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Abstract. We give a brief review of the Drury-Arveson space and its associated operator theory.
We then survey those recent results on that space where analytical methods play a predominant
role. A number of open problems are also discussed.

1. Introduction

The space that is now simply denoted H2
n, first appeared in [24, 40, 41]. In [41], Lubin used this

space to produce the first example of a tuple of commuting subnormal operators that does not
admit a joint normal extension. Drury’s motivation in [24] was to find the correct multi-operator
analogue of the von Neumann inequality for contractions.

But it was Arveson’s seminal paper [5] published twenty years ago that really brought H2
n

to the attention of the operator-theory community. Although it initially went under various
appellations, the community seems to have now settled on the name “Drury-Arveson space” for
H2
n. Therefore we will use the term “Drury-Arveson space” in this survey, as we have always

done in our previous writings.

Let B be the open unit ball in Cn. Throughout the article, the complex dimension n is always
assumed to be greater than or equal to 2. Recall that the Drury-Arveson space H2

n is the Hilbert
space of analytic functions on B that has the function

Kz(ζ) =
1

1− 〈ζ, z〉
(1.1)

as its reproducing kernel [5]. Equivalently, H2
n can be described as the Hilbert space of analytic

functions on B where the inner product is given by

〈h, g〉 =
∑
α∈Zn

+

α!

|α|!
aαbα

for
h(ζ) =

∑
α∈Zn

+

aαζ
α and g(ζ) =

∑
α∈Zn

+

bαζ
α.

Here and throughout, we follow the standard multi-index notation [46, page 3].

Arveson derived the space H2
n from the view point of dilation theory, and he was the first

to recognize that H2
n is a reproducing-kernel Hilbert space with (1.1) as its reproducing kernel

[5]. Based on this Arveson regarded H2
n as an generalization of the Hardy space. At the same
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time, Arveson recognized that H2
n is fundamentally different from the traditional Hardy space

and Bergman space in that it cannot be defined in terms of a measure.

Today, we view the Drury-Arveson space, the Hardy space and the Bergman space all as mem-
bers of a continuum family of reproducing-kernel Hilbert spaces parametrized by their “weight”,
t ∈ [−n,∞).

However one views the Drury-Arveson space, it is a place where one can do a lot of exciting
operator theory, function theory and analysis. In the last twenty years, the collective effort of
the operator-theory community has produced a huge body of literature on H2

n. In this article we
will offer some of our own perspectives on the theory of Drury-Arveson space. We will also take
a look at some of the recent developments. This review is not intended to be comprehensive in
any way. On the contrary, we will limit the article to the aspects of the Drury-Arveson space
that are most familiar to us.

Acknowledgement. We are grateful to Ronald G. Douglas for bringing Lubin’s work [40, 41]
to our attention.

2. von Neumann inequality for row contractions

Both Drury and Arveson arrived at the space H2
n by considering the proper generalization

of the von Neumann inequality to commuting tuples (A1, . . . , An) of operators. After initial
experimentations [44, 48] with ‖·‖∞ as the “right-hand side” of such an inequality, it was quickly
realized that a different norm is needed, and that the condition that each Ai individually be a
contraction is not enough. The proper setting for such a generalization is the row contarctions.

A commuting tuple of operators (A1, . . . , An) on a Hilberts space H is said to be a row
contraction if the operator inequality

A1A
∗
1 + · · ·+ AnA

∗
n ≤ 1

holds on H. Equivalently, (A1, . . . , An) is a row contraction if and only if

‖A1x1 + · · ·+ Anxn‖2 ≤ ‖x1‖2 + · · ·+ ‖xn‖2

for all x1, . . . , xn ∈ H. For such a tuple, the von Neumann inequality reads

‖p(A1, . . . , An)‖ ≤ ‖p‖M (2.1)

for every p ∈ C[z1, . . . , zn] [5, 24]. Here, ‖p‖M is the multiplier norm of p, the norm of the
operator of multiplication by the polynomial p on H2

n. Both Drury and Arveson showed that in
general ‖p‖M is not dominated by the supremum norm of p on B.

Drury’s proof of (2.1) in [24] is particularly simple and can be easily explained here. First
of all, Drury observed that in order to prove (2.1), it suffices to consider commuting tuples
A = (A1, . . . , An) on H satisfying the condition

A1A
∗
1 + · · ·+ AnA

∗
n ≤ r (2.2)

for some 0 < r < 1. For such a tuple, one easily verifies that the combinatorial identity∑
α∈Zn

+

|α|!
α!

Aα(1− A1A
∗
1 − · · · − AnA∗n)A∗α = 1 (2.3)
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holds. Now define the operator Z : H → H2
n ⊗H by the formula

(Zx)(ζ) =
∑
α∈Zn

+

|α|!
α!

(1− A1A
∗
1 − · · · − AnA∗n)1/2A∗αxζα, x ∈ H. (2.4)

Then (2.3) ensures that Z is an isometry. It is straightforward to verify that

Zp(A∗1, . . . , A
∗
n) = (p(M∗

ζ1
, . . . ,M∗

ζn)⊗ 1)Z (2.5)

for every p ∈ C[z1, . . . , zn]. Since Z is an isometry, this implies (2.1).

We would like to make two comments at this point. First, if one is aware of the combinatorial
identity (2.3), one can go backwards to figure out the proper definition for H2

n based on the
requirement that the operator Z defined by (2.4) be an isometry. Second, (2.3) is what one
usually calls a resolution of the identity operator. Such resolutions can be exploited in various
ways, and we will come back to this point later.

By Drury’s combinatorial argument, for a commuting row contraction (A1, . . . , An) = A, the
resolution of identity (2.3) holds whenever

lim
k→∞

∑
|α|=k

|α|!
α!

AαA∗α = 0 (2.6)

in the strong operator topology. Obviously, (2.6) is a much weaker condition than (2.2). Thus
(2.3) holds for many more commuting row contractions than those satisfying condition (2.2). A
commuting row contraction satisfying (2.6) is said to be pure [5, 6].

3. The multipliers

A fundamental contribution that Arveson made in [5] was that he took the idea of ‖ · ‖M one
step further to introduce general multipliers for H2

n, which turn out to be a constant source of
fascination for the Drury-Arveson space community today. A function f ∈ H2

n is said to be a
multiplier of the Drury-Arveson space if fh ∈ H2

n for every h ∈ H2
n [5]. We will writeM for the

collection of the multipliers of H2
n. If f ∈ M, then the multiplication operator Mf is bounded

on H2
n [5], and the multiplier norm ‖f‖M is defined to be the operator norm ‖Mf‖ on H2

n.

There are many more questions about the multipliers than there are answers. We begin with
the few things that we do know about M. The most significant piece of knowledge about M is
the corona theorem due to Costea, Sawyer and Wick.

Theorem 3.1. [16] For g1, . . . , gk ∈M, if there is a c > 0 such that

|g1(ζ)|+ · · ·+ |gk(ζ)| ≥ c

for every ζ ∈ B, then there exist f1, . . . , fk ∈M such that

f1g1 + · · ·+ fkgk = 1.

This is so far the only success story with regard to the corona theorem in the multi-variable
setting. A special case of the corona theorem is the one-function corona theorem:

Corollary 3.2. For f ∈ M, if there is a c > 0 such that |f(ζ)| ≥ c for every ζ ∈ B, then
1/f ∈M.
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While the proof of the full version of the corona theorem involves difficult analysis [16] and
is very long, the one-function corona theorem can be directly proved with a short, soft and
elementary argument [30]. An essential ingredient in the direct proof of Corollary 3.2 in [30] was
the von Neumann inequality (2.1). But it is worth mentioning that other than the use of (2.1),
the rest of the proof in [30] was completely self-contained.

Since the publication of [30], there has been a proof of Corollary 3.2 in [45] that claims to be
“significantly shorter”. But the proof in [45] relies heavily on facts established in [1, 12, 43]. To
begin with, the proof in [45] required the fact thatM is contained in the collection CH2

n defined
in that paper, and for this inclusion [45] simply cited [43]. Thus if one follows the argument
in [45], then much of the work for proving Corollary 3.2 was actually done in [1, 12, 43]. This
differs significantly from our purpose in [30], namely to give a proof of Corollary 3.2 that does
not require references.

From Corollary 3.2 we immediately obtain

Corollary 3.3. Let f ∈ M. Then the spectrum of the multiplication operator Mf on H2
n is

contained in the closure of {f(z) : z ∈ B}.

In the case f ∈ C[z1, . . . , zn], this fact was already known to Arveson in [5], where he proved
it using a Banach-algebra argument. The converse of Corollary 3.3, namely for f ∈ M the
spectrum of Mf contains {f(z) : z ∈ B}, is trivial. In fact, using the reproducing kernel, for

every f ∈ M we have M∗
fKz = f(z)Kz, z ∈ B. Thus for each z ∈ B, f(z) is an eigenvalue for

M∗
f .

Nowadays, one commonly views the Drury-Arveson space H2
n as a Hilbert module over the

polynomial ring C[z1, . . . , zn]. In fact, one often refers to H2
n as the Drury-Arveson module, in

various contexts. But where there are modules, there are submodules. A submodule of the Drury-
Arveson module is a closed linear subspace S of H2

n that is invariant under the multiplication by
C[z1, . . . , zn]. In other words, a submodule is what one would otherwise call an invariant subspace
of H2

n. The next proposition sets H2
n apart from other reproducing-kernel Hilbert spaces on B.

Proposition 3.4. [6] Let S be a submodule of the Drury-Arveson module. If S 6= {0}, then
S ∩M 6= {0}.

One obvious consequence of Proposition 3.4 is the following:

Corollary 3.5. Let S1, S2 be submodules of the Drury-Arveson module. If S1 6= {0} and
S2 6= {0}, then S1 ∩ S2 6= {0}.

In the jargon of invariant-subspace theory, Corollary 3.5 says that there are no non-trivial
invariant subspaces of H2

n that are disjoint. If n = 1, then this is a consequence of Beurling’s
theorem. So one might interpret Corollary 3.5 as saying that this one particular aspect of
Beurling’s theorem is retained by H2

n for all n ≥ 2.

This is definitely not the case for some of the other reproducing-kernel Hilbert spaces. For
example, one can easily construct invariant subspaces N1, N2 of the Bergman space L2

a(B, dv)
such that N1 ∩ N2 = {0} while N1 6= {0} and N2 6= {0}. In particular, this implies that
N1 ∩H∞(B) = {0} and N2 ∩H∞(B) = {0}.
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Incidentally, Proposition 3.4 can also be proved using Drury’s ideas. In fact, define

ZS,i = Mζi |S, i = 1, . . . , n. (3.1)

It is easy to verify that (ZS,1, . . . ,ZS,n) is a row contraction on S. Moreover, it is easy to show
that (2.6) holds for the tuple (A1, . . . , An) = (ZS,1, . . . ,ZS,n), consequently so does the resolution
of identity (2.3). Then, taking adjoints on both sides of (2.5), we find that

p(ZS,1, . . . ,ZS,n)Z∗ = Z∗(p(Mζ1 , . . . ,Mζn)⊗ 1), (3.2)

p ∈ C[z1, . . . , zn]. For each y ∈ S, set ϕy = Z∗(1⊗ y) ∈ S. The above gives us

‖pϕy‖H2
n

= ‖pϕy‖S ≤ ‖p⊗ y‖H2
n⊗S = ‖p‖H2

n
‖y‖S

for every p ∈ C[z1, . . . , zn]. This means that ϕy ∈ M. Finally, since the linear span of all
pϕy = Z∗(p⊗ y) is dense in S, the condition S 6= {0} implies that ϕy 6= 0 for some y ∈ S.

The argument above has the virtue that it is based on (2.5), the same thing that establishes
the von Neumann inequality for commuting row contractions. This connection clearly makes
Proposition 3.4 a “close cousin” of the von Neumann inequality (2.1).

The above argument can be pushed even further. Let {uj : j ∈ J} be an orthonormal basis
in S. For each j ∈ J , write ϕj = Z∗(1 ⊗ uj), which we now know is a multiplier for H2

n. Let
{fj : j ∈ J} ⊂ H2

n be such that
∑

j∈J ‖fj‖2 <∞. Then it follows from (3.2) that

Z∗
∑
j∈J

fj ⊗ uj =
∑
j∈J

fjϕj =
∑
j∈J

Mϕj
fj.

In other words, there is a unitary operator U such that Z∗U is the row operator

[Mϕ1 ,Mϕ2 , . . . ] : H2
n ⊕H2

n ⊕ · · · → S.
Since Z∗Z = 1 on S, this leads to the representation

PS =
∑
j∈J

Mϕj
M∗

ϕj

for the orthogonal projection PS : H2
n → S, which first appeared in Arveson’s paper [6].

Theorem 3.6. [27] Let S be a submodule of the Drury-Arveson module H2
n and define the

corresponding defect operator

DS = [Z∗S,1,ZS,1] + · · ·+ [Z∗S,n,ZS,n].

Suppose that S 6= {0}. Then there is an ε = ε(S) > 0 such that

s1(DS) + · · ·+ sk(DS) ≥ εk(n−1)/n

for every k ∈ N. Consequently, DS does not belong to the Schatten class Cn.

Analogue of Theorem 3.6 also holds for submodules of the Hardy module [27]. But, thanks to
Proposition 3.4, the proof of Theorem 3.6 is much easier than the proof of its analogue on the
Hardy space. This is a good example of applications of multipliers. Incidentally, the analogue
of Theorem 3.6 is not known to be true or false in the Bergman-space case, although one would
certainly expect this analogue to be true. In fact, the possible Bergman-space analogue of
Theorem 3.6 seems to be a very hard problem.
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One reason the Bergman space and the Hardy space attract attention is that there are Toeplitz
operators defined there, and every aspect of these operators is thoroughly studied. For the Drury-
Arveson space H2

n, n ≥ 2, there is no L2 space associated with it. Thus the only kind of “Toeplitz
operators” on H2

n are the multipliers and their adjoints. Nevertheless, these operators retain
certain familiar properties of Toeplitz operators. One noticeable such property is the essential
commutativity. Arveson showed in [5] that the commutators [M∗

ζi
,Mζj ] on H2

n all belong to
the Schatten class Cp for p > n. Such essential commutativity was later generalized to include
multipliers:

Theorem 3.7. [28] Let f ∈ M and j ∈ {1, . . . , n}. Then on H2
n, the commutator [M∗

f ,Mζj ]
belongs to the Schatten class Cp for p > 2n. Moreover, for each 2n < p < ∞, there is a C such
that

‖[M∗
f ,Mζj ]‖p ≤ C‖f‖M

for all f ∈M and j ∈ {1, . . . , n}.
An enduring challenge in the theory of the Drury-Arveson space, since its very inception, has

been the quest for a good characterization of the membership inM. In other words, here we ask
a very instinctive question, what does a general f ∈M look like?

Let k ∈ N be such that 2k ≥ n. Then given any f ∈ H2
n∩H∞(B), one can define the measure

dµf on B by the formula

dµf (ζ) = |(Rkf)(ζ)|2(1− |ζ|2)2k−ndv(ζ), (3.3)

where dv is the normalized volume measure on B and R denotes the radial derivative z1∂1 +
· · ·+ zn∂n. Ortega and Fàbrega showed that f is a multiplier of the Drury-Arveson space if and
only if dµf is an H2

n-Carleson measure [43]. That is, f ∈M if and only if there is a C such that∫
|h(ζ)|2dµf (ζ) ≤ C‖h‖2

for every h ∈ H2
n. In [4], Arcozzi, Rochberg and Sawyer gave a characterization for all the

H2
n-Carleson measures on B.

For a given Borel measure on B, the conditions in [4, Theorem 34] are not the easiest to verify.
More to the point, [4, Theorem 34] deals with all Borel measures on B, not just the class of
measures dµf of the form (3.3). Thus it is natural to ask, is there a simpler, or a more direct,
characterization of the membership f ∈M?

Since the Drury-Arveson space is a reproducing-kernel Hilbert space, it is natural to turn to
the reproducing kernel for possible answers. Recall that the normalized reproducing kernel for
H2
n is given by the formula

kz(ζ) =
(1− |z|2)1/2

1− 〈ζ, z〉
,

z, ζ ∈ B. For any f ∈ H2
n, its Berezin transform

〈fkz, kz〉
is none other than f(z) itself. Given what is known about H2

n (see the related discussions in
Section 4 below), one does not expect the boundedness of Berezin transform on B to be enough
to guarantee the membership f ∈ M. But what about something stronger than the Berezin
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transform of f? For example, anyone who gives any thought about multipliers is likely to come
up with the natural question, for f ∈ H2

n, does the condition

sup
|z|<1

‖fkz‖ <∞

imply the membership f ∈ M? Conditions of this type are now called “reproducing-kernel
thesis” [42] and are among the first things that one would check when it comes to boundedness.
One can rephrase the question thus: is it enough to determine the boundedness of Mf by testing
it on the special subset {kz : |z| < 1} of the unit ball in H2

n?

It is very tempting to think that the answer to the above question might be affirmative, and
that was what we thought for quite a while. After all, an affirmative answer would provide a
very simple characterization of the membership f ∈ M. But that would be too simplistic, as it
turns out. The answer is just the opposite:

Theorem 3.8. [32] There exists an f ∈ H2
n satisfying the conditions f /∈M and

sup
|z|<1

‖fkz‖ <∞.

Thus, unfortunately, we are back where we started, looking for a non-trivial characterization
of the membership f ∈M that is reasonably simple and straightforward.

4. A family of reproducing-kernel Hilbert spaces

For each real number −n ≤ t <∞, consider the kernel

1

(1− 〈ζ, z〉)n+1+t
, ζ, z ∈ B.

Let H(t) be the corresponding reproducing kernel Hilbert space of analytic functions on B.
Alternately, one can describe H(t) as the completion of C[z1, . . . , zn] with respect to the norm
‖ · ‖t arising from the inner product 〈·, ·〉t defined according to the following rules: 〈zα, zβ〉t = 0
whenever α 6= β,

〈zα, zα〉t =
α!∏|α|

j=1(n+ t+ j)

if α ∈ Zn+\{0}, and 〈1, 1〉t = 1. Clearly, we have

H(s) ⊂ H(t)

for all −n ≤ s < t <∞.

Obviously, H(0) is the Bergman space L2
a(B, dv), H(−1) is the Hardy space H2(S), and H(−n)

is none other than the Drury-Arveson space H2
n. Moreover, for each −1 < t < ∞, H(t) is a

weighted Bergman space. One can view the Bergman space H(0) = L2
a(B, dv) as a benchmark,

against which the other spaces in the family should be compared.

This suggests that for each −n ≤ t < ∞, we should think of t as the weight of the space
H(t). In particular, the Drury-Arveson space H2

n has weight −n. This approach tells us that the
Drury-Arveson space is but one member of a continuum family of reproducing kernel Hilbert
spaces. Thus, for example, if one obtains a result on one space of the family, then one should
take it as a hint for things to come: does its analogue also hold for other spaces in the family?
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There is no simple answer to this general question, and often different techniques are required
for different spaces.

Using the radial derivative R = z1∂1 + · · · + zn∂n, the norm ‖ · ‖t can be expressed in an
equivalent form. Indeed for a given −n ≤ t < ∞, let m be any non-negative integer such that
2m+ t > −1. Then it is easy to verify that

‖f‖2t ≈ |f(0)|2 +

∫
|(Rmf)(ζ)|2(1− |ζ|2)2m+tdv(ζ)

for f ∈ H(t). For computations and estimates, the right-hand side is often more convenient.

For each −n ≤ t <∞, consider (M
(t)
ζ1
, . . . ,M

(t)
ζn

), the tuple of multiplication by the coordinate

functions on H(t). It was Lubin who first proved that, when n ≥ 2, the tuple (M
(−n)
ζ1

, . . . ,M
(−n)
ζn

)
is not jointly subnormal [41]. Arveson arrived at the same conclusion in [5] by showing that
there is some p ∈ C[z1, . . . , zn] with the property that the operator of multiplication by p on
H2
n is not hyponormal. Later, Arazy and Zhang showed that for each −n < t < −1, the tuple

(M
(t)
ζ1
, . . . ,M

(t)
ζn

) on H(t) is also not jointly subnormal [3]. This means that when −n < t < −1,

H(t) has more in common with the Drury-Arveson space than with the Hardy space or the
Bergman space.

In practical terms, the lack of joint subnormality for (M
(t)
ζ1
, . . . ,M

(t)
ζn

) means that it is more

difficult to do estimates on H(t), and analytical results are hard to come by. This problem is
particularly acute with H2

n, n ≥ 2. For example, the proof of Theorem 3.8 in [32] practically
represents all the analytical techniques we have on H2

n at the moment.

One can even define H(t) and (M
(t)
ζ1
, . . . ,M

(t)
ζn

) in the range −n − 1 < t < −n. But when

t < −n, the tuple (M
(t)
ζ1
, . . . ,M

(t)
ζn

) is no longer a row contraction. That is why we only consider
the weight range −n ≤ t <∞.

Arveson was the first to notice that, when n ≥ 2, H2
n does not contain H∞(B), the collection

of bounded analytic function on B. In [5], he explicitly constructed an f ∈ H∞(B) that does not
belong to H2

n. This construction was based on the function

θ(ζ1, . . . , ζn) = ζ1 · · · ζn
on B. Arveson observed that

‖θk‖∞ =
1

nkn/2
while ‖θk‖H2

n
=

(
(k!)n

(nk)!

)1/2

≈ k(n−1)/4

nkn/2
.

Once this is seen, for n ≥ 2 it is easy to come up with coefficients a0, a1, . . . ak, . . . such that
f =

∑∞
k=0 akθ

k is in H∞(B) but not in H2
n. In fact, one can even require f to be continuous on

the closure of the unit ball B.

It should be mentioned that examples of f ∈ H∞(B), f /∈ H2
n actually existed in plain sight.

From the last chapter of Rudin’s famous book [46] we know that when n ≥ 2, if u is a non-
constant inner function on B, then |∇u| is not square-integrable with respect to the volume
measure on B. Using the spaces introduced in this section, we can rephrase this result as saying
that if u is a non-constant inner function on B, then u /∈ H(−2). In particular, H(−n) = H2

n does
not contain any non-constant inner function.
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But when Rudin’s book was published in 1980, it was not yet known whether non-constant
inner functions existed in the case n ≥ 2. In fact, Rudin offered the gradient result in his
book as evidence against the existence of non-constant inner functions. But shortly thereafter,
non-constant inner functions were successfully constructed by Løw [39] and Aleksandrov [2].
Amazingly, H2

n somehow misses all these functions!

We know that the Hardy space H2(S) = H(−1) contains all the inner functions, whereas H(−2)

contains none, other than the constants. This comparison raises an interesting open question:
what about the weights −2 < t < −1? That is, if −2 < t < −1, does the space H(t) contain any
non-constant inner function? To us, this question is extremely interesting. But unfortunately
we have no clue to offer, one way or the other.

5. Essential normality

If S is a submodule of H2
n as defined in Section 3, then Q = H2

n 	 S is a quotient module
of the Drury-Arveson module. The term “quotient module” is justified by the fact that for
f, g ∈ C[z1, . . . , zn] and h ∈ H2

n, we have

PQfgh = PQfPQgh,

where PQ : H2
n → Q is the orthogonal projection. For a submodule S, recall that the module

operators ZS,1, . . . ,ZS,n are given by (3.1). For the corresponding quotient module Q, we also
have the module operators

ZQ,i = PQMζi |Q,
i = 1, . . . , n. Suppose that F is either a submodule or a quotient module. Then for 1 ≤ p <∞,
the module F is said to be p-essentially normal if the commutators

[Z∗F ,i,ZF ,j], i, j ∈ {1, . . . , n},
all belong to the Schatten class Cp. In this regard, we have the famous

Arveson Conjecture. [8, 9] Every graded submodule G of H2
n⊗Cm is p-essentially normal for

every p > n.

Here, the term “graded” means that G admits an orthogonal decomposition in terms of homo-
geneous polynomials. Arveson’s original thinking was that the study of the module operators on
such a G is really an operator-theoretic version of algebraic geometry, which has broad implica-
tions. There has been a lot of work on the Arveson Conjecture [8, 18, 26, 34, 35, 36, 37, 38, 47],
and the best results to date are due to Guo and K. Wang [36].

Douglas made a more refined conjecture in [19] that also covers more modules. Together these
essential-normality problems are now called the Arveson-Douglas Conjecture, which is quite all
encompassing. We state a somewhat specialized version of it below:

Arveson-Douglas Conjecture. Suppose that I is an ideal in C[z1, . . . , zn], and let VI denote
the zero variety of I. Then the quotient module

Q = {h ∈ H2
n : h ⊥ I}

is p-essentially normal for all p > dimCVI .

This is a more refined conjecture in the respect that it asserts p > dimCVI , which is more than
just p > n. In practice, though, it is a serious challenge to reach the lower limit p > dimCVI ,
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and this is true even on the Bergman space. However, as is shown in [49], reaching the lower
limit p > dimCVI leads to real applications.

If one only considers graded submodules, the work is inherently algebraic in nature. In 2011,
Douglas and K. Wang made a breakthrough in which analysis became predominant:

Theorem 5.1. [22] For every q ∈ C[z1, . . . , zn], the submodule [q] of the Bergman module is
p-essentially normal for every p > n.

What is remarkable about this result is that it is unconditional in the sense that it makes
no assumptions about the polynomial q. This sets a very high standard for all the essential-
normality results to come. In [29], we were able to show that the analogue of Theorem 5.1 holds
for the Hardy module H2(S).

As it turns out, for essential-normality problems on the unit ball, there is a very simple
parameter that measures both progress and the level of difficulty: it is the weight t introduced
in Section 3. Theorem 5.1 covers the weight t = 0, whereas our Hardy-space analogue [29] covers
t = −1. It is the value of t that actually determines the difficulty of the problem: the more
negative the value of t, the harder it is to solve the corresponding essential-normality problem.
For the Drury-Arveson space analogue of Theorem 5.1, the level of difficulty is set at t = −n.
The following is the best that we can do at the moment:

Theorem 5.2. [33] Let q be an arbitrary polynomial in C[z1, . . . , zn]. Then for every−3 < t <∞,
the submodule [q](t) of H(t) is p-essentially normal for every p > n.

Specializing this to the weight t = −2 gives us the only unconditional essential normality that
we have at the moment in a Drury-Arveson space case:

Corollary 5.3. For every q ∈ C[z1, z2], the submodule [q] of the two-variable Drury-Arveson
module H2

2 is p-essentially normal for every p > 2.

For three variables, we must deal with the weight t = −3, which represents substantially more
difficulty. At the moment, we only have partial results for the weight t = −3 [33], and even that
requires non-trivial work. Although we are not able to solve it at the moment, the stumbling
block for the case t = −3 can be stated as a very explicit estimate:

Problem 5.4. Denote R = z1∂1 + · · · + zn∂n, the radial derivative on B. Given an arbitrary
q ∈ C[z1, . . . , zn], does there exist a constant C = C(q) such that∫

|(Rq)(ζ)f(ζ)|2dv(ζ) ≤ C

∫
|R(qf)(ζ)|2dv(ζ)

for every f ∈ C[z1, . . . , zn] satisfying the condition f(0) = 0?

For weights t < −3, the main difficulty can also be stated in terms of explicit estimates of this
type [33, Definition 1.7]. In fact, we think that the value of these essential-normality problems
lies precisely in the fact that they embody such non-trivial analysis.
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6. Expanding on Drury’s idea

A reasonable way to interpret the von Neumann inequality (2.1) is to say that the tuple
(Mζ1 , . . . ,Mζn) on H2

n “dominates” every other row contraction. In other words, the row con-
traction (Mζ1 , . . . ,Mζn) on H2

n is the “master” among all row contractions. This interpretation of
(2.1) inspires us to consider the following question. Suppose that we have two row contractions,
(A1, . . . , An) and (B1, . . . , Bn). It seems fair to say that (B1, . . . , Bn) dominates (A1, . . . , An) if
the inequality

‖p(A1, . . . , An)‖ ≤ ‖p(B1, . . . , Bn)‖
holds for every polynomial p ∈ C[z1, . . . , zn]. Or, perhaps one can relax this condition somewhat:
if there is a constant 0 < C <∞ such that

‖p(A1, . . . , An)‖ ≤ C‖p(B1, . . . , Bn)‖

for every polynomial p ∈ C[z1, . . . , zn], one might still say that the tuple (B1, . . . , Bn) dominates
the tuple (A1, . . . , An).

The main point is this: we can also ask the rather restricted question whether a given tuple
(B1, . . . , Bn) dominates (whatever the word means) a particular (A1, . . . , An), not just the ques-
tion whether it dominates a general class of (A1, . . . , An)’s. In other words, the tuple (B1, . . . , Bn)
may not be as dominating as the tuple (Mζ1 , . . . ,Mζn) on H2

n, but does it dominate a particular
(A1, . . . , An) nonetheless?

The first hint of a possible hierarchical structure among commuting tuples comes from the fact
that the Drury-Arveson space H2

n is really “the head” of the family of reproducing-kernel Hilbert
spaces {H(t) : −n ≤ t < ∞} introduced in Section 4. An obvious question is, what about the

“lesser” tuples (M
(t)
ζ1
, . . . ,M

(t)
ζn

), −n < t <∞. What do they dominate?

In other words, here we are asking whether there is some sort of hierarchy, albeit partial, among
commuting tuples of operators. Obviously, such a general question represents a monumental
undertaking, one that perhaps requires the efforts of many researchers over many years.

But one thing encouraging is that there are plenty of interesting examples of such a hierarchy.
One way to construct such examples is to consider reproducing-kernel Hilbert spaces H(v) that
are even more general than the H(t) introduced in Section 4.

Suppose that v = {vα : α ∈ Zn+} is a set of positive numbers satisfying the condition∑
α∈Zn

+

vα|wα|2 <∞

for every w ∈ B. We define an inner product 〈·, ·〉v on C[z1, . . . , zn] according to the following
rules: 〈zα, zβ〉v = 0 whenever α 6= β, and

〈zα, zα〉v = 1/vα

for α ∈ Zn+. Let ‖·‖v be the norm induced by the inner product 〈·, ·〉v, and let H(v) be the Hilbert

space obtained as the completion of C[z1, . . . , zn] with respect to ‖ · ‖v. Let (M
(v)
ζ1
, . . . ,M

(v)
ζn

) be

the tuple of multiplication by the coordinate functions on H(v). Each H(v) has its own collection
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of multipliers, and for each multiplier f we write M
(v)
f for the operator of multiplication by f on

H(v).

For each j ∈ {1, . . . , n}, let εj denote the element in Zn+ whose j-th component is 1 and whose
other components are 0. If α ∈ Zn+ and if the j-th component of α is not 0, then, of course,
α− εj ∈ Zn+. Given a set of positive numbers v = {vα : α ∈ Zn+}, for α ∈ Zn+ we define vα−εj = 0
if the j-th component of α is 0. Suppose that v = {vα : α ∈ Zn+} satisfies the condition

n∑
j=1

vα−εj
vα
≤ 1 for every α ∈ Zn+.

Then it is easy to verify that (M
(v)
ζ1
, . . . ,M

(v)
ζn

) is a row contraction on H(v).

In our view, identity (2.3) is the heart and soul of the theory of Drury-Arveson space. Therefore
one way to uncover a possible hierarchy described above is to tinker with (2.3) and see what
happens. For example, we can try to replace the coefficients |α|!/α! in (2.3) with general vα. If
|α|!/α! is replaced by vα, then obviously the defect operator

D = 1− A1A
∗
1 − · · · − AnA∗n

in (2.3) also needs to be replaced accordingly. But what replaces D?

Theorem 6.1. [31] Let A = (A1, . . . , An) be a commuting row contraction on a Hilbert space
H. Suppose that there is a positive operator W on H such that the sum

Y =
∑
α∈Zn

+

vαA
αWA∗α

converges in the weak operator topology. Furthermore, suppose that the sum Y satisfies the
operator inequality c ≤ Y ≤ C on H for some scalars 0 < c ≤ C <∞. Then the inequality

‖f(A)‖ ≤ (C/c)‖M (v)
f ‖

holds for every multiplier f of the space H(v).
Let B be a bounded operator on a Hilbert space H. Then its essential norm is

‖B‖Q = inf{‖B +K‖ : K ∈ K(H)},
where K(H) is the collection of compact operators on H.

Theorem 6.2. [31] Let A = (A1, . . . , An) be a commuting row contraction on a separable Hilbert
space H. Suppose that there is a positive, compact operator W on H such that the sum

Y =
∑
α∈Zn

+

vαA
αWA∗α

converges in the weak operator topology. Furthermore, suppose that the operator Y has the fol-
lowing two properties:

(a) There are scalars 0 < c ≤ C <∞ such that the operator inequality c ≤ Y ≤ C
holds on H;
(b) Y = 1 +K, where K is a compact operator on H.

Then the inequality

‖f(A)‖Q ≤ ‖M (v)
f ‖Q
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holds for every multiplier f of the space H(v).

Families of non-trivial (albeit quite technical) examples of A, v, W were given in [31]. In par-

ticular, if −n < s < t <∞, then the tuple (M
(s)
ζ1
, . . . ,M

(s)
ζn

) dominates the tuple (M
(t)
ζ1
, . . . ,M

(t)
ζn

).

7. Closure of the polynomials

Let A be the closure of C[z1, . . . , zn] in M with respect to the multiplier norm. It is easy to
understand that A is a special set of multipliers. Obviously, A is contained in A(B), the ball
algebra. Thus all multipliers in A are continuous on B, but not all continuous multipliers are
in A, although this latter statement is not completely trivial. Arveson showed in [5] that the
maximal ideal space of A is homeomorphic to B.

In [13], Clouâtre and Davidson identified the first and second dual of A: there is a commutative
von Neumann algebra W such that

A∗ 'M∗ ⊕1 W∗ and A∗∗ 'M⊕∞W.
They established analogues of several classical results concerning the dual space of the ball
algebra. These developments are deeply intertwined with the problem of peak interpolation for
multipliers. It is also worth mentioning that these results shed light on the nature of the extreme
points of the unit ball of A∗.
Theorem 7.1. [13] Let f ∈ A with ‖f‖∞ < ‖f‖M = 1. The set

F = {Ψ ∈M∗ : ‖Ψ‖A∗ = 1 = Ψ(f)}
has extreme points, which are also extreme points of the closed unit ball of M∗.

Building on the work in [13], Clouâtre and Davidson further gave a complete characterization
of absolutely continuous commuting row contractions in measure theoretic terms [14]. They
also showed that completely non-unitary row contractions are necessarily absolutely continuous,
which is a direct analogue of the single-operator case.
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