MULTIPLIERS AND ESSENTIAL NORM ON THE DRURY-ARVESON SPACE

QUANLEI FANG AND JINGBO XIA

ABSTRACT. It is well known that for multipliers f of the Drury-Arveson space H_n^2 , $||f||_{\infty}$ does not dominate the operator norm of M_f . We show that in general $||f||_{\infty}$ does not even dominate the essential norm of M_f . A consequence of this is that there exist multipliers f of H_n^2 for which M_f fails to be essentially hyponormal, i.e., if K is any compact, self-adjoint operator, then the inequality $M_f^*M_f - M_fM_f^* + K \ge 0$ does not hold.

1. INTRODUCTION

Let **B** denote the open unit ball $\{z : |z| < 1\}$ in \mathbb{C}^n . In this paper, the complex dimension n is assumed to be greater than or equal to 2. An analogue of the classic Hardy space is the space H_n^2 of analytic functions on **B** introduced by Drury [8] and Arveson [2]. Because of its connection to various topics in operator theory, e.g. the von Neumann inequality for commuting row contractions, H_n^2 has been the subject of intense recent studies [1-7,9,10,12].

Recall that the Drury-Arveson space H_n^2 is a reproducing kernel Hilbert space with

$$K(z,w) = \frac{1}{1 - \langle z, w \rangle}, \quad z, w \in \mathbf{B},$$

as its kernel [2, 8]. Note that K(z, w) is a multivariable-generalization of the one-variable Szegö kernel. An orthonormal basis of H_n^2 is given by $\{(|\alpha|!/\alpha!)^{1/2}\zeta^{\alpha} : \alpha \in \mathbb{Z}_+^n\}$, where we use the standard multi-index notation. Thus for functions $f, g \in H_n^2$ with Taylor expansions

$$f(\zeta) = \sum_{\alpha \in \mathbf{Z}_+^n} c_\alpha \zeta^\alpha \text{ and } g(\zeta) = \sum_{\alpha \in \mathbf{Z}_+^n} d_\alpha \zeta^\alpha,$$

the inner product is given by

$$\langle f,g\rangle = \sum_{\alpha\in\mathbf{Z}_{+}^{n}} \frac{\alpha!}{|\alpha|!} c_{\alpha}\overline{d_{\alpha}}.$$

With the identification of each variable ζ_i with each multiplication operator M_{ζ_i} , H_n^2 is a free Hilbert module over the polynomial ring $\mathbf{C}[\zeta_1, \ldots, \zeta_n]$. See [2].

An analytic function f on **B** is said to be a *multiplier* of the Drury-Arveson space H_n^2 if $fg \in H_n^2$ for every $g \in H_n^2$. Throughout the paper, we denote the collection of multipliers of H_n^2 by \mathcal{M} . For each $f \in \mathcal{M}$, the multiplication operator M_f defined by $M_fg = fg$ is necessarily bounded on H_n^2 [2], and the operator norm $||M_f||$ is also called the multiplier norm of f.

²⁰⁰⁰ Mathematics Subject Classification. 47B10,47B32,47B38.

Key words and phrases. Multiplier, Drury-Arveson space.

Multipliers are an important part of operator theory on H_n^2 . For example, if \mathcal{E} is a closed linear subspace of H_n^2 which is invariant under $M_{\zeta_1}, \ldots, M_{\zeta_n}$, then there exist $\{f_1, \ldots, f_k, \ldots\} \subset \mathcal{M}$ such that the operator

$$M_{f_1}M_{f_1}^* + \dots + M_{f_k}M_{f_k}^* + \dots$$

is the orthogonal projection from H_n^2 onto \mathcal{E} (see page 191 in [3]).

Among the recent results related to multipliers, we would like to mention the following developments. Interpolation problems for multipliers and model theory related to the Drury-Arveson space have been intensely studied over the past decade or so [4, 5, 10, 12]. Recently, Arcozzi, Rochberg and Sawyer gave a characterization of the multipliers in terms of Carleson measures for H_n^2 [1]. In [7], Costea, Sawyer and Wick proved a corona theorem for \mathcal{M} . More recently, we showed in [9] that for each $f \in \mathcal{M}$ and each $1 \leq i \leq n$, the commutator $[M_f^*, M_{\zeta_i}]$ belongs to the Schatten class \mathcal{C}_p , p > 2n.

Of particular relevance to this paper is the fact that under the assumption $n \ge 2$, \mathcal{M} is strictly smaller than H^{∞} [2]. Moreover, Arveson showed in [2] that, even for polynomials q, $||q||_{\infty}$ in general does not dominate the operator norm of M_q on H_n^2 . This naturally brings up the question, what about the essential norm of M_f on H_n^2 for general $f \in \mathcal{M}$?

Recall that the *essential norm* of a bounded operator A on a Hilbert space \mathcal{H} is

$$||A||_{\mathcal{Q}} = \inf\{||A + K|| : K \in \mathcal{K}(\mathcal{H})\},\$$

where $\mathcal{K}(\mathcal{H})$ is the collection of compact operators on \mathcal{H} . Alternately, $||A||_{\mathcal{Q}} = ||\pi(A)||$, where π denotes the quotient homomorphism from $\mathcal{B}(\mathcal{H})$ to the Calkin algebra $\mathcal{Q} = \mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$.

Let \mathcal{T}_n be the C^* -algebra generated by $M_{\zeta_1}, \dots, M_{\zeta_n}$ on H_n^2 , which was introduced by Arveson in [2]. In more ways than one, \mathcal{T}_n is the analogue of the C^* -algebra generated by Toeplitz operators with *continuous* symbols. Indeed Arveson showed that there is an exact sequence

$$\{0\} \to \mathcal{K}(H_n^2) \to \mathcal{T}_n \xrightarrow{\tau} C(S) \to \{0\},\tag{1.1}$$

where the homomorphism τ is an extension of the map

$$\tau(M_{\zeta_i}) = \zeta_j$$

j = 1, ..., n, and $S = \{z \in \mathbb{C}^n : |z| = 1\}$. It follows that if q is a polynomial, then

$$\|M_q\|_{\mathcal{Q}} = \|q\|_{\infty}.$$
 (1.2)

This equality can also be understood from a slightly different point of view. Indeed by Proposition 5.3 in [2], for each polynomial q, the operator M_q is essentially normal, i.e., $[M_q^*, M_q]$ is compact. On the other hand, by Proposition 2.12 in [2], if q is a polynomial, then the spectral radius of M_q equals $||q||_{\infty}$. Since the norm and the spectral radius of any normal element in any C^* -algebra coincide, it follows that $||M_q||_{\mathcal{Q}} \leq ||q||_{\infty}$ whenever q is a polynomial. The reverse inequality, $||M_q||_{\mathcal{Q}} \geq ||q||_{\infty}$, is easy once M_q^* is applied to the normalized reproducing kernel of H_n^2 .

Equality (1.2) is particularly interesting in view of the fact that, even for polynomials, $||q||_{\infty}$ in general does not dominate the operator norm of M_q . The obvious question is, what happens if we consider a general $f \in \mathcal{M}$?

We report that (1.2) in general fails if we consider multipliers which are not polynomials. More specifically, the main results of the paper are Theorems 1.1 and 1.2 below.

Theorem 1.1. There exists a sequence $\{\psi_k\} \subset \mathcal{M}$ such that

$$\inf_{k\geq 1} \|M_{\psi_k}\|_{\mathcal{Q}} > 0 \qquad and \qquad \lim_{k\to\infty} \|\psi_k\|_{\infty} = 0.$$

This has implications for other essential properties of multipliers.

Recall that an operator T is said to be *hyponormal* if $T^*T - TT^* \ge 0$. It is well known that the norm of a hyponormal operator coincides with its spectral radius. As we mentioned earlier, by Proposition 2.12 in [2], if q is a polynomial, then the spectral radius of M_q equals $||q||_{\infty}$. Therefore if q is a polynomial such that $||M_q|| > ||q||_{\infty}$, then M_q is not hyponormal. Thus there are plenty of multipliers $f \in \mathcal{M}$ for which M_f fails to be hyponormal on H_n^2 . This is one phenomenon that sets the Drury-Arveson space apart from the Hardy space and the Bergman space. We will show that this phenomenon persists under compact perturbation.

Definition. An operator T is said to be *essentially hyponormal* if there is a compact self-adjoint operator K such that

$$T^*T - TT^* + K \ge 0.$$

Obviously, T is essentially hyponormal if and only if $\pi(T)$ is a hyponormal element in the Calkin algebra \mathcal{Q} , i.e., $\pi(T^*)\pi(T) - \pi(T)\pi(T^*) \ge 0$.

Theorem 1.2. There exists a $\psi \in \mathcal{M}$ such that the multiplication operator M_{ψ} on H_n^2 is not essentially hyponormal.

Having introduced our results, the rest of this short paper consists of their proofs.

2. Estimates for Certain Multipliers

The proof of Theorem 1.1 involves Möbius transform. For each $z \in \mathbf{B} \setminus \{0\}$, let

$$\varphi_z(\zeta) = \frac{1}{1 - \langle \zeta, z \rangle} \left\{ z - \frac{\langle \zeta, z \rangle}{|z|^2} z - (1 - |z|^2)^{1/2} \left(\zeta - \frac{\langle \zeta, z \rangle}{|z|^2} z \right) \right\}.$$
(2.1)

Then φ_z is an involution, i.e., $\varphi_z \circ \varphi_z = \text{id}$ [13,Theorem 2.2.2]. Recall that the normalized reproducing kernel for H_n^2 is given by

1 10

$$k_z(\zeta) = \frac{(1-|z|^2)^{1/2}}{1-\langle \zeta, z \rangle}, \quad z, \zeta \in \mathbf{B}.$$
 (2.2)

For each $z \in \mathbf{B} \setminus \{0\}$, define the operator U_z by the formula

$$(U_z g)(\zeta) = g(\varphi_z(\zeta))k_z(\zeta), \quad g \in H_n^2.$$
(2.3)

It follows easily from Theorem 2.2.2 in [13] that if $z \in \mathbf{B} \setminus \{0\}$ and $x, y \in \mathbf{B}$, then

$$\langle U_z k_x, U_z k_y \rangle = \frac{(1 - |x|^2)^{1/2} (1 - |y|^2)^{1/2}}{1 - \langle y, x \rangle} = \langle k_x, k_y \rangle.$$

4

Hence each U_z is a unitary operator on H_n^2 . Moreover, we have

$$U_z M_f U_z^* = M_{f \circ \varphi_z} \tag{2.4}$$

for all $z \in \mathbf{B} \setminus \{0\}$ and $f \in \mathcal{M}$.

For each $j \in \mathbf{N}$, let E_j be the linear span of $\{\zeta^{\alpha} : |\alpha| \leq j\}$ in H_n^2 , and let $P_j : H_n^2 \to E_j$ be the orthogonal projection. Moreover, denote

$$Q_j = 1 - P_j$$

Obviously, we have the strong convergence $Q_j \to 0$ as $j \to \infty$.

Lemma 2.1. For each $j \in \mathbf{N}$, there is a constant $1 \leq C_j < \infty$ such that

$$\limsup_{|z|\uparrow 1} \|M_{f \circ \varphi_z} P_j\| \le C_j \|M_f\|_{\mathcal{Q}}$$

for every $f \in \mathcal{M}$.

Proof. For each $j \in \mathbf{N}$, since dim $(E_j) < \infty$, any two norms on E_j are equivalent. Since E_j consists of polynomials, we have $||M_g|| < \infty$ for each $g \in E_j$. Hence there is a C_j such that

$$\|M_g\| \le C_j \|g\|_{H^2_n} \tag{2.5}$$

for every $g \in E_j$. Now let $f \in \mathcal{M}$. Using the unitary U_z , we have $||f \circ \varphi_z||_{H_n^2} = ||U_z(f \circ \varphi_z)||_{H_n^2} = ||fk_z||_{H_n^2}$. Since $k_z \to 0$ weakly as $|z| \uparrow 1$, we have

$$\limsup_{|z|\uparrow 1} \|f \circ \varphi_z\|_{H^2_n} = \limsup_{|z|\uparrow 1} \|fk_z\|_{H^2_n} \le \limsup_{|z|\uparrow 1} \|(M_f + K)k_z\|_{H^2_n}$$

for every compact operator K. Consequently,

$$\limsup_{|z|\uparrow 1} \|f \circ \varphi_z\|_{H^2_n} \le \|M_f\|_{\mathcal{Q}}.$$
(2.6)

Now if $g \in E_j$, then, using (2.5), we have

$$\|M_{f \circ \varphi_z} g\|_{H^2_n} = \|M_g(f \circ \varphi_z)\|_{H^2_n} \le \|M_g\| \|f \circ \varphi_z\|_{H^2_n} \le C_j \|f \circ \varphi_z\|_{H^2_n} \|g\|_{H^2_n}.$$

Hence $\|M_{f \circ \varphi_z} P_j\| \le C_j \|f \circ \varphi_z\|_{H^2_n}$. Combining this with (2.6), the lemma follows.

The next lemma is so elementary that its proof will be omitted.

Lemma 2.2. For each bounded operator A on H_n^2 , we have

$$\limsup_{j \to \infty} \|Q_j A\| \le \|A\|_{\mathcal{Q}} \quad and \quad \limsup_{j \to \infty} \|AQ_j\| \le \|A\|_{\mathcal{Q}}$$

Proof of Theorem 1.1. By Theorem 3.3 in [2], there is a sequence of polynomials $\{p_i\}$ such that $\|M_{p_i}\| = 1$ (2.7)

for every i and

$$\lim_{i \to \infty} \|p_i\|_{\infty} = 0. \tag{2.8}$$

We will find a sequence of natural numbers $\{i(j)\}_{j=1}^{\infty}$ and a sequence $\{z_j\} \subset \mathbf{B} \setminus \{0\}$ such that the desired multipliers $\{\psi_k\}$ will have the form

$$\psi_k = \sum_{j=k}^{\infty} p_{i(j)} \circ \varphi_{z_j}, \qquad (2.9)$$

 $k \in \mathbf{N}$. To do this, we note that (2.8) enables us to inductively select an ascending sequence of natural numbers

$$\ell(1) < \ell(2) < \dots < \ell(m) < \dots$$

such that

$$C_m \|p_{\ell(m)}\|_{\infty} \le \frac{1}{2^m}$$
 (2.10)

for each $m \in \mathbf{N}$, where C_m is the constant provided by Lemma 2.1. Since each p_i is a polynomial, by (1.2) this implies

$$C_m \| M_{p_{\ell(m)}} \|_{\mathcal{Q}} \le \frac{1}{2^m}.$$
 (2.11)

By (2.11) and Lemma 2.1, for each $m \in \mathbf{N}$ there is a $w_m \in \mathbf{B} \setminus \{0\}$ such that

$$\|M_{p_{\ell(m)}\circ\varphi_{w_m}}P_m\| \le \frac{2}{2^m}.$$
(2.12)

It follows from Lemma 2.2 that for each $m \in \mathbf{N}$ there is a natural number r(m) > m such that

$$\|M_{p_{\ell(m)}\circ\varphi_{w_m}}Q_{r(m)}\| \le 2\|M_{p_{\ell(m)}\circ\varphi_{w_m}}\|_{\mathcal{Q}} = 2\|M_{p_{\ell(m)}}\|_{\mathcal{Q}},$$

where the = is a consequence of (2.4). By (2.11) and the fact that $C_m \ge 1$, we have

$$\|M_{p_{\ell(m)}\circ\varphi_{w_m}}Q_{r(m)}\| \le \frac{2}{2^m}.$$
 (2.13)

By a similar argument, for each $m \in \mathbf{N}$, there is an s(m) > m such that

$$\|Q_{s(m)}M_{p_{\ell(m)}\circ\varphi_{w_m}}\| \le \frac{2}{2^m}.$$
(2.14)

Note that for each m, the subspace $Q_m H_n^2$ is invariant under $\{M_f : f \in \mathcal{M}\}$. That is,

$$M_f g = Q_m M_f g$$
 if $g \in Q_m H_n^2$ and $f \in \mathcal{M}$.

Using this fact and the relation $P_i = 1 - Q_i$, it follows from simple algebra that

$$M_{p_{\ell(m)}\circ\varphi_{w_m}} = M_{p_{\ell(m)}\circ\varphi_{w_m}}P_m + Q_{s(m)}M_{p_{\ell(m)}\circ\varphi_{w_m}}(Q_m - Q_{r(m)}) + M_{p_{\ell(m)}\circ\varphi_{w_m}}Q_{r(m)} + (P_{s(m)} - P_m)M_{p_{\ell(m)}\circ\varphi_{w_m}}(P_{r(m)} - P_m).$$

Thus if we set

$$Y_m = M_{p_{\ell(m)} \circ \varphi_{w_m}} P_m + Q_{s(m)} M_{p_{\ell(m)} \circ \varphi_{w_m}} (Q_m - Q_{r(m)}) + M_{p_{\ell(m)} \circ \varphi_{w_m}} Q_{r(m)},$$

then

$$M_{p_{\ell(m)}\circ\varphi_{w_m}} = Y_m + (P_{s(m)} - P_m)M_{p_{\ell(m)}\circ\varphi_{w_m}}(P_{r(m)} - P_m),$$
(2.15)

 $m \in \mathbf{N}$. Note that by (2.12), (2.13) and (2.14), we have

$$\|Y_m\| \le \frac{6}{2^m}.$$
 (2.16)

Set $m_1 = 5$. We then inductively select a sequence of integers $m_1 < m_2 < \cdots < m_j < \cdots$ such that the inequality

$$m_{j+1} > \max\{r(m_j), s(m_j)\}$$
(2.17)

holds for every $j \ge 1$. Now set

$$i(j) = \ell(m_j)$$
 and $z_j = w_{m_j}$ (2.18)

for each $j \in \mathbf{N}$. With this notation, from (2.15) we obtain

$$M_{p_{i(j)}\circ\varphi_{z_j}} = Y_{m_j} + (P_{s(m_j)} - P_{m_j})M_{p_{i(j)}\circ\varphi_{z_j}}(P_{r(m_j)} - P_{m_j}).$$
(2.19)

With i(j) and z_j determined as above, we now define ψ_k by (2.9) for each $k \ge 1$.

Next we show that the sequence $\{\psi_k\}$ has the desired properties. First we need to show that $\psi_k \in \mathcal{M}$ for each k. By the relations s(m) > m, r(m) > m and (2.17), we have

$$P_{s(m_j)} - P_{m_j} \perp P_{s(m_{j'})} - P_{m_{j'}}$$
 and $P_{r(m_j)} - P_{m_j} \perp P_{r(m_{j'})} - P_{m_{j'}}$ (2.20)

whenever j < j'. Recall that $||M_{p_i \circ \varphi_z}|| = ||M_{p_i}||$ by (2.4) and that $||M_{p_i}|| = 1$ by choice. Combining these facts with (2.20), we see that the norm of the operator

$$B_{k} = \sum_{j=k}^{\infty} (P_{s(m_{j})} - P_{m_{j}}) M_{p_{i(j)} \circ \varphi_{z_{j}}} (P_{r(m_{j})} - P_{m_{j}})$$

does not exceed 1. By (2.16) and the choice that $m_1 = 5$, the norm of the operator

$$A_k = \sum_{j=k}^{\infty} Y_{m_j}$$

does not exceed 1/2. By (2.9) and (2.19), $M_{\psi_k} = A_k + B_k$. Thus the norm of the operator M_{ψ_k} is at most 3/2. That is, $\psi_k \in \mathcal{M}$ for each $k \in \mathbb{N}$. Applying (2.18) and (2.10), we have

$$\|\psi_k\|_{\infty} \le \sum_{j=k}^{\infty} \|p_{i(j)} \circ \varphi_{z_j}\|_{\infty} = \sum_{j=k}^{\infty} \|p_{i(j)}\|_{\infty} \le \sum_{j=k}^{\infty} \frac{1}{2^{m_j}}.$$

Hence

$$\lim_{k \to \infty} \|\psi_k\|_{\infty} = 0$$

What remains for the proof is the inequality

$$\inf_{k\geq 1} \|M_{\psi_k}\|_{\mathcal{Q}} > 0.$$

Since $M_{\psi_k} = A_k + B_k$ and $||A_k|| \le 1/2$, it suffices to show that

$$\inf_{k\geq 1} \|B_k\|_{\mathcal{Q}} \geq 1$$

Since $||M_{p_{i(j)} \circ \varphi_{z_j}}|| = ||M_{p_{i(j)}}|| = 1$ and $\lim_{j \to \infty} ||Y_{m_j}|| = 0$, by (2.19) we have

$$\lim_{j \to \infty} \| (P_{s(m_j)} - P_{m_j}) M_{p_{i(j)} \circ \varphi_{z_j}} (P_{r(m_j)} - P_{m_j}) \| = 1.$$

Therefore there exists a sequence of unit vectors $\{g_j\}$ such that

$$g_j \in (P_{r(m_j)} - P_{m_j})H_n^2$$
(2.21)

for every j and

$$\lim_{j \to \infty} \| (P_{s(m_j)} - P_{m_j}) M_{p_{i(j)} \circ \varphi_{z_j}} (P_{r(m_j)} - P_{m_j}) g_j \|_{H^2_n} = 1.$$
(2.22)

By (2.21) and (2.20), $g_j \to 0$ weakly as $j \to \infty$. By this weak convergence and (2.22), we have $\lim_{i \to \infty} \|(B_k + K)g_j\|_{H^2_n} = 1$

for every compact operator K. This implies $||B_k||_Q \ge 1$, completing the proof of Theorem 1.1.

3. Spectral radius

To prove Theorem 1.2, we begin with a simple fact about multipliers.

Lemma 3.1. Let $f \in \mathcal{M}$. If there is a c > 0 such that $|f(z)| \ge c$ for every $z \in \mathbf{B}$, then 1/f is also a multiplier of H_n^2 .

Proof. This certainly follows from the recently proved corona theorem for \mathcal{M} [7]. But it also follows from an earlier, much simpler result due to Chen [6]. By Theorem 2 in [6], there are constants $0 < A \leq B < \infty$ such that $A ||g||_{H_n^2} \leq ||g||_{\#} \leq B ||g||_{H_n^2}$ for every $g \in H_n^2$, where

$$||g||_{\#}^{2} = |g(0)|^{2} + \iint \frac{|g(z) - g(w)|^{2}}{|1 - \langle z, w \rangle|^{2n+1}} dv(z) dv(w).$$
(3.1)

Let $f \in \mathcal{M}$ be such that $|f| \ge c > 0$ on **B**. Then for each $g \in H_n^2$,

$$\frac{g(z)}{f(z)} - \frac{g(w)}{f(w)} = \frac{g(z) - g(w)}{f(z)} + \frac{g(z) - g(w)}{f(w)} + \frac{f(w)g(w) - f(z)g(z)}{f(z)f(w)},$$
(3.2)

 $z, w \in \mathbf{B}$. From (3.1) and (3.2) we see that $1/f \in \mathcal{M}$.

From this lemma we immediately obtain

Proposition 3.2. For each $f \in \mathcal{M}$, the spectrum of the operator M_f on H_n^2 is contained in the closure of $\{f(z) : z \in \mathbf{B}\}$. Consequently the spectral radius of M_f does not exceed $||f||_{\infty}$.

Remark 1. In the case where f has the property that there is a sequence of polynomials $\{p_k\}$ such that $\lim_{k\to\infty} ||M_f - M_{p_k}|| = 0$, Proposition 3.2 was proved by Arveson. See Proposition 2.12 in [2].

Remark 2. It follows from (3.1) and (3.2) that if $f \in \mathcal{M}$ and if $\inf_{z \in \mathbf{B}} |f(z)| > 0$, then

$$||M_{1/f}|| \le C(||1/f||_{\infty} + ||1/f||_{\infty}^{2} ||M_{f}||).$$

Surprisingly, Chen himself did not seem to notice this fact in [6].

Remark 3. The referee observes that an alternate proof for Lemma 3.1 is to use the Carlesonmeasure characterization for functions in \mathcal{M} [1]. In this approach, what replaces (3.2) is the formula for high-order derivatives of 1/f.

Proposition 3.3. Let $f \in \mathcal{M}$. If f has the property that $||M_f||_{\mathcal{Q}} > ||f||_{\infty}$, then the operator M_f on H_n^2 is not essentially hyponormal.

Proof. Recall that we denote the quotient map from $\mathcal{B}(H_n^2)$ to the Calkin algebra \mathcal{Q} by π . Let Φ be the GNS representation of \mathcal{Q} on a Hilbert space \mathcal{H} . If M_f were essentially hyponormal, then $\{\pi(M_f)\}^*\pi(M_f) - \pi(M_f)\{\pi(M_f)\}^* \geq 0$ in \mathcal{Q} . Consequently $\Phi(\pi(M_f))$ would be a hyponormal operator on \mathcal{H} .

Write $\operatorname{rad}(T)$ for the spectral radius of any operator T. It is well known that if T is a hyponormal operator, then $||T|| = \operatorname{rad}(T)$. See Problem 205 in [11]. Thus we would have

$$\|\Phi(\pi(M_f))\| = \operatorname{rad}(\Phi(\pi(M_f))).$$

Since $\Phi \circ \pi$ is a C^{*}-algebraic homomorphism, the spectrum of $\Phi(\pi(M_f))$ is contained in the spectrum of M_f . Therefore $\operatorname{rad}(\Phi(\pi(M_f))) \leq \operatorname{rad}(M_f)$. Applying Proposition 3.2, we have

$$\operatorname{rad}(\Phi(\pi(M_f))) \le \operatorname{rad}(M_f) \le ||f||_{\infty}.$$

On the other hand, since Φ is a faithful representation, we have

$$\|\Phi(\pi(M_f))\| = \|\pi(M_f)\| = \|M_f\|_{\mathcal{Q}}$$

These three displayed lines together contradict the assumption $||M_f||_{\mathcal{Q}} > ||f||_{\infty}$.

Proof of Theorem 1.2. By Theorem 1.1, there is a $\psi \in \mathcal{M}$ with $||M_{\psi}||_{\mathcal{Q}} = c$ for some c > 0 while $||\psi||_{\infty} < c/2$. That is, we have a $\psi \in \mathcal{M}$ with $||M_{\psi}||_{\mathcal{Q}} > ||\psi||_{\infty}$. For such a ψ , Proposition 3.3 tells us that M_{ψ} is not essentially hyponormal on H_n^2 . \Box

References

- N. Arcozzi, R. Rochberg and E. Sawyer, Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls, Advances in Math, 218(4), 2008, 1107-1180.
- [2] W. Arveson, Subalgebras of C*-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), 159-228.
- [3] W. Arveson, The curvature invariant of a Hilbert module over $\mathbf{C}[z_1, \ldots, z_d]$, J. Reine Angew. Math. 522 (2000), 173-236.
- [4] J. A. Ball and V. Bolotnikov, Interpolation problems for multipliers on the Drury-Arveson space: from Nevanlinna-Pick to Abstract Interpolation Problem, Integr. Equ. Oper. Theory 62 (2008), 301-349.
- [5] J. A. Ball, T. T. Trent and V. Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Op. Th. Adv. and App. 122 (2001), 89-138.
- [6] Z. Chen, Characterizations of Arveson's Hardy space, Complex Var. Theory Appl. 48 (2003), 453-465.
- [7] S. Costea, E. Sawyer and B. Wick, The Corona Theorem for the Drury-Arveson Hardy space and other holomorphic Besov-Sobolev spaces on the unit ball in \mathbb{C}^n , preprint.
- [8] S. W. Drury, A generalization of von Neumanns inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978), 300-304.
- [9] Q. Fang and J. Xia, Commutators and localization on the Drury-Arveson space, preprint, 2009.
- [10] D. Greene, S. Richter and C. Sundberg, The structure of inner multipliers on spaces with complete Nevanlinna-Pick kernels, J. Funct. Anal. 194 (2002), 311-331.
- [11] P. Halmos, A Hilbert space problem book, Second edition. Graduate Texts in Mathematics 19, Springer-Verlag, New York-Berlin, 1982.
- [12] S. McCullough and T. T. Trent, Invariant subspaces and Nevanlinna-Pick kernels, J. Funct. Anal. 178 (2000), 226-249.
- [13] W. Rudin, Function theory in the unit ball of \mathbf{C}^n , Springer-Verlag, New York-Berlin, 1980.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BUFFALO, BUFFALO, NY 14260, USA

E-mail address: qfang2@buffalo.edu

E-mail address: jxia@acsu.buffalo.edu