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1. Introduction

Let Bd denote the open unit ball {z : |z| < 1} in Cd. The Drury-Arveson
space H2

d ([9, 39]) is the reproducing kernel Hilbert space associated with the
kernel

Kw(z) =
1

1− 〈z, w〉
, z, w ∈ Bd, 〈z, w〉 = z1w1 + · · ·+ zdwd

which is a natural multivariable analogue of the Szegö kernel of the classical
Hardy space H2 of the unit disk. Note that H2

d coincides with H2 when d = 1.
An orthonormal basis of H2

d is given by {eα} where

eα =

√
|α|!
α!

zα.

Here and in what follows, we use standard multivariable notations: for multi-
integers α = (α1, . . . , αd) ∈ Zd+ and points z = (z1, . . . , zd) ∈ Cd we set

|α| = α1 + α2 + . . .+ αd, α! = α1!α2! . . . αd!, zα = zα1
1 zα2

2 . . . zαdd .

For functions f, g ∈ H2
d with Taylor expansions

f(z) =
∑
α∈Zd+

cαz
α and g(z) =

∑
α∈Zd+

dαz
α,



2 Q. Fang

their inner product is given by

〈f, g〉 =
∑
α∈Zd+

α!

|α|!
cαdα.

The Drury-Arveson space H2
d can be viewed in many different ways: It

can be identified as the symmetric Fock space over Cd; it is a member of the
family of Besolv-Hardy-Sobolev spaces; it is a prototype for a complete Pick
space; it is a free Hilbert module over the polynomial ring C[z1, . . . , zd] with
the identification of each variable zi with each multiplication operator Mzi .
A panoramic view of most operator theoretic and function theoretic aspects
of this space can be found in [67].

A holomorphic function f on Bd is said to be a multiplier of the Drury-
Arveson space H2

d if fg ∈ H2
d for every g ∈ H2

d . Every multiplier is in H2
d

since 1 ∈ H2
d . Throughout the paper, we denote the collection of multipliers

of H2
d by Md. For each f ∈ Md, the multiplication operator Mf defined by

Mfg = fg is necessarily bounded on H2
d [9], and the operator norm ‖Mf‖ is

also called the multiplier norm of f . We write ‖f‖Md
for its multiplier norm:

‖f‖Md
= sup{‖fg‖ : g ∈ H2

d , ‖g‖ ≤ 1}.
This norm gives Md the structure of an operator algebra.

Multipliers are an important part of operator theory on H2
d . For exam-

ple, if E is a closed linear subspace ofH2
d which is invariant underMz1 , . . . ,Mzd ,

then there exist {f1, . . . , fk, . . . } ⊂ Md such that the operator

Mf1M
∗
f1 + · · ·+MfkM

∗
fk

+ · · ·

is the orthogonal projection from H2
d onto E (see p. 191 in [10]). It is known

that Md is the home for the multivariate von Neumann inequality hence
plays a similar role of H∞, the algebra of bounded holomorphic functions on
the unit disk to higher dimensions. The multiplier algebraMd is exactly the
image of the free-semigroup algebra Fd (generated by d letters) after applying
a point-evaluation map associated with points in the unit ball. Interpolation
problems for Schur multipliers (contractive multipliers) H2

d related to mul-
tidimentional system theory have been intensively studied over the past few
decades (see [12, 24, 41, 50, 54]). A corona theorem for the Drury-Averson
space multipliers was proved by Costea, Sawyer and Wick [33]. Clouâtre and
Davidson studied Henkin measures for Md in [30] and the ideals of the clo-
sure of the polynomial multipliers on the Drury-Arveson space in [32].

In this paper we survey some results and methods related to multipliers
of H2

d . Results are presented below without proof but with references. This
survey is not intended to be comprehensive in any way and we will have
to limit the article to the aspects that are most familiar to us. The present
paper is organized as follows. Following this introduction, in Section 2 we
review an important class of multipliers - Schur class multipliers or the unit



Multipliers of Drury-Arveson Space 3

ball of Md. We revisit transfer function realization and related Nevanlinna-
Pick type interpolation problems for these multipliers. In Section 3 we discuss
polynomial multipliers and nonpolynomial multipliers. A corona theorem and
some spectral properties for multipliers of H2

d are included in Section 4. In
Section 5 we consider commutators involving multipliers and localizations.
In the last section we discuss the problem of characterization of multipliers
in Md.

2. Schur class multipliers

We will start with a special class of multipliers, the so-called Schur class
multipliers. In single variable complex analysis the Schur class is the set of
holomorphic functions S(z) that are bounded by one on the unit disk. Schur
functions are important, not only because they arise in diverse areas of clas-
sical analysis and operator theory, but also because they have connections
with linear system theory and engineering.

Recall that the Schur class plays a prominent role in classical mo-
ment and interpolation problems. One of the best known examples is the
Nevanlinna-Pick interpolation problem :

Given points z1, · · · , zn in the unit disk D and complex numbers w1, · · · , wd.
Find a Schur function S(z) such that S(zi) = wi for i = 1, · · · , n.

A solution to this problem exists if and only if the associated Pick matrix{
1− wiw̄j
1− ziz̄j

}n
i,j=1

is positive semidefinite. There are several approaches dealing with the prob-
lem. One operator-theoretic approach can be described as follows:

Let MS be the operator of multiplication by a Schur function S(z) on
the Hardy space H2 of the unit disk. Then MS commutes with Mz, the
operator of multiplication by the coordinate z (the shift operator) and any
contraction on H2 which commutes with Mz has this form for some Schur
function. The commutation relation is preserved under compressions of the
operators to any invariant subspace E of the backward shift M∗z . The gen-
eralized interpolation theorem of Sarason [66] showed that every contraction
on E which commutes with the compression of Mz to E is associated with
some Schur function. Particular choice of the invariant subspace leads to so-
lutions to the Nevanlinna-Pick problem. The celebrated commutant lifting
theorem by Sz.Nagy-Foias [47] extends the conclusion to arbitrary Hilbert
space contraction operators. In the book [20], Ball, Gohberg, and Rodman
considered the interpolation of rational matrix functions. They emphasized
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the state space approach and transfer function realization.

When leaving the univariate setting there are different interesting mul-
tivariable counterparts of the classical Schur class [1]. Here we review some
aspects of the class of contractive operator-valued multipliers for the Drury-
Arveson space.

For a Hilbert space Y, we use notation HY(kd) for the Drury-Arveson
space of Y-valued functions. Given two Hilbert spaces U and Y, we denote
by Sd(U ,Y) the class of L(U ,Y)-valued functions S on Bd such that the
multiplication operator MS : f 7→ S · f defines a contraction from HU (kd)
into HY(kd), or equivalently, such that the de Branges-Rovnyak kernel

KS(λ, z) =
IY − S(λ)S(z)∗

1− 〈λ, z〉
(2.1)

is positive on Bd × Bd.
It is readily seen that the class S1(U ,Y) is the classical Schur class. In

general, it follows from KS ≥ 0 that S is holomorphic and takes contractive
values on Bd. However, for d > 1 there are holomorphic contractive-valued
functions on Bd not in Sd. The class Sd(U ,Y) can be characterized in various
ways similarly to the one-variable situation. Here we review the character-
izations of these multipliers in terms of realizations due to Ball,Trent and
Vinnikov in [24]. We review this result in the form we used in [17].

Theorem 2.1. Let S be an L(U ,Y)-valued function defined on Bd. The fol-
lowing are equivalent:

1. S belongs to Sd(U ,Y).
2. The kernel

KS(λ, z) =
IY − S(λ)S(z)∗

1− 〈λ, z〉
(2.2)

is positive on Bd × Bd, i.e., there exists an operator-valued function
H : Bd → L(H,Y) for some auxiliary Hilbert space H so that

KS(λ, z) = H(λ)H(z)∗. (2.3)

3. There exists a Hilbert space X and a unitary connecting operator (or
colligation) U of the form

U =

[
A B
C D

]
=


A1 B1

...
...

Ad Bd
C D

 :

[
X
U

]
→
[
X d
Y

]
(2.4)

so that S(λ) can be realized in the form

S(λ) = D + C (IX − λ1A1 − · · · − λdAd)−1 (λ1B1 + . . .+ λdBd)

= D + C(I − Z(λ)A)−1Z(λ)B, (2.5)
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where we set

Z(λ) =
[
λ1IX . . . λdIX

]
, A =

A1

...
Ad

 , B =

B1

...
Bd

 . (2.6)

4. There exists a Hilbert space X and a contractive connecting operator U
of the form (2.4) so that S(λ) can be realized in the form (2.5).

In analogy with the univariate case, a realization of the form (2.5) is
called coisometric, isometric, unitary or contractive if the operator U has
the said property. It turns out that a more useful analogue of “coisometric
realization” in the classical univariate case is not the condition that U∗ be
isometric, but rather that U∗ be isometric on a certain subspace of X d ⊕Y.

Definition 2.2. A realization (2.5) of S ∈ Sd(U ,Y) is called weakly coiso-
metric if the adjoint U∗ : X d ⊕ Y → X ⊕ U of the connecting operator is

contractive and isometric on the subspace

[
D
Y

]
⊂
[
X d
Y

]
where

D := span{Z(z)∗(IX −A∗Z(z)∗)−1C∗y : z ∈ Bd, y ∈ Y} ⊂ X d. (2.7)

For any S ∈ Sd(U ,Y), the associated kernel KS (2.1) is positive on
Bd × Bd so we can associate with S the de Branges-Rovnyak reproducing
kernel Hilbert space H(KS). In parallel to the univariate case, H(KS) is the
state space of certain canonical functional-model realization for S (see [13]).

Definition 2.3. We say that the contractive operator-block matrix

U =

[
A B
C D

]
:

[
H(KS)
U

]
→
[
H(KS)d

Y

]
is a canonical functional-model colligation for the given function S ∈ Sd(U ,Y)
if

1. The operator A =

[
A1

...
Ad

]
solves the Gleason problem for H(KS), i.e.,

f(z)− f(0) =

d∑
j=1

zj(Ajf)(z) for all f ∈ H(KS).

2. The operator B =

[
B1

...
Bd

]
solves the Gleason problem for S:

S(z)u− S(0)u =

d∑
j=1

zj(Bju)(z) for all u ∈ U .

3. The operators C : H(KS)→ Y and D : U → Y are given by

C : f 7→ f(0), D : u 7→ S(0)u.
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It was shown in [18] that any Schur-class function S with associated de
Branges-Rovnyak space H(KS) finite-dimensional and not (M∗z1 , . . . ,M

∗
zd

)-
invariant does not admit a contractive commutative realization. Here a re-
alization is said to be commutative if the state space operators A1, . . . , Ad
commute with each other. The following result in [18] shows when a Schur-
class function S admits a commutative weakly coisometric realization.

Theorem 2.4. A Schur-class function S ∈ Sd(U ,Y) admits a commutative
weakly coisometric realization if and only if the following conditions hold:

1. The associated de Branges-Rovnyak space H(KS) is (M∗z1 , . . . ,M
∗
zd

)-
invariant, and

2. the inequality

d∑
j=1

‖M∗zjf‖
2
H(KS)

≤ ‖f‖2H(KS)
− ‖f(0)‖2Y holds for all f ∈ H(KS). (2.8)

Furthermore, if conditions (1) and (2) are satisfied, then there exists a com-
mutative canonical functional model colligation for S. Moreover, the state-
space operators tuple is equal to the Drury-Arveson backward shift restricted
to H(KS): Aj = M∗zj |H(KS) for j = 1, . . . , d.

Note that condition (2) in Theorem 2.4 means that M∗z is a contrac-
tive solution to the Gleason problem for H(KS) ([48]). Weakly coisometric
realizations for an S ∈ Sd(U ,Y) can be constructed in certain canonical way
as follows. Upon applying Aronszajn’s construction to the kernel KS , (which
is positive on Bd by Theorem 2.1), one gets the de Branges-Rovnyak space
H(KS). A weakly coisometric realization for S with the state space equal to
H(KS) (and output operator C equal to evaluation at zero on H(KS)) will
be called a generalized functional-model realization.

As shown in [17], any function S ∈ Sd(U ,Y) admits a generalized
functional-model realization. In the univariate case, this reverts to the well
known de Branges-Rovnyak functional-model realization [26, 27]. Another
parallel to the univariate case is that any observable (i.e., the observability
operator OC,A is injective: C(IX − Z(λ)A)−1x = 0 implies x = 0.) weakly
coisometric realization of a Schur-class function S ∈ Sd(U ,Y) is unitarily
equivalent to some generalized functional-model realization (observability is
a minimality condition that is fulfilled automatically for every generalized
functional-model realization). However, in contrast to the univariate case,
this realization is not unique in general (even up to unitary equivalence);
moreover, a function S ∈ Sd(U ,Y) may admit generalized functional-model
realizations with the same state space operators A1, . . . , Ad and different in-
put operators Bj ’s.

Recently Jury and Martin studied the case when the realization is
unique in [60, 61, 62]. They introduced the notion of a quasi-extreme multi-
plier of the Drury-Arveson space H2

d for a multiplier associated with a unique
generalized functional-model realization. They gave some characterizations of
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these multipliers. Here are some characterizations of quasi-extremity, which
imply that every quasi-extreme multiplier of H2

d is in fact an extreme point of
the unit ball of the multiplier algebraMd. (The converse statement, namely
whether or not every extreme point is quasi-extreme, remains an open ques-
tion.)

Theorem 2.5. Let S be a contractive multiplier of H2
d (to ease the notation

assume U = Y = C). The following are equivalent:

(1) S is quasi-extreme.
(2) the only multiplier T satisfying

M∗TMT +M∗SMS ≤ I (2.9)

is T ≡ 0.
(3) There is a unique contractive solution (X1, . . . Xd) to the Gleason prob-

lem in H(KS).
(4) There exists a contractive solution (X1, . . . Xd) such that the equality∑d

j=1 ‖Xjf‖2f = ‖f‖2H(KS)
− |f(0)|2 holds for every f ∈ H(KS).

(5) H(KS) does not contain the constant functions.

Let A = (A1, . . . , Ad) be a commutative d-tuple of bounded, linear
operators on the Hilbert space X . If C ∈ L(X ,Y), then the pair (C,A) is
said to be output-stable if the associated observability operator

ÔC,A : x 7→ C(I − λ1A1 − · · · − λdAd)−1x

maps X into HY(kd), or equivalently (by the closed graph theorem), the
observability operator is bounded. Just as in the single-variable case, there is a
system-theoretic interpretation (in the context of multidimensional systems)
for this operator (see [15] for details). The following is a theorem about the
left-tangential operator-argument interpolation (LTOA) problem formulated
for the Drury-Arveson Schur-multiplier class Sd(U ,Y).

Theorem 2.6. Suppose that we are given an auxiliary Hilbert space X together
with commutative d-tuples

Z(1) = (Z
(1)
1 , . . . , Z

(1)
d ), . . . , Z(N) = (Z

(N)
1 , . . . , Z

(N)
d ) ∈ L(X )d,

i.e., Z
(i)
k ∈ L(X ) for i = 1, . . . , N and k = 1, . . . , d and for each fixed i,

the operators Z
(i)
1 , . . . , Z

(i)
d commute pairwise, with the property that each d-

tuple Z(i) has joint spectrum contained in Bd (or each (X∗i , Z
∗(i)) is an output

stable pair). Assume in addition that we are given operators X1, . . . , XN in
L(Y,X ) and operators Y1, . . . , YN in L(U ,X ). Then there is an S ∈ Sd(U ,Y)
so that

(XiS)∧L(Z(i)) :=
∑
n∈Zd+

(Z(i))nXiSn = Yi for i = 1, . . . , N



8 Q. Fang

if and only if the associated Pick matrix

PLTOA :=

∑
n∈Zd+

(Z(i))n(XiX
∗
j − YiY ∗j )(Z(j))n∗

N
i,j=1

is positive semidefinite. Here Zn = Zn1
1 · · ·Z

nd
d if Z = (Z1, . . . , Zd) ∈ L(C)d

and n = (n1, . . . , nd) ∈ Zd+.

Similarly one can pose right tangential operator-argument interpola-
tion and bitangential operator-argument Nevanlinna-Pick problems. We note
that this and related interpolation problems were studied in [12] by using
techniques from reproducing kernel Hilbert spaces, Schur-complements and
isometric extensions from the work of [40, 52, 51]. In [42, 19] we showed how
the problem can be handled via the Grassmannian approach. We also refer to
[22] for a comprehensive survey on the related topics and [14] for discussions
of different approaches for bitangential matrix Nevanlinna-Pick interpolation
problems.

3. Polynomial v. non-polynomial multipliers

It is easy to see that all polynomials are multipliers of the Drury-Arveson
space: C[z1, · · · , zd] ⊆ Md. Naturally we would like to see how differently
the non-polynomials multipliers behave compared to polynomial multipliers.

Recall that a commuting tuple of bounded operators (A1, . . . , Ad) on a
Hilbert space H is said to be a row contraction if it satisfies the inequality

A1A
∗
1 + · · ·+AdA

∗
d ≤ 1.

The d-shift (Mz1 , . . . ,Mzd) on H2
d is a natural example of row contraction.

In fact, the d-shift is the “master” row contraction in the sense that for each
polynomial p ∈ C[z1, . . . , zd], the von Neumann inequality

‖p(A1, . . . , Ad)‖ ≤ ‖p(Mz1 , . . . ,Mzd)‖

holds whenever the commuting tuple (A1, . . . , Ad) is a row contraction [9, 39].

In the single variable case, it is well known that the space of multipliers
of the classic Hardy space H2 is the space of bounded holomorphic functions
on the unit disk, i.e. M1 = H∞(D). The multiplier norm of a multiplier
f , ‖Mf‖ is equal to ‖f‖∞ = sup|z|<1 |f(z)|. However, for d ≥ 2, Arveson

showed in [9] thatMd is strictly smaller than H∞(Bd), the space of bounded
holomorphic functions on Bd. Moreover, even for polynomials q, ‖q‖∞ in
general does not dominate the operator norm of Mq on H2

d , see [9, 67].

Theorem 3.1. For d > 1 the norms ‖ · ‖∞ and ‖ · ‖Md
are not comparable

on Md. There is a strict containment Md ⊂ H∞(Bd), and the d-shift Mz is
not subnormal, that is, Mz does not have a joint normal extension.
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Note that it can be shown that if q is a polynomial, then

‖Mq‖Q = ‖q‖∞, (3.1)

where ‖Mq‖Q is the essential norm of q. Recall that the essential norm of a
bounded operator A on a Hilbert space H is

‖A‖Q = inf{‖A+K‖ : K ∈ K(H)},
where K(H) is the collection of compact operators onH. Alternately, ‖A‖Q =
‖π(A)‖, where π denotes the quotient homomorphism from B(H) to the
Calkin algebra Q = B(H)/K(H). Indeed by Proposition 5.3 in [9], for each
polynomial q, the operator Mq is essentially normal, i.e., [M∗q ,Mq] is com-
pact. On the other hand, by Proposition 2.12 in [9], if q is a polynomial,
then the spectral radius of Mq equals ‖q‖∞. Since the norm and the spec-
tral radius of any normal element in any C∗-algebra coincide, it follows
that ‖Mq‖Q ≤ ‖q‖∞ whenever q is a polynomial. The reverse inequality,
‖Mq‖Q ≥ ‖q‖∞, can be achieved simply by applying M∗q to the normalized

reproducing kernel of H2
d .

It turns out that (3.1) in general fails if we consider multipliers which
are not polynomials ([44]):

Theorem 3.2. There exists a sequence {ψk} ⊂ Md such that

inf
k≥1
‖Mψk‖Q > 0 and lim

k→∞
‖ψk‖∞ = 0.

This has implications for other essential properties of multipliers. Recall
that an operator T is said to be hyponormal if T ∗T − TT ∗ ≥ 0 and an
operator T is said to be essentially hyponormal if there is a compact self-
adjoint operator K such that

T ∗T − TT ∗ +K ≥ 0.

Obviously, T is essentially hyponormal if and only if π(T ) is a hyponormal
element in the Calkin algebra Q, i.e., π(T ∗)π(T )− π(T )π(T ∗) ≥ 0. It is well
known that the norm of a hyponormal operator coincides with its spectral
radius. As we mentioned earlier, by Proposition 2.12 in [9], if q is a polynomial,
then the spectral radius of Mq equals ‖q‖∞. Therefore if q is a polynomial
such that ‖Mq‖ > ‖q‖∞, then Mq is not hyponormal. Thus there are plenty
of multipliers f ∈ Md for which Mf fails to be hyponormal on H2

d . This
is one phenomenon that sets the Drury-Arveson space H2

d apart from the
Hardy space and the Bergman space. Note that the phenomenon persists
under compact perturbation too.

Theorem 3.3. There exists a ψ ∈ Md such that the multiplication operator
Mψ on H2

d is not essentially hyponormal.

Let Ad be the norm closure of the polynomials inMd. We can see that
Ad ⊂ A(Bd), the ball algebra. Thus all multipliers in Ad are continuous on

Bd. Note that there are continuous multipliers which are not in Ad. Since
the multiplier norm and the supremum norm are not comparable, the image
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of Ad inside of A(Bd) is not closed. It can be shown that the maximal ideal
space of Ad is homeomorphic to Bd.

In [31], Clouâtre and Davidson identified Ad as a direct sum of the
preduals of Md and of a commutative von Neumann algebra W,

A∗d 'Md∗ ⊕1 W∗.

They established analogues of several classical results concerning the dual
space of the ball algebra. These developments are deeply intertwined with
the problem of peak interpolation for multipliers. It is also worth mentioning
that they shed light on the nature of the extreme points of the unit ball of A∗d.
The following results (Theorem 7.5/Theorem 7.7 in [31]) ensure the existence
of many extreme points in the closed unit ball ofMd∗, thus showing a sharp
contrast with the more classical situation of the closed unit ball of H∞ [6].

Theorem 3.4. Let f ∈ Ad with ‖f‖∞ < ‖f‖Ad = 1. The set

F = {Ψ ∈Md∗ : ‖Ψ‖A∗
d

= 1 = Ψ(f)}

has extreme points, which are also extreme points of the closed unit ball of
Md∗.

Theorem 3.5. The following statements hold.

1. The set of weak-∗ exposed points of b1(A∗d) that lie in W∗ is {λτζ : λ ∈
T, ζ ∈ Sd}, where T is the unit circle and Sd is the unit sphere. This set

is weak-∗ compact and it coincides with the extreme points of b1(W∗).

2. Let Φ ∈ b1(Md∗) be a weak-∗ exposed point of b1(A∗d), and let f ∈ b1(Ad)
such that

ReΨ(f) < 1 = ReΦ(f) for all Ψ ∈ b1(A∗d),Ψ 6= Φ.

Then, 1 = ‖f‖Ad > ‖f‖∞.
3. If 1 = ‖f‖Ad > ‖f‖∞ and N = {ξ ∈ H2

d : ‖fξ‖H2
d

= ‖ξ‖H2
d
} is one

dimensional, then the functional [ξ(fξ)∗] is a weak-∗ exposed point of

b1(A∗d).
4. The extreme points of b1(Md∗) are contained in the weak-∗ closure of

the set {
[ξ(fξ)∗] : 1 = ‖ξ‖H2

d
= ‖fξ‖H2

d
= ‖f‖Ad > ‖f‖∞

}
.

4. Corona theorem and Spectral theory

Carleson’s corona theorem for H∞ in [29] states that the open unit disk is
dense in the maximal ideal space of H∞. Costea, Sawyer and Wick extended
this to multiplier algebras of certain Besov-Sobolev spaces on the unit ball in-
cluding the multiplier algebra of the Drury-Arveson space. Here is the version
of the Corona theorem for Md ([33]):
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Theorem 4.1. The corona theorem holds for the multiplier algebra Md of the
Drury-Arveson space. That is, for g1, . . . , gk ∈ Md, if there is a c > 0 such
that

|g1(z)|+ · · ·+ |gk(z)| ≥ c
for every z ∈ Bd, then there exist f1, . . . , fk ∈Md such that

f1g1 + · · ·+ fkgk = 1.

An immediate consequence of this theorem is the so-called one function
corona theorem.

Theorem 4.2. Let f ∈ Md. If there is a c > 0 such that |f(z)| ≥ c for every
z ∈ Bd, then 1/f ∈Md.

There have been several different proofs of this one function corona the-
orem without invoking the general corona theorem [45, 64, 28]. Also we note
that it is true that 1/f ∈ H2

d for any f ∈ H2
d with a lower bound when d ≤ 3.

This is because for any f ∈ H2
d , ‖f‖H2

d
is equivalent to the norm of Rf in the

Bergman space if d = 2 and in the Hardy space if d = 3, where R is the radial
derivative. The problem is completely open for d ≥ 4 since for d ≥ 4, the
norm in the Drury-Arveson space involves higher radial derivatives. There
have been related discussions ([4], [64]) but the problem for the general case
still requires new ideas.

Recently, in the context of more general Hardy-Sobolev spaces, Cao,
He and Zhu developed some spectral theory for multipliers of these spaces
([28]). ForMd the following results hold. The proofs use one function corona
theorem and estimates of higher order radial derivatives.

Theorem 4.3. Suppose f ∈Md.

1. The spectrum of Mf is the closure of f(Bd) in the complex plane.
2. The essential spectrum of Mf is given by

σe(Mf ) =
⋂

r∈(0,1)

f(Bd − rBd),

where rBd = {z ∈ Cd : |z| < r}
3. Mf is Fredholm if and only if there exist r ∈ (0, 1) and δ > 0 such that
|f(z)| ≥ δ for all z ∈ Bd − rBd. Moreover, when Mf is Fredholm, its
Fredholm index is always 0 for d > 1 and is equal to minus the winding
number of the mapping eit 7→ f(reit), where r ∈ (0, 1) is sufficiently
close to 1.

5. Commutators and localization

If we take a list of Hardy-space results and try to determine which ones have
analogues on H2

d and which ones do not, commutators are certainly very high
on any such list. One prominent part of the theory of the Hardy space is the
Toeplitz operators on it. Since there is no L2 associated with H2

d , the only
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analogue of Toeplitz operators on H2
d are the multipliers. We can consider the

commutators of the form [M∗f ,Mzi ], where f is a multiplier for the Drury-
Arveson space.

Recall that for each 1 ≤ p < ∞, the Schatten class Cp consists of
operators A satisfying the condition ‖A‖p < ∞, where the p-norm is given
by the formula

‖A‖p = {tr((A∗A)p/2)}1/p.
Arveson showed in his seminal paper [9] that commutators of the form [M∗zj ,Mzi ]

on H2
d all belong to Cp, p > d. As the logical next step, one certainly expects

a Schatten class result for commutators on H2
d involving multipliers other

than the simplest coordinate functions. The following result was proved in
[43].

Theorem 5.1. Let f be a multiplier for the Drury-Arveson space H2
d . For

each 1 ≤ i ≤ d, the commutator [M∗f ,Mζi ] belongs to the Schatten class Cp,
p > 2d. Moreover, for each 2d < p <∞, there is a constant C which depends
only on p and n such that

‖[M∗f ,Mzi ]‖p ≤ C‖Mf‖

for every multiplier f of H2
d and every 1 ≤ i ≤ d.

This Schatten-class result has C∗-algebraic implications.

Let Td be the C∗-algebra generated by Mz1 , · · · , Mzd on H2
d . Recall

that Td was introduced by Arveson in [9]. In more ways than one, Td is the
analogue of the C∗-algebra generated by Toeplitz operators with continuous
symbols. Indeed Arveson showed that there is an exact sequence

{0} → K → Td
τ−→ C(Sd)→ {0}, (5.1)

where K is the collection of compact operators on H2
d . But there is another

natural C∗-algebra on H2
d which is also related to “Toeplitz operators”, where

the symbols are not necessarily continuous. We define

TMd = the C∗-algebra generated by {Mf : fH2
d ⊂ H2

d}.
Theorem 1.1 tells us that Td is contained in the essential center of TMd, in
analogy with the classic situation on the Hardy space of the unit sphere S.
This opens the door for us to use the classic localization technique [38] to
analyze multipliers.

Let Sw be a class of Schur multipliers defined as follows: For each w ∈
Bd, let

Sw(z) =
1− |w|

1− 〈z, w〉
. (5.2)

Note that the norm of the operator MSw on H2
d is 1. Here is a localization

result shown in [43].
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Theorem 5.2. Let A ∈ TMd. Then for each ξ ∈ Sd, the limit

lim
r↑1
‖AMSrξ‖ (5.3)

exists. Moreover, we have

‖A‖Q = sup
ξ∈Sd

lim
r↑1
‖AMSrξ‖.

Alternatively, we can state this result in a version which may be better
suited for applications:

Theorem 5.3. For each A ∈ TMd, we have

‖A‖Q = lim
r↑1

sup
r≤|w|<1

‖AMSw‖.

In addition to the analogue of Toeplitz operators and the Toeplitz alge-
bra, it is also interesting to consider possible analogues of Hankel operators
in the setting of H2

d . This is more difficult than the Toeplitz case, since there
isn’t an L2 associated with H2

d . But there are analogous problems. For ex-
ample, we may ask the following questions: Suppose f ∈ Md. Under what
condition on f is the commutator [M∗f ,Mf ] compact? Under what condition

on f does the commutator [M∗f ,Mf ] belong to the Schatten class Cp, p > d?

The C∗-algebra TMd itself is quite interesting. To see why, let us con-
sider the analogous situation on the Hardy space. Let H2(Sd) be the Hardy
space on the unit sphere. On H2(Sd), we naturally have

T (H∞(Sd)) = C∗-algebra generated by {Mf : f ∈ H∞(Sd)}.

Note that H∞(Sd) is precisely the collection of the multipliers for H2(Sd).
In this sense, TMd is as close to an analogue of T (H∞(Sd)) as we can get
on H2

d . The significance of this becomes clear when we consider the essential
commutants. It is well known [34, 37, 49] that the essential commutant of
T (H∞(Sd)) is T (QC), the C∗-algebra generated by the Toeplitz operators

{Tf : f ∈ QC = L∞ ∩VMO}

on H2(Sd). In this light, it will be interesting to see what the essential com-
mutant of TMd is.

6. Characterizations of multipliers

Due to the importance of multipliers, it is natural to ask whether we have a
nice characterization for these multipliers. As we have seen that there have
been some work on the characterization of special multipliers such as Schur
multipliers and quasi-extreme multipliers. But the determination of which
f ∈ H2

d is a multiplier in general is still very challenging.
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Let m be an integer such that 2m ≥ d. Then given any f ∈ H2
d , one can

define the measure dµf on B by the formula

dµf (z) = |(Rmf)(z)|2(1− |z|2)2m−ddv(z), (6.1)

where R is the radial derivative and dv is the normalized volume measure on
Bd.

In [63] Ortega and Fàbrega proved the following characterization:

Theorem 6.1. f ∈Md if and only if dµf is a Carleson measure for H2
d . That

is, f ∈Md if and only if there is a C such that∫
|h(z)|2dµf (z) ≤ C‖h‖2

for every h ∈ H2
d .

In [7] Arcozzi, Rochberg and Sawyer gave a characterization for all the
H2
d -Carleson measures on Bd. See Theorem 34 in that paper. For a given

Borel measure on Bd, the conditions in [7] are not easy to verify. More to
the point, Theorem 34 in [7] deals with all Borel measures on Bd, not just
the class of measures dµf of the form (6.1). A natural question is to ask the
following: Let kz be the normalized reproducing kernel for H2

d , i.e., kz(w) =
(1−|z|2)1/2

1−〈z,w〉 , |z| < 1, |w| < 1. For f ∈ H2
d , does the condition

sup
|z|<1

‖fkz‖ <∞

imply that f is a multiplier for H2
d?

What makes this question particularly tempting is that an affirmative
answer would give a very simple characterization of the membership f ∈M.
But that would be too simple a characterization, as it turns out. Actually
the answer is negative as shown in [46].

Theorem 6.2. There exists an f ∈ H2
d satisfying the conditions f /∈ Md and

sup|z|<1 ‖fkz‖ <∞.

In [4], a more general result of Aleman, Hartz, McCarthy and Richter
for complete Pick space implies the following sufficient condition for f ∈Md:

Theorem 6.3. If f ∈ H2
d and satisfies

sup
|z|<1

Re 〈f,Kzf〉H2
d
<∞,

then f ∈Md.

In [4] it is proved that the condition is not a necessary condition for
some complete Pick space. The characterization problem still remains to be
challenging.



Multipliers of Drury-Arveson Space 15

Remark: Note that there have been numerous studies on relevant noncom-
mutative generalizations. To list few: [55, 56, 57, 58, 59, 36, 11, 16, 23].
Unfortunately we have to omit the discussions here. Interested readers may
find information from these papers and the references therein.
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