MTH 42, Fall 2024

Nikos Apostolakis

Take Home Part of Exam 2

1. Let

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{pmatrix}$$

(a) Find a matrix *A* such that

$$A X = \begin{pmatrix} 3 x_{41} - 2 x_{21} & 3 x_{42} - 2 x_{22} & 3 x_{43} - 2 x_{23} & 3 x_{44} - 2 x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \end{pmatrix}$$

(b) Find a matrix *B* such that

$$X B = \begin{pmatrix} x_{14} - 2 x_{13} & x_{12} & x_{11} & x_{14} \\ x_{24} - 2 x_{23} & x_{22} & x_{21} & x_{24} \\ x_{34} - 2 x_{33} & x_{32} & x_{31} & x_{34} \\ x_{44} - 2 x_{43} & x_{42} & x_{41} & x_{44} \end{pmatrix}.$$

2. Let

$$A = \begin{pmatrix} 2 & -1 & 1\\ 6 & -3 & 4\\ 3 & -2 & 3 \end{pmatrix}$$

(a) Verify that *A* is a root of the polynomial

$$p(x) = x^3 - 2x^2 + 2x - 1$$

- (b) Find A^{-1} .
- 3. Let

$$\mathbb{Q}(\sqrt{3}) = \left\{ a + b\sqrt{3} : a, b \in \mathbb{Q} \right\}.$$

- (a) Prove that $\mathbb{Q}(\sqrt{3})$ is a subfield of the field of real numbers \mathbb{R} .
- (b) Give an explicit formula for $(a + b\sqrt{3})^{-1}$.

Hint. See Example 75 in the Lecture notes.

4. Consider the set $\mathbb{F} = \{0, 1, a, b\}$ where $a \neq b$. Define addition and multiplication via the following tables

+	0	1	a	b		•	0	1	a	b
0	0	1	a	b	_	0	0	0	0	0
1	1	0	b	a		1	0	1	a	b
a	a	b	0	1		a	0	a	b	1
b	b	a	1	0		b	0	b	1	a

Prove that \mathbb{F} is a field.

5. Consider \mathbb{R}^2 with the usual addition

$$(a, b) + (c, d) = (a + c, b + d),$$

and multiplication given by

$$(a,b) (c,d) = (a c, b d).$$

Is \mathbb{R}^2 with these operations a field? Fully justify your answer.

6. Consider the following matrices¹ with complex entries

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Prove that these matrices satisfy the following relations:

- (a) $\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = I$.
- (b) $\sigma_x \sigma_y = i \sigma_z$, $\sigma_y \sigma_z = i \sigma_x$, $\sigma_z \sigma_x = i \sigma_y$.
- (c) $\sigma_x \sigma_y = -\sigma_y \sigma_x$, $\sigma_x \sigma_z = -\sigma_z \sigma_x$, $\sigma_y \sigma_z = -\sigma_z \sigma_y$.
- 7. Consider a 3×3 grid of squares, each either green or red. When we touch a square its color and the color of its neighbors change, where the neighbors of a square are all squares that share an edge with it.

1	2	3 6		
4	5			
7	8	9		

Thus for example, if we touch the square numbered 1 the squares numbered 1, 2, and 4 change color, if we touch square 5 then all squares except 1, 3, 7, and 9 change color, and if we touch 8 then 5, 7, 8, and 9 change colors.

We start with all squares green. Find, if possible, a sequence of squares to touch so that all squares turn red.

Hint. See Examples 80 and 81 in the notes.

8. Consider the following vectors in \mathbb{C}^4 :

$$\mathbf{v}_1 = (1, i, 0, -i) \qquad \mathbf{v}_2 = (2 + i, 3 \, i, i, 1 - 4 \, i) \mathbf{v}_3 = (5 + i, 2 + 6 \, i, 1 + 2 \, i, 7 - 9 \, i) \qquad \mathbf{v}_4 = (0, 3 - i, 1 + i, 0).$$

Find a basis and state the dimension of the linear span $\mathbb{C} \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \rangle$.

¹These matrices are called *Pauli spin matrices*. They are used in Quantum Mechanics to compute the spin of an electron.

9. Consider \mathbb{R} as a vector space over \mathbb{Q} . Prove that

$$\left\{\sqrt{2},\sqrt{3},\sqrt{5}\right\}$$

is linearly independent. You may consider Item (a) of Example 93 in the notes known.

- 10. Let S_n denote the set of $n \times n$ symmetric matrices over \mathbb{R} (see Definition 29 in the notes).
 - (a) Prove that S_n is a vector subspace of M_n .
 - (b) Find a basis and the dimension of S_n .

Hint. See Example 95 in the notes.

- 11. Consider the vector space $\mathbb{R}[x]$ of polynomials with real coefficients. Which of the following subsets is a vector subspace of $\mathbb{R}[x]$?
 - (a) $V = \{p(x) \in \mathbb{R}[x] : p(42) = 0\}.$
 - (b) $U = \{ p(x) \in \mathbb{R}[x] : p(42) \ge 0 \}.$
 - (c) $W = \{p(x) \in \mathbb{R}[x] : p(42) = p(0)\}.$
 - (d) $X = \{p(x) \in \mathbb{R}[x] : \deg p(x) = 8\}.$

Fully justify your answers.

12. Let P_3 be the set of real polynomials of degree at most 3:

$$\mathbf{P}_3 = \{ p(x) \in \mathbb{R}[x] : \deg p(x) \le 3 \}.$$

Prove that

$$B = \left\{ 1, x - 1, (x - 1)^2, (x - 1)^3 \right\},\$$

is a basis of P_3 .

13. Let $S = \{A, B, C, D\} \subseteq \mathbf{M}_2$ where

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- (a) Prove that S is a basis of M_2 .
- (b) Express $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ as a linear combination of elements of *S*.
- 14. Find conditions on the complex number z so that the vectors

$$\mathbf{v}_1 = (z, 0, 1), \quad \mathbf{v}_1 = (0, 1, z^3), \quad \mathbf{v}_3 = (z, 1, 1+z)$$

form a basis of \mathbb{C}^3 .

15. Consider the vector space \mathbf{M}_n of real $n \times n$ matrices, and let *B* be a basis of \mathbf{M}_n . Prove that

$$B^* = \{X^* : X \in B\}$$

is also a basis of M_n , where X^* stands for the transpose of a matrix X.

Page 3