For any normed space N and any x, y ∈ N , we always have

‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2.

Thus Proposition 4.1 immediately implies the following “quasi triangle inequality”:

Corollary 4.2. For all h, g ∈ H2
n and z ∈ B, we have

Re〈h+ g,Kz(h+ g)〉 ≤ 2Re〈h,Kzh〉+ 2Re〈g,Kzg〉.

Proposition 4.3. Let f ∈M. Suppose that there is a c > 0 and a sequence {rk} in (0, 1)
such that limk→∞ rk = 1 and

(4.5) sup
|z|=rk

Re〈f,Kzf〉 ≥ c log
1

1− rk

for every k ≥ 1. Then f belongs to the interior of M\F .

Proof. We need to find an ε > 0 such that if γ ∈ M and ‖γ‖M < ε, then f + γ ∈ M\F .
To do this, consider any γ ∈M. Applying Corollary 4.2 to the case where h = f + γ and
g = −γ, we have

Re〈f,Kzf〉 ≤ 2Re〈f + γ,Kz(f + γ)〉+ 2Re〈γ,Kzγ〉

for every z ∈ B. Applying Corollary 3.2 to Re〈γ,Kzγ〉, we obtain

Re〈f,Kzf〉 ≤ 2Re〈f + γ,Kz(f + γ)〉+ 2C3.2‖γ‖2M
(

1 + log
1

1− |z|

)
,

z ∈ B. Combining this with (4.5), we find that

2 sup
|z|=rk

Re〈f + γ,Kz(f + γ)〉 ≥ (c− 2C3.2‖γ‖2M) log
1

1− rk
− 2C3.2‖γ‖2M

for every k ≥ 1. Now pick an ε > 0 such that 2C3.2ε
2 < c/2. For γ ∈ M satisfying the

condition ‖γ‖M < ε, the above gives us

2 sup
|z|=rk

Re〈f + γ,Kz(f + γ)〉 ≥ c

2
log

1

1− rk
− 2C3.2ε

2.
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Since this holds for every k ≥ 1 and since limk→∞ rk = 1, we conclude that f + γ ∈M\F .
This proves the proposition. �

Proposition 4.4. Let f ∈M. Suppose that f has the property that for every ε > 0, there
is an r(ε) ∈ (0, 1) such that

(4.6) Re〈f,Kzf〉 ≤ ε log
1

1− |z|
whenever r(ε) ≤ |z| < 1.

Then for every ξ ∈ C\{0}, f + ξϕ belongs to the interior of M\F .

Proof. Given any ξ ∈ C\{0}, we pick an ε = ε(ξ) > 0 such that 2ε < |ξ|2c1.1/2, where
c1.1 is the constant provided by Theorem 1.1. Applying Corollary 4.2 to the case where
h = f + ξϕ and g = −f , we obtain

|ξ|2Re〈ϕ,Kzϕ〉 ≤ 2Re〈f + ξϕ,Kz(f + ξϕ)〉+ 2Re〈f,Kzf〉,

z ∈ B. Applying Theorem 1.1 on the left and (4.6) on the right, if r(ε) ≤ r < 1, then

|ξ|2c1.1 log
1

1− r
≤ |ξ|2 sup

|z|=r
Re〈ϕ,Kzϕ〉

≤ 2 sup
|z|=r

Re〈f + ξϕ,Kz(f + ξϕ)〉+ 2ε log
1

1− r
.

Since 2ε < |ξ|2c1.1/2, the obvious cancellation leads to

|ξ|2c1.1
2

log
1

1− r
≤ 2 sup

|z|=r
Re〈f + ξϕ,Kz(f + ξϕ)〉

for every r(ε) ≤ r < 1. This shows that the function f + ξϕ satisfies condition (4.5). By
Proposition 4.3, f + ξϕ is in the interior of M\F as promised. �

Proof of Theorem 1.3. Let U denote the interior of M\F . Since F ⊂ M\U , it suffices to
show that M\U is nowhere dense in M. Since M\U is closed, the desired conclusion will
follow if we can show that U is dense in M.

Consider any f ∈ M. If f satisfies condition (4.5), then Proposition 4.3 tells us that
f ∈ U . If f fails condition (4.5), then f has no choice but to satisfy condition (4.6), in
which case Proposition 4.4 provides the inclusion {f + ξϕ : ξ ∈ C\{0}} ⊂ U . Thus we see
that in either case, f is in the closure of U . This completes the proof. �
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