MTH 42, Fall 2024

Nikos Apostolakis

Take Home Exam

1. Find a polynomial of degree at most 4 that satisfies the following conditions

p(0) = -5, p(-1) = -10, p(1) = 0, p(2) = 29, p(-2) = -15.

Hint. This is similar to Examples 1.9 and 1.10 in the notes, and Exercise 6 in the First Homework. The polynomial will be of the form $p(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$.

2. Let *V* be the subspace of \mathbb{R}^5 spanned by the vectors

$\mathbf{v}_1 = (1, 2, -1, 3, 4),$	$\mathbf{v}_2 = (2, 4, -2, 6, 8),$
$\mathbf{v}_3 = (1, 3, 2, 2, 6),$	$\mathbf{v}_4 = (1, 4, 5, 1, 8),$
$\mathbf{v}_5 = (2, 7, 3, 3, 9),$	$\mathbf{v}_6 = (4, 9, -1, 11, 18).$

Find a basis and the dimension of *V*.

Hint. See Examples 5.16 and 5.17 in the notes.

- 3. Let S_1 and S_2 be two subsets of \mathbb{R}^n with $S_1 \subseteq S_2$. Prove
 - (a) If S_1 is spanning then S_2 is also spanning.
 - (b) If S_1 is linearly dependent then S_2 is also linearly dependent.
 - (c) If S_2 is linearly independent then S_1 is also linearly independent.
- 4. Let

 $B = \{(1, 1, 1, 1, 1), (0, 1, 1, 1, 1), (0, 0, 1, 1, 1), (0, 0, 0, 1, 1), (0, 0, 0, 0, 1)\}.$

(a) Prove that *B* is a basis of \mathbb{R}^5 .

(b) Express the elements of the standard basis of \mathbb{R}^5 as linear combinations of elements of *B*.

Hint. This is a combination of Exercises 3 and 4 of the Third homework. You can answer all questions with one calculation. See Example 5.18 in the notes.

5. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be defined by

$$T(x, y, z) = (x + 2y + z, x + y, y - 3z, 4x - 3y + 2z).$$

- (a) Prove that *T* is linear.
- (b) Find the matrix of *T*.

Hint. For the first part see Example 6.11 in the notes. For the second part see Example 6.18 in the notes.

6. Let

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}.$$

- (a) Prove that the columns of *A* form a basis of \mathbb{R}^3 .
- (b) Express each of the vectors in the standard basis of \mathbb{R}^3 as linear combinations of the columns of *A*.
- (c) Let *T* be the linear function that sends the *i*-th column to the *i*-th row of *A*. That is if a_1 , a_2 , and a_3 are the columns of *A* then *T* is defined by

$$T \mathbf{a}_1 = (1, 2, 3), \quad T \mathbf{a}_2 = (0, 2, 1), \quad T \mathbf{a}_3 = (1, 0, 3).$$

Find the matrix of *T*.

Hint. See Example 6.19 in the notes.