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A DUALITY FOR LABELED GRAPHS AND FACTORIZATIONS
WITH APPLICATIONS TO GRAPH EMBEDDINGS

AND HURWITZ ENUMERATION

NIKOS APOSTOLAKIS

The set of factorizations of permutations into m transpositions of some symmetric group Sn is naturally
in bijection with the set of graphs of order n and size m with both edges and vertices labeled. We define a
notion of duality (the mind-body duality) for factorizations and such labeled graphs and interpret it in
terms of properly embedded graphs, a class of graphs embedded in a bounded compact oriented surface
with all the vertices lying in the boundary, and show a close connection of this duality with the Hurwitz
action of the braid group. Connections with the theory of cellularly embedded graphs are highlighted
and hints of possible applications are given. In this paper we focus on developing the necessary theory,
leaving specific applications and further developments for future projects.

1. Introduction

The research in this paper originated with the author reading [27] and attempting to understand the
notion of duality implicit in the construction of the “structural bijection” defined there. That duality is
closely related to the “duality” (the quotation marks are there because this “duality” is not involutory, a
natural requirement in order to call any bijection a duality) for noncrossing trees defined in [29], and the
structural properties of the bijection follow from the properties of that duality, namely from the fact
that the neighborhood of a vertex is transformed to a path that, together with an arc of the boundary
circle, forms the boundary of one of the region that the disk of the noncrossing tree is divided into by
the tree. An exposition of the contents of [27] from this point of view is given in Section 5. A question
posed in [27] is to find generalizations of the structural bijection, defined there for minimal factorizations
of cycles, to more general classes of factorizations. We answer this question by making explicit, and
clarifying, the implicit duality, which we call “mind-body duality” for reasons explained in Section 2C,
and generalizing it so that it applies to factorizations of any permutation with any number of factors. We
leave specific applications to bijective enumerations to future projects, see Section 6 for a sample of such
projects planned for the near future.
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By factorization we mean an expression of a permutation as a product of a sequence of transpositions.
As observed by Dénes in [17], factorizations of permutations of a finite set V with m factors, are in
bijection with graphs with vertex set V and m edges labeled by [m] := {1, . . . , m}. This bijection assigns
to a factorization a graph that has an edge connecting v and u labeled by i , if and only if, the i-th factor
interchanges v and u. The mind-body duality is first defined in Section 2A for edge-labeled graphs using
the fact that a labeling of the edges of a graph induces two dual structures on the graph: a local edge
order (leo), and a perfect trail double cover (PTDC), see Definitions 2.3 and 2.4. The leo is simply the
linear orders induced by the edge-labels on the set of edges incident at each vertex, while, in terms of
factorizations, the PTDC is the set of trails formed by the trajectories of V under the successive application
of the factors. The mind-body dual of an edge-labeled graph is then defined as the intersection graph of
the family of these trajectories viewed as sets of edges, see Definition 2.8.

The study of factorizations, branched coverings, and their enumeration is a classical topic that goes
back to Hurwitz (see [30]). The braid group, as a group of automorphisms of the free group seems to
have appeared for the first time in that paper as well. It turns out that mind-body duality has a simple
interpretation in terms of the Hurwitz action on the set of factorizations: it is simply the reverse of the
action of the Garside element of the braid group (see Theorem 3.4), and this allows us to get explicit
formulas for the dual of a factorization. Furthermore by exploiting a certain “operadic” property of
the Garside element (see Theorem 3.6) we are able to calculate the dual of a factorization “locally” by
relating the dual of a concatenation of factorizations to the concatenation of their duals. The mind-body
duality is also closely related to the duality in the braid group defined by changing under-crossings to
over-crossings and vice-versa (see Theorem 3.10).

If one interprets the mind-body duality in the context of topological graph theory, it turns out that it is
a generalization of the duality of graphs embedded in closed oriented surfaces. In order to define that
generalization we define the notion of a proper embedding of a graph in a surface with boundary (see
Definition 4.1). A properly embedded graph (peg) is a graph embedded in a bounded surface in such
a way that all the vertices lie in the boundary, with some technical conditions that ensure that the dual
graph is also properly embedded. Namely we require every boundary component to contain at least one
vertex, and each region to contain exactly one arc in its boundary. The prototype for this concept, that in
this generality appears to be new, is a noncrossing tree. The class of cellularly embedded graphs (cegs) is
contained in the class of pegs: a graph cellularly embedded in a closed oriented surface can be construed
as a graph properly embedded in a surface with boundary in such a way that every boundary component
of the surface contains exactly one vertex. In this context, leos are the analogue of rotation systems, and
PTDCs the analogue of cycle double covers. A factorization (or a vertex-and-edge-labeled graph) gives
an oriented surface with boundary with the graph pegged in it, via a straightforward generalization of the
correspondence between rotation systems and cegs. The dual of a peg (defined in the obvious way, see
Definition 4.7) is then isomorphic to the peg obtained by the mind-body dual of the factorization, and
in the special case where the peg can also be considered a ceg, it coincides with the standard notion of
duality for cegs (see Theorem 4.13).

We also give an alternative construction of the peg associated with a factorization, and of the mind-body
duality, via the theory of branched coverings over the two dimensional disk. In this context, the peg
corresponding to the factorization is essentially the lifting of a certain graph in the disk, a so-called Hurwitz
system, and its dual is the lifting of a “dual” Hurwitz system, see Theorem 4.28. This interpretation of the
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peg associated to a factorization is a generalization of a similar construction for cegs given by Arnold
in [8], however our interpretation of duality via branched coverings appears to be new.

We hint at possible applications of this point of view to the theory of cegs by reproving some baby
cases on the existence of self-dual complete graphs, and giving examples of self-dual embedding of the
complete digraph on six vertices, where it is known that no self-dual embeddings of the corresponding
complete (undirected) graph exist. We further remark that the theory of pegs is a refinement of the theory
of cegs, that is more attuned to the graph theoretic properties of the graph: whether a graph can be pegged
on to a given surface is not invariant under subdivisions; in fact (see Proposition 4.19) any ceg admits
a subdivision that renders it the completion of a peg. We hope that this refinement will have future
applications in explaining known, as well as discovering new, enumerative coincidences between various
classes of Hurwitz numbers.

Even though in this work pegs are mainly used as a tool for a topological understanding of the mind-
body duality and are not studied much as a topic on their own right, we do touch upon some natural
questions that arise. One such natural question is the analogue of the genus question from the theory
of cegs, namely: given a graph 0, what can one say about the Euler characteristic and the number of
boundary components of the pegs that arise from all possible edge-labelings of 0? We consider that
question in Section 4C and give a complete answer in the case of complete graphs, see Theorem 4.22.
The general case is an interesting open question.

The main tool we develop is the medial digraph of an edge-labeled graph, or more generally a peg.
This is a digraph that has vertices in bijection with the edges of the peg and there is an arc from a vertex a
to a vertex b if and only if, the edge corresponding to b immediately follows the edge corresponding
to a in the local edge order of some vertex of the peg, see Definition 2.10 and the paragraph following
Definition 4.2. This notion is the analogue of the medial graph from the theory of cegs, which in the case
of embeddings in oriented surfaces, also admits a natural digraph structure coming from the orientation
of the surface. A peg can be encoded as a perfect chain decomposition (PCD) of its medial digraph (see
Definition 2.16) and the mind-body duality corresponds to a natural duality on the set of PCDs (see
Theorem 2.20).

We use the medial digraph to characterize the class of pegs obtained by factorizations in Proposition 2.13:
a peg comes from a factorization if and only if its medial ditree is directed acyclic graph (dag). A peg
can be “completed” into a ceg by gluing disks along the boundary components of its surface, and we use
the medial digraph to characterize the class of cegs that are obtained as closures of pegs: a ceg is the
closure of a peg if and only if its medial digraph admits a feedback arc system of cardinality the size of
the ceg (see Proposition 4.12).

In the penultimate section, we examine the case of minimal transitive factorizations of a cycle, or
equivalently edge-and-vertex-labeled trees, in the light of the developed theory. We first give an exposition
of the results in [27], and we show that the mind-body duality at the level of factorizations can, in this case,
be expressed via the mind-body duality at the level of rooted edge-labeled trees. In general, the mind-body
dual of a factorization of a permutation π is a factorization of π−1, but using rooted edge-labeled trees we
show that one can define a duality between factorizations of the same cycle, enjoying the same structural
properties as mind-body duality. This is a topic that will be further explored in [6]. As an application of
the medial digraph (which in this case is a directed tree) we show that the set of self-dual edge-labeled
trees is equinumerous with the set of alternating permutations (see Corollary 5.13).
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In this work we develop the theory of pegs in enough detail to be able to treat the case of factorizations,
postponing the fully developed theory for a future paper [3]. This and other forthcoming future directions
of this project are outlined in the final section.

1A. Conventions and terminology. All graphs we consider are finite. We view graphs as one-dimensional
complexes, with a set of 0-cells called vertices and a set of 1-cells called edges. Digraphs are graphs
where every edge has been endowed with an orientation. We emphasize that every edge, including loops,
admits two distinct orientations. In general we work with loopless graphs, i.e., all 1-cells are attached
to two distinct 0-cells, except in Section 4, where digraphs are allowed to have loops. The edges of a
digraph are sometimes called darts or arcs depending on the context. We use more or less standard graph
theoretical terminology, with a few exceptions; in particular:

• We use 0 to denote a graph, sometimes endowed with extra structure. The set of vertices of a graph
is denoted by V , and its set of edges by E . The order of 0 (i.e., |V |) is typically denoted by n,
and its size (i.e., |E |) by m.

• We use χ to denote the Euler characteristic so that for a graph 0, we have χ(0)= n−m.

• The neighborhood of a vertex v of 0, denoted ν(v) is the subgraph of 0 defined by all the edges
that are incident to v. The star of a vertex v of 0 is the neighborhood of v in the first barycentric
subdivision of 0, the edges of the first barycentric subdivision are the half-edges of 0.

• A trail is a walk without repeated edges. Every trail has a beginning and an ending vertex that may
coincide.

• By a cycle we mean an equivalence class of closed trails, where two trails are equivalent if they have
the same edges, i.e., the endpoint is not important. In the context of digraphs a cycle is always a
directed cycle.

For a finite set V we denote the symmetric group of V by SV , if V = [n] := {1, . . . , n} the symmetric
group of V is denoted by Sn . We use the usual terminology, e.g., permutation, transposition, cycles,
etc even if V is not [n]. For a transposition τ = (s t) we call s, t the moved points of τ . We multiply
permutations from left to right, so that (1 2)(2 3)= (3 2 1). We use left and right exponential notation for
conjugation in a group, i.e., gh

:= h−1gh and hg := hgh−1.

2. Mind-body duality

In this section we define the mind-body duality first in a graph theoretical context and then in the more alge-
braic context of factorizations. We start by defining the main objects of study and their basic equivalence.

Definition 2.1. A factorization in SV is a sequence of transpositions ρ = (τi )1≤i≤m , with τi ∈ SV . The
product of ρ is called its total monodromy or simply its monodromy and denoted by µ(ρ). We also say
that ρ is a factorization of µ(ρ), and sometimes we’ll call τi the i-th monodromy of ρ.1

The reverse of a factorization ρ = (τi )1≤i≤m is the factorization ρ⊺
:= (τm+1−1)1≤i≤m .

The concatenation of two factorization ρ1 = (τi )1≤i≤m1 and ρ2 = (τ ′i )1≤i≤m2 is the factorization
(τ1, . . . , τm1, τ

′

1, . . . , τ
′
m2

). The concatenation of two factorizations ρ1, ρ2 will be denoted by ρ1 ρ2.

1This terminology comes from the theory of branched coverings, see Section 4D.
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Figure 1. The graph associated with the factorization ρ of Example 2.2.

For a factorization ρ = (τi ) and an element τ ∈ SV , we use the notation ρτ (resp. τρ) for the
factorization (τ τ

i ) (resp. (ττi )).
An edge-labeled graph (e-graph for short) is a graph with edges labeled with elements of [m] where m

is the size of the graph, or equivalently a graph with a total order in the set of its edges. A vertex-labeled
graph (or v-graph for short) is a graph whose vertices are labeled by [n] where n is its order. An
edge-and-vertex-labeled graph (or e-v-graph for short) has both vertices and edges labeled.

The reverse of an e-graph 0, is the graph 0⊺, with the same vertices and edges as 0 and its edges
relabeled according to i 7→ m+ 1− i .

The concatenation of two e-graphs 01 and 02 of sizes m1 and m2, respectively, is the graph 0102 with
V (0102)= V (01)∪ V (02) and E(0102) consisting of the edges of 01 with their labels unchanged, and
the edges of 02 with their labels increased by m1.

There is an obvious bijection between the set of factorizations of SV and the set of e-graphs with vertex
set V : for a factorization ρ define the associated e-graph of ρ to be the graph 0(ρ) that has an edge with
endpoints u, v, and labeled by i , if and only if the i-th monodromy of ρ is (u, v); conversely for an e-graph
0 with vertex set V , the associated factorization of 0, ρ(0) has the i-th monodromy interchanging the
endpoints of the edge labeled i . This bijection specializes to a bijection between factorization of Sn of
length m and e-v-graphs or order n and size m.

Clearly the bijection ρ 7→ 0(ρ) preserves the notions of reverse and concatenation.

Example 2.2. The sequence ρ = (3 4), (1 3), (1 2), (3 4), (2 3) is a factorization of the cycle (4 3 2 1)

in S4. The associated graph 0(ρ) is shown in Figure 1. We draw two versions of it, a standard planar
drawing in the left, and one that the cyclic order of the edges at every vertex is consistent with the order
induced by their labels, see Definition 2.3, on the right. The colors of the vertices are used later, see
Section 2B.

2A. Mind-body duality for e-graphs. Let 0 be an e-graph. The edge labels induce two dual structures
on 0, a local edge ordering and a perfect trail double cover.

Definition 2.3. A local edge ordering (leo for short) of a graph 0 is an assignment of a linear order at
the neighborhood of each vertex of 0. We draw leos in such a way that the cyclic order induced by the
standard (counterclockwise) orientation of the plane is consistent with the ordering of the edges at every
vertex.
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The edge labels of an e-graph induce a leo in the obvious way: the order of the edges around a vertex
is given by the natural order of their labels.

A leo on a graph 0 induces a decomposition of the darts of 0 into chains. We define the relevant
structure in more generality than is strictly needed for this paper in view of future planned work, see [3].

Definition 2.4. A perfect trail double cover (PTDC) of a graph 0 is a family T of positive length trails
such that each edge of 0 belongs to exactly two trails of T, and each vertex is the endpoint of two trails.
We emphasize that trivial paths of length zero are not allowed, but closed trails are allowed; for a closed
trail its endpoint is counted twice.

A PTDC is called orientable if each trail can be endowed with an orientation such that every edge is
traversed once in each direction, in other words, T induces a decomposition of the darts of 0 into chains;
a PTDC endowed with such a choice of orientations is called oriented. In that case every vertex is the
start of exactly one trail (we denote that trail by −�v ) and the end of exactly one trail (we denote that trail
by −�v ).

A PTDC is called nonsingular if for every interior (i.e., nonleaf) vertex the first edge of −�v and the last
edge of −�v are distinct.

For the most part of this paper we will be dealing with oriented nonsingular PTDCs, and from now on,
barring explicit mention to the contrary, we will use PTDC to mean an oriented nonsingular PTDC.

Given a leo on 0 define the minimally increasing greedy trail (migt) starting at v to be the trail−�v obtained
as follows: the first edge of −�v is the smallest (with respect to the leo) edge in the neighborhood ν(v).
We proceed inductively: once we have added an edge e from ν(u) to the trail, in the next step we add
the smaller edge in the neighborhood of w, the other vertex of e, that is larger than e in the leo of w,
provided that such edge exists. We stop when e is the last edge at the leo of w.2

As expected from the notation we have:

Lemma 2.5. The migts of a leo give a (nonsingular, oriented) PTDC. Conversely, a (nonsingular,
oriented) PTDC T gives a leo on its underlying graph, whose migts are the trails of T.

Proof. A vertex v of a graph 0 endowed with a leo is the endpoint of exactly two migts: −�v and −�v . Now
if the first edge e of −�v is the same as the last edge of −�v , then e is both the first and the last edge in the
leo of v and therefore is the only edge incident to v. So for an interior vertex v, the migts −�v and −�v are
distinct.

Let e be an edge of 0 with endpoints v, u, and let e′ (resp. e′′) be the edge of 0 incident to v (resp. u)
and immediately preceding e in the leo at v (resp. u), if such an edge exists. Then by the definition of
migts, e belongs to two migts, m1 = . . . , e′, e, . . . that transverses e from v to u, and m2 = . . . , e′′, e, . . .
that transverses e from u to v; of course if e′ (resp. e′′) does not exist then m1 (resp. m2) is simply −�v
(resp. −�u ). If a migt does not pass through v or u it clearly can’t contain e, and the other migts that pass
through v or u do not contains e because migts are minimally increasing. So every edge belongs to exactly
two migts that transverse it in opposite orientations.

The above can be summarized by saying that the local configuration of the migts in a neighborhood of
a vertex v is as in Figure 4: we have a vertex of degree 4, there are four edges incident at a vertex with
their order in the leo is indicated by the subscripts, and there are five migts that pass trough v.

2Recall that our graphs are loopless. Loops could be treated by considering half-edges but such generality is not needed in
this paper.
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Figure 2. The graph from Figure 1 with its migts.

Conversely, the trails of a nonsingular oriented PTDC T that go through a vertex u are as in Figure 4.
A leo at v can then be defined as the transitive closure of the relation defined by the rule that an edge e
is less than an edge e′ if e precedes e′ in some trail. Clearly the migts of that leo are exactly the trails
of T. □

For example, the PTDC induced by the e-v-labeled graph in Figure 1 is shown in Figure 2.
If we start with a factorization ρ its monodromy can be recovered from the migts of the associated

e-v-labeled graph. Recall that all PTDCs of graphs are assumed nonsingular and orientable.

Definition 2.6. The monodromy digraph of a PTDC is the digraph that has the same vertices as 0 and for
each trail an arc from its beginning to its end, in other words there is an arc from v to u if and only if
−�v =−�u .

Proposition 2.7. The monodromy digraph of a PTDC is a functional digraph of a permutation in SV . If
the PTDC comes from (the associated e-graph of ) a factorization then that permutation is the monodromy
of the factorization.

Proof. The bidegree of every vertex of µ(0) is (1, 1) because each vertex has exactly one incoming and
one outgoing trail, so µ(0) is the functional digraph of a permutation.

To prove the second statement we need to prove that if −�u =−�v then µ(u)= v. In fact it’s easy to see
that the vertices of −�u form the trajectory of u under the successive applications of the elements of ρ. For,
let e1 be the first edge of −�u and v1 its other endpoint, then e1 is the first edge of ν(u) and therefore (uv1)

is the first transposition in ρ that moves u. The next time u is moved, is when there is a monodromy
(v1 v2) in ρ with index larger than the index of e1, and this monodromy will correspond to the second
edge e2 of −�u , and so on until will reach the last edge of −�u =−�v , which is the last edge of ν(v), and no
further monodromies move v. It follows then that in the product µ of ρ we have µ(u)= v. □

The above can be verified in Figure 2, µ(ρ)= (4 3 2 1), and indeed−�4 =−�3 , −�3 =−�2 , −�2 =−�1 , and−�1 =−�4 .
The terminology PTDC and the monodromy digraph were inspired by [13].
Now we can define the mind-body dual of an e-labeled graph.

Definition 2.8. Let 0 be an e-graph. The mind-body dual e-graph is the graph 0∗ that has vertices the
migts of 0 and an edge labeled i connecting two trails t1 and t2 if and only if the two trails share the edge
of 0 labeled i .
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Figure 3. The mind-body dual of the graph in Figure 1.
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There is a one-to-one correspondence between the edges of 0 and 0∗, and corresponding edges have
the same label, when needed we will denote the edge of 0∗ corresponding to the edge e of 0 by e∗. Since
there are as many migts as vertices, 0∗ has as many vertices as 0 and there are two canonical ways to
set up a correspondence between the vertices of 0 and the vertices of 0∗: we can choose v∗ to be −�v
or −�v . We choose the former, i.e., v∗ =−�v but not much of what follows depends on that choice. We will
comment when the choice makes a difference, see Remark 3.9 and Theorem 3.14.

Notice that if 0 is e-v-labeled, 0∗ is also e-v-labeled via the correspondence v 7→ v∗. When no
confusion is likely we will abuse language by talking as if 0 and 0∗ have the same vertices and edges.

For example, the mind-body dual of the e-v-graph of Figure 1 together with its migts is shown in
Figure 3.

Theorem 2.9. (1) If v is a vertex of 0 then the neighborhood of v∗ in 0∗ consists of (the duals of ) the
edges of −�v . The migt

−�
v∗ consists of (the duals of ) the edges of ν(v).

(2) (0∗)∗ = 0.

(3) µ(0∗)= µ(0)−1.

Proof. The arguments will be easier to follow if the reader refers to Figure 4.
The first statement of item (1) is obvious. To see the second let e1, . . . , ed be the edges in ν(v) in

the local ordering, then ei and ei+1 are in some trail ti and thus e∗i connects ti and ti+1, and e∗i+1 is the
smallest edge in ti+1 greater than e∗i . So in the migt of v∗, e∗i+1 follows e∗i .

Item (2) follows from item (1).
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The proof of item (3) is illustrated in Figure 5: let µ = µ(0) and µ∗ = µ(0∗), and assume that
m(v)= u, we need to show that the migt of −�u in 0∗ ends in −�v . The last edge of −�v is the last edge of ν(u).
Now in 0∗ the migt of u∗ consists of the edges dual to the edges in ν(u) so the last edge of this migt
ends in −�v . □

We end this subsection by noticing that one could more generally define the dual of a leo, and mutatis
mutandis, almost all of the above would go through. This will indeed be done in [3].

2B. Medial digraphs. If we put together all the Hasse diagrams of the edge orders of a leo on 0 we
obtain the medial digraph of the leo. For general definitions and terminology on digraphs we refer the
reader to [9].

Definition 2.10. The medial digraph of a leo on 0 is the digraph M(0) with vertices the edges of 0 and
an arc from edge a to edge b if and only if a immediately proceeds b in the local order around a vertex.
A leo is called e-realizable if its medial digraph is a dag, in other words it has no (oriented) cycles.

For example, the medial digraph M of the e-v-graph in Figure 1 is shown in the left side of Figure 6,
the edges of M are colored according to the vertex of 0 that they come from. The right side of Figure 6
shows the medial digraph of 0∗, notice that, edge colors aside, the two digraphs coincide. In general, it
follows from item (1) of Theorem 2.9 that:

Theorem 2.11. For any factorization ρ we have M(0(ρ)∗)=M(0(ρ)).

Notice also that the medial digraph in Figure 6 is a dag, and furthermore the edge labels endow it with
a topological sort. We recall the definition:

Definition 2.12. A topological sort of a digraph is a total order of its vertices such that for two vertices
u, v, we have that if there is an edge from u to v then u < v in that order. Clearly a digraph admits a
topological sort if and only if it is a dag.
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A topsorted dag is a vertex-labeled dag such that the order of the vertices induced by their labeling is
topological sort.

We note the somewhat subtle distinction of the two notions defined above. Clearly a topological sort
of a dag gives a topsorted dag, but two different topological sorts of the same dag may give the same
topsorted dag. For example, the updown ditree with three vertices (see Definition 5.11) admits two
topological sorts, but because of the order two automorphism, there is only one topsorted dag whose
underlying (unlabeled) dag is the updown ditree on three vertices.

Now we can prove:

Proposition 2.13. A given leo is induced by an edge labeling of 0 if and only if it is e-realizable.
Furthermore the edge labels induce a topological sort of the medial digraph.

Proof. Clearly the medial digraph of an e-v-labeled graph contains no cycles since the local orders come
from a global order. Conversely any dag admits a topological sort, that is a global order compatible with
all the local orders thus giving a total order in the edges of 0. □

Example 2.14. The left side of Figure 7 shows a non-e-realizable leo on a graph. Its (obviously nonacyclic)
medial digraph is shown on the right.

These constructions were inspired by the ideas in Section 3 of [20]. The terminology medial digraph
is meant to suggest an analogy with the medial graphs in the theory of graph embeddings, see, e.g., [7].
This analogy will be made precise in Section 4.

Before proceeding we prove a lemma:

Lemma 2.15. The underlying graph of the medial digraph of a leo 0 has the same Euler characteristic
as 0.

Proof. If 0 has m edges then M has m vertices. Furthermore a vertex v of degree dv contributes dv − 1
edges. So M has 6(dv − 1)= 2m− n edges. So χ(M)= m− (2m− n)= n−m. □

Given a leo on 0 the local orders of every vertex induce a decomposition of the edges of M(0) into
chains. For example, the graph in Figure 1 induce a chain decomposition of its medial digraph that is
indicated by the coloring of the edges. We formalize this idea in the following definition.

Definition 2.16. A digraph M is a binary digraph if the in and out degree of every vertex is at most 2. A
vertex of a binary digraph is internal if its in and out degree is at least 1.
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A perfect chain decomposition (PCD for short) of a binary digraph M is a decomposition C of the
edges of M into chains such that every vertex of M belongs to exactly two chains of C, chains of length 0
are allowed.

One can now prove:

Lemma 2.17. (1) The number of chains in any PCD of a binary digraph M is 2m− l, where m is the
number of vertices and l the number of edges.

(2) Given a binary digraph with ι internal vertices there are 2ι PCDs on M. In particular, every medial
digraph admits a PCD.

(3) Given any binary dag M , there is an e-graph whose medial digraph is M. In fact if ι stands for
the number of internal vertices, τ for the number of topological sorts, and α for the number of
automorphisms of M , then, up to isomorphism, there are

2ιτ

α

e-graphs that have M as medial digraph.

Proof. Item (1) follows from the handshaking lemma: If there are k chains c1, . . . , ck with lengths
l1, . . . , lk , then ci will have li+1 vertices, so

∑k
i=1(l1+1)= 2m. On the other hand,

∑k
i=1(l1+1)= l+k.

For item (2) we note that there are 4 possible bidegrees for an internal vertex v: (1, 1), (1, 2), (2, 1),
and (2, 2), and for each of these bidegrees there are two choices for joining the edges into 2 chains. If v

has bidegree (1, 1), one choice is to join the two edges together for one of the chains and have the other
chain to be the trivial chain v, while the other choice is to have one of the edges in the first chain and the
other edge in the second. If v has bidegree (1, 2) with incoming edge (x, v) and outgoing edges (v, y)

and (v, z) the fist choice is to join (x, v) and (v, y) and have (v, z) by itself, and the other choice is to
join (x, v) and (v, z) and have (v, y) by itself. The case of bidegree (2, 1) is entirely similar. Finally
for bidegree (2, 2) with incoming edges (x, v) and (y, v), and outgoing edges (v, z) and (v, w) the one
choice is to join (x, v) with (v, z) and (y, v) with (v, w), and the other is to join (x, v) with (v, w) and
(y, v) with (v, z). (See the first and third columns of Figure 8.)

For a noninternal vertex v there is only one choice: if the vertex is a leaf then one of the chains is the
trivial chain v and the other contains the unique edge, while if v is a minimum (resp. maximum) each of
the outgoing (resp. incoming) edges goes in to a different chain.

Making a choice in each of the vertices gives a PCD, and there are 2ι such choices.
For item (3) we note that any PCD C of a binary digraph M defines a graph 0 with a leo, as follows:

the vertices of 0 are the chains of C, and for each vertex a of M there is an edge in 0 joining the vertices
of 0 that correspond to the two chains that a belongs to. Clearly the neighborhood of a vertex c of G
consists of the edges that correspond to the vertices of that chain in M , and the chain defines a total order
on that neighborhood. By definition, the medial digraph of G is M and the PCD induced by the leo is C.

If M is a dag, any topological sorting of M , gives an e-labeling for each of the 2ι graphs 0 constructed
above. Taking into account the action of the automorphism group of M gives the formula for the number
of e-graphs that have M as medial digraph. □

The proof of item (3) identifies the set of (isomorphism classes of) e-graphs with medial dag M , with
the set of (isomorphism classes of) PCDs of M , and (2) identifies PCDs of M with a set of binary choices,
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Figure 8. From PCDs to e-graphs and duality: choice 0 (left) and choice 1 (right).

one choice for each internal vertex. It turns out that under these identifications the mind-body dual of an
e-graph is identified with the PCD obtained by making the opposite choice at every internal vertex. We
make this precise below.

For any given binary digraph one could identify the two choices of connecting arcs at each internal
vertex with 0 and 1. This identification can be done canonically for vertices of bidegree (1, 1), say the
choice that connects the two arcs is 0, and the choice that doesn’t is 1. For the other types of internal
vertices an identification has to be made arbitrarily at each vertex. One way to accomplish a uniform
encoding is to draw M in the plane and then use the orientation of the plane to say, for example, that
for vertices of bidegree (1, 2) (resp. (2, 1)) choice 0 is to connect the single incoming (resp. outgoing)
edge with the left outgoing (resp. incoming) edge, while for vertices of bidegree (2, 2) choice 0 means to
connect the left incoming to the left outgoing edge. After such an identification has been made, the proof
of item (2) constructs a bijection from the set of all PCDs on M to the set of all function s : I → {0, 1},
where I is the set of internal vertices of M . (See the first and third column of Figure 8)

Definition 2.18. The dual of a function s : I → {0, 1} is the function s∗ : I → {0, 1} defined by
s∗(v)= 1− s(v).

The dual C∗ of a PCD on a binary digraph M constructed using the function s, is the PCD C constructed
using s∗.

Lemma 2.19. The PTDC of an e-graph 0 also induces a PCD on M(0). The PCD induced from the
PTDC of 0 is the dual of the PCD induced by the leo of 0.
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Proof. The first statement follows from Theorem 2.11. The proof of the second is in Figure 8. The first
column shows for each type of internal vertex with the PCD imposed by choice 0, the second shows the
e-graph constructed from that PCD, the third column the PCD induced by the migts. Notice that in each
case the PCD in the third column is exactly the PCD that corresponds to choice 1. The fourth column
shows the graph constructed from choice 1 with it’s migts. One can readily verify that the PCD imposed
by those migts is exactly the PCD imposed by choice 0. □

An immediate corollary is:

Theorem 2.20. For an e-graph 0, the leo of 0∗ induces on M(µ) the PCD dual to the PCD induced by
the leo of 0.

For example, see Figure 6 that shows the medial digraph of the graph of Figure 1 in the left, and of its
dual (the graph in Figure 3) in the right. The different chains of the PCDs are indicated by the different
colors of the edges, and chains of length 0 are not shown since their presence can be deduced.

2C. Mind-body dual of a factorization. Now we can transfer this notion of duality to factorizations.

Definition 2.21. Let ρ = (τ1, . . . , τm) be a factorization in Sn . Then its mind-body dual ρ∗ is defined to
be the factorization associated to the mind-dual e-v-graph associated with ρ.

The term mind-body duality comes from the following amusing interpretation of a transposition
introduced on the episode The prisoner of Benda (sixth season, episode 10) of the animated sitcom
Futurama and elaborated on, for example, in [23]. In this scenario there is a machine that interchanges
the minds of any two bodies that enter its two booths and each such exchange can be encoded by a
transposition. A sequence of transpositions can then be interpreted as a series of mind exchanges from the
point of view of the bodies. The dual sequence is then the series of body exchanges that the corresponding
minds experience. This follows from the fact that ν(i), the neighborhood of a vertex i with its leo, stands
for the sequence of mind exchanges that the body i experiences, while the trail −�i is the trajectory of the
mind i , and so it describes the sequence of body exchanges that the mind i experiences.

Pursuing this interpretation a bit, we have a set of minds M and a set of bodies B, of the same cardinality,
and an initial assignment of minds to bodies α0 : M → B, say each mind is assigned to the body it’s
born in. Choosing an identification of M with [n], and pushing it forward via α0 to an identification of B
with [n] we can consider α0 to be the identity permutation in Sn and any other mind-body assignment as
a permutation α ∈ Sn . That way Sn acts on the set of mind-body assignments on the left by permuting
the minds and on the right by permuting the bodies. The dual of a permutation of minds π , with respect
to a mind-body assignment α is the permutation of bodies π∗α that has the same effect in α as π . In other
words we want π α = α π∗α , and it follows that

(1) π∗α = πα.

Now given a factorization ρ = τ1, . . . , τn , and considering it as a sequence of mind exchanges, it’s
mind-body dual is the factorization ρ∗ which when considered as a sequence of body exchanges, has the
same effect in the mind-body assignment as ρ, at every step. The mind-body assignments we obtain by
applying ρ to α0 are, α1 = τ1α0 = τ1, α2 = τ2α1 = τ2τ1, . . . , αn = τn · · · τ2τ1.

Taking into account equation (1) we have the following explicit formula for the mind-body dual of a
factorization:
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σi σ
−1
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σ1σ2σ
−1
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Figure 9. Generators and multiplication in the braid group.

Theorem 2.22. For a factorization ρ = τ1, . . . , τn we have

(2) ρ∗ = τ1, τ
τ1
2 , . . . , τ τn−1...τ1

n .

We note that this formula is an expanded version of Theorem 3.4 in the next section.
It is amusing to explain the properties of mind-body duality described in Theorem 2.9 in terms of the

mind-exchange interpretation. For example, the monodromy of the dual is the inverse of the monodromy
of the original, because from the point of view of the minds, there are body-mind assignments and the
initial body-mind assignment is of course α−1

0 .
The author would like to stress that despite the use of this terminology, he does not subscribe to the

philosophically untenable position of Cartesian dualism that is implicitly assumed.3

3. The Hurwitz action

The braid group on m strands Bm is the group generated by m − 1 generators σi for i ∈ [m − 1] and
relations: σiσj = σjσi if |i − j |> 1, and σiσi+1σi = σi+1σiσi+1. For details about the braid groups we
refer the reader to [12] and [31]. We view the braid group as the mapping class group of a 2-dimensional
disc D2

m , with m distinguished points called the punctures; that is, Bm is the group of isotopy classes of
orientation preserving self homeomorphisms of D2

m that fix the boundary circle pointwise and permute
the m punctures. For details about mapping class groups of surfaces and this interpretation of the braid
groups we refer the reader to [12] and [24]. We will represent braids graphically and our convention is
that the positive generator σi is represented diagrammatically by the i-th strand going over the (i + 1)-th
and that multiplication in the braid group happens from top to bottom, see Figure 9.

Since the fundamental group of a disc with m punctures is Fm , the free group on m-generators,
the interpretation of elements of Bm as self homeomorphisms of D2

m , induces a left action of Bm by
automorphisms on Fm . If x1, . . . , xm are the free generators of Fm then the action of the generator σi is
given, on the generators of Fm by, σi xj = xj for j ̸= i, i + 1, while σi xi = xi xi+1 x−1

i and σi xi+1 = xi .
It follows that Bm acts on the right on the set of homomorphisms Fm → G, for any group G and in
particular for G a symmetric group. A factorization ρ is a sequence of elements in a symmetric group,
and therefore can be construed as a representation of Fm to that group. So we have a right action of Bm

on the set of all factorizations in any symmetric group, this action is called the Hurwitz action. The action

3The author, after long deliberations, decided to not use the term husband-wife duality alluding to a more risquè interpretation,
and to leave such an interpretation to the reader if (s)he is so inclined.
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Figure 10. The Hurwitz action on factorizations.

of a generator σi on the factorization ρ = τ1, . . . , τm is given by4

(3) (ρ σi )k =


τk if k ̸= i, i + 1,
τiτi+1 if k = i,
τi if k = i + 1.

The Hurwitz action can be described diagrammatically as in Figure 10, where i, j, k, l are distinct
elements of [n] and i j stands for the transposition (i j). For more details about the Hurwitz action,
see [2].

Using the bijection between factorizations of Sn and e-graphs on [n] (see Definition 2.1), we can
transfer this to a Bm action on the set of e-labeled graphs on [n] with m edges. It is easily seen that if 0

is such an e-v-graph then 0σi is obtained from 0 by interchanging the labels of the i-th and (i + 1)-th
edge and then “sliding” the (i + 1)-th edge along the i-th, while 0σ−1

i is obtained by interchanging the
i-th and (i + 1)-th labels and then sliding the i-th edge along the (i + 1)-th. We interpret a slide of an
edge along a nonadjacent edge to have no effect. This action on e-v-labeled graphs, which we’ll also call
the Hurwitz action, is shown in Figure 11, only the edges labeled i and i + 1 are shown since the other
edges are not affected.

Notice that this action descends at the level of e-labeled graphs (just forget the v-labels in Figure 11).
We will still call it the Hurwitz action since no confusion is likely to arise. We remark that this Bm action
on the set of e-graphs, was also noted in [15], for the case of e-trees.

3A. The duality in terms of the Hurwitz action. We first define the notions that we need in order to
provide the promised characterization.

Definition 3.1. For i < j ≤ m define the braid δi, j to be the braid that takes the j-th point, and
moves it to the i-place going under all in between strands, leaving all the other strands unchanged, i.e.,
δi, j := σ j−1 σ j−2 . . . σi . We will write simply δm for δ1,m .

The braid λi, j is defined to be the braid that takes the i-th point, and moves it to the j-th place going
over all the in between strands, i.e., λi, j := σi . . . σ j−1. We simply write λm for λ1,m .

4Recall that hg stands for hgh−1. Since transpositions are involutions, we could have used τ
τi
i+1 in the formula, but we choose

to write the formula in a way that applies for any elements of any group.
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Figure 11. The Hurwitz action on e-v-graphs.

We also define 1i, j := δi, j δi+1, j . . . δ j−1, j . We simply write 1m for 11,m and call it the Garside
element of Bm .

We summarize some of the properties of the Garside element in the following proposition. All of these
properties are either well known or follow easily from the definitions.

Proposition 3.2. (1) For all i ∈ [m− 1] we have σ
1m
i = σm−i .

(2) 12
m is central in Bm . In fact it generates the center of Bm .

(3) As an element of the mapping class group of D2
m , 1m is represented by a homeomorphism that,

leaving the boundary circle fixed, twists a smaller disk that contains all the punctures by π .

(4) 1m = δm 12,m .

(5) 1m =12,m λm .

If e is an edge of a graph 0 and t a trail in 0 ending in a vertex incident to e then we refer to the
operation of detaching e from the end vertex of t and attaching it to the beginning vertex as sliding the
edge e along the trail t .

Lemma 3.3. Let 0 be an e-v-graph with m edges. If the m-th edge of 0 has endpoints (v1, v2) then 0δm

is obtained from 0 by sliding edge m along the migts←−v1 and←−v2 and relabeling its edges according to
i 7→ (i + 1) mod m.

Proof. Let i1 < i2 < . . . < ik < ik+1 = m be the edges of the union of the trails←−v1 and←−v2 . Then by the
definition of migts as minimally increasing, the edges with labels l with ik < l < m are not adjacent to
edge m, the edges with labels l in the range ik−1 < l < ik are not adjacent to the edge ik , and so on. So if
we write

δm = (σm−1 . . . σik+1)(σik . . . σik−1+1) . . . (σi1 . . . σ1),
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then the action of the first factor has the effect of increasing the labels of the edges in the range ik < l < m
by one and relabeling edge m as edge ik + 1 without changing the underlying graph. The action of the
second factor on the resulting e-v-labeled graph is then to slide the edge ik+1 along edge ik , increase the
labels in the range ik−1 < l < ik+1 by one, and relabel ik+1 as ik−1+ 1. This pattern continues so that the
overall effect of the action by δm is to increase all the labels in the range 1≤ l < m by one, relabel the
edge originally labeled m as 1 and slide it along all the edges in the trails leading to v1 or v2. □

We can now give the characterization of mind-body duality in terms of the Hurwitz action.

Theorem 3.4. Let 0 be an e-v-graph of size m. Then

(4) 0∗ = (01m)⊺.

Proof. We proceed by induction on the number of edges m. For m = 1 the theorem is obvious. Let the
edge labeled m be incident to vertices v1 and v2, v′1 be the starting vertex of←−v1 , and v′s be the starting
vertex of←−v2 . Consider the e-v-labeled graph 01 = 0 \m obtained by deleting edge m. After we attach
the edge m to 01 the trail that ended in v1 gets augmented by m and ends in v2 while the trail that ended
in v2 gets augmented by m and ends in v1, and all the other trails are the same. It follows that 0∗ is
obtained from 0∗1 by attaching a new edge labeled m to the vertices v′1 and v′2.

On the other hand since 1m = δm12,n , by Lemma 3.3, 01m is obtained by 011m−1 by increasing
all edge labels by one and attaching an edge labeled 1 to v′1 and v′2. Now by induction we have that
011m−1 = (0∗1)⊺ and so it follows that 01m is obtained from (0∗1)⊺ by increasing all edge labels by one
and adding an edge labeled 1 attached to the vertices v′1 and v′2. Taking the reverse we conclude that
(01m)⊺ is obtained by 0∗1 by attaching a new edge labeled m to the vertices v′1 and v′2. □

Using this we can get the following formula for the mind-body dual of a factorization:

Corollary 3.5. For a factorization ρ = τ1, . . . , τm we have

(5) ρ∗ = τ1,
τ1τ2, . . . ,

τ1...τm−1τm .

Proof. One can prove by induction that ρ 1m =
τ1...τm−1τm, . . . , τ1τ2, τ1 using Proposition 3.2(4). □

Notice that since all transpositions are involutions, this formula is the same as (2) in Theorem 2.22.
The Garside element plays a central role in the theory of braid groups and can be written in terms of the

generators in many interesting ways, and each of these ways gives some information for the mind-body
dual of a factorization. We give a very general description of many of these properties, using the language
of operads.

All the braid groups can be “put together” into an algebraic structure called the braid operad. We refer
the reader to [33] for (some) details. The composition in the braid operad is given by cabling, that is, the
composition

Bm × Bi1 × . . .× Bim → Bi1+···+im

sends (β, β1, . . . , βm) to β[β1, . . . , βm] defined informally5 as follows: think of the strands of β as
“cables” where several strands are weaved together, the cable that corresponds to the k-th strand is weaved
according to the braid βk ∈ Bik . The braid β[β1, . . . , βm] is then the braid that results if we forget the

5We won’t give the formal definition since it would take us far afield. We hope this informal description is enough for the
reader to fill the details if (s)he wishes.
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Figure 12. First part of proof of Theorem 3.6.

“cable structure” and view all the strands of all the cables as strands of new bigger braid in Bi1+···+im . See,
for example, Figure 14, for cabling using Garside elements. With that notation in place we can now state
the following property of the Garside element, which the author feels it should be well known but wasn’t
able to find a reference in the literature. For the statement of the following, we take 11 = 1, the unique
one strand braid; we also remark that 12 = σ1.

Theorem 3.6. The family (1k)k≥1 is a suboperad of the braid operad isomorphic to the associative
operad.6 Indeed, for all positive integers i1, . . . , im we have

1m[1i1, . . . ,1im ] =1i1+···+im .

Proof. We proceed by induction on m. For m = 1 the result is obvious. For m = 2, i.e., proving
12[1k1, 1k2] =1k1+k2 we first observe that if k2 = 1, this is simply a restatement of the definition of
1k2+1 := δk2+112,k2+1 (see Definition 3.1). This can be seen in the top of Figure 12. In the diagrammatic
calculations we use the convention that a cable weaved according to 1k is denoted by a thick strand
carrying a box labeled k. If we assume that the result has been proved for k2, then the bottom of Figure 12,
and the definition of 1k1+k2+1 as δk1+k2+112,k1+k2+1 proves it for k2+ 1.

Assuming now that the result has been proved for m we use induction on km to prove it for m + 1.
For km = 1, it is again a restatement of the definition of the Garside element. Assuming that it has been
proved for km+1 Figure 13, proves it for km+1+ 1, using the case m = 2 that was proved above. This
concludes the induction and the proof. □

6Thanks to Najib Idrissi for observing this in this comment in MathOverflow.
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Figure 13. Second part of proof of Theorem 3.6.
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Figure 14. 14.

For example, Figure 14 shows the Garside element 14 as 12[11, 13], (its definition) in the left, as
12[12, 12] in the center, and as 13[11, 12, 11] in the right.

Using the operadic property of the Garside elements we can prove the following generalization
of Corollary 3.5, that allow one to compute the mind-body dual of a concatenation of factorizations
“piecewise”.

Theorem 3.7. For a factorization that is a concatenation of k factorizations ρ = ρ1 ρ2 . . . ρk , we have:

ρ∗ = ρ∗1
µ(ρ1)(ρ∗2 ) µ(ρ1...ρk1 )(ρ∗k ).

Corollary 3.8. If ρ = τ1, τ1, τ2, τ2, . . . , τk, τk is a factorization of the identity permutation into k pairs of
identical transpositions, then ρ∗ = ρ.

Proof. This follows form the fact that 12k =1k[σ1, . . . , σ1]. Each σ1 fixes the corresponding pair and
since the product of each pair is the identity permutation, the conjugations resulting from action of 1k

have no effect. □
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We conclude this subsection with a remark.

Remark 3.9. Recall that in Section 2 we made the convention v∗ =−�v and we remarked that not much
would change if we had made the convention v∗ = −�v instead. In our context, if we had made that
convention then formula (4) would read

0∗ = (01−1
m )⊺

instead. Indeed, there is a straightforward analogue of Lemma 3.3 and the proof of Theorem 3.4 would
go through almost verbatim. For a different proof see Theorem 3.14 in the next subsection.

3B. A closer look at the relation of the Hurwitz action and duality. So far we have seen two involutions
on the set of our objects of study: mind-body duality x 7→ x∗ and reversion x 7→ x⊺. These involutions
are related to analogous involutions on the braid group. In this subsection we explore that relation.

It’s easy to check that the assignment σi 7→ σ−1
i defines an (outer) automorphism ∗ : Bm→ Bm .7 If

β ∈ Bm we will denote its image under this automorphism by β∗. Diagrammatically a diagram for β∗ is
obtained from a diagram of β by reversing all the crossings, i.e., turning over-crossings to under-crossings
and vice versa.

We have the following relation of this automorphism of Bn and mind-body duality:

Theorem 3.10. Let β ∈ Bm and 0 an e-graph with m edges. Then the Hurwitz action has the property

(0β)∗ = 0∗β∗.

Proof. Let 0 be an e-v-labeled graph, it suffices to prove that for all i ≤m−1 we have (0σi )
−1
= 0∗σ−1

i .
There are three cases, the edges i and i + 1 have two, one, or no vertices in common.

In the first case 0σi = 0 so we need to prove that 0∗σ−1
i = 0∗, i.e., the edges i and i + 1 have two

vertices in common in 0∗ as well. This is the case, because both trails, say t1 and t2, that contain the
edge i have to continue with i + 1, thus in 0∗ both edges i and i + 1 connect t1 to t2.

In the second case, in 0 there are exactly three migts that contain edge i or i + 1, t0 that contains both
i and i + 1, t1 that contains only i , and t2 that contains only i + 1. Then in 0∗ edge i connects t0 to t1,
and edge i + 1 connects t0 to t2; in particular i and i + 1 are adjacent at t0. After the action of σi , all
migts except these three remain the same, while t0 changes by loosing the edge i +1, t1 remains the same
except that the edge that was labeled i is now labeled i + 1, and t2 changes by replacing the edge i + 1
with two edges i and i + 1. So in the dual of 0σi the vertex t2 is connected to t0 by an edge labeled i and
to t1 by an edge labeled i + 1. See Figure 15.

Finally in the third case 0 and 0σi have the same underlying graph and their labeling differs only in
that the edges i and i+1 have exchanged labels. We need to prove that the same is true for 0∗ and 0∗σ−1

i .
This is the case because a migt that contains edge i cannot contain edge i + 1, since it starts with edges
less or equal to i and either ends in an endpoint of i or continues with the largest edge greater than i
incident at an endpoint of i , which is greater than i + 1. So the edges i and i + 1 cannot belong to the
same migt. □

The reverse of a factorization is also related to an involution of the braid group. Define the reverse of a
braid β ∈ Bm to be the dual of β conjugated by the Garside element, i.e., β⊺

:= (β∗)1m . Then we have:

7Actually (see [21]) it is the only nontrivial outer automorphism of Bm .
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Figure 15. The second case in the proof of Theorem 3.10.

Theorem 3.11. For any factorization with m monodromies we and any braid β ∈ Bm we have

(ρβ)⊺ = ρ⊺β⊺.

Proof. It suffices to prove this for the standard generators σk of the braid group Bm . We have that for
1≤ i ≤ n then ρ⊺(i)= ρ(m+ 1− i). Now

(ρσk)(i)=


ρ(i) if i ̸= k, k+ 1,

ρ(k+ 1)ρ(k) if i = k,

ρ(k) if i = k+ 1,

so that

(ρσk)
⊺(i)= (ρσk)(m+ 1− i)=


ρ(m+ 1− i) if m+ 1− i ̸= k, k+ 1,

ρ(k+ 1)ρ(k) if m+ 1− i = k,

ρ(k) if m+ 1− i = k+ 1

=


ρ(m+ 1− i) if i ̸= m+ 1− k, m− k,

ρ(k+ 1)ρ(k) if i = m+ 1− k,

ρ(k) if i = m− k.

Note that for the standard generators σi ∈ Bm we have σ
⊺
k = σ−1

n−k . So

(ρσk)
⊺(i)= ρ⊺σ−1

n−k(i)=


ρ⊺(i) if i ̸= m− k, m− k+ 1,

ρ⊺(m− k+ 1) if i = m− k,

ρ⊺(m− k)ρ
⊺(m−k+1) if i = m− k+ 1

=


ρ(m+ 1− i) if i ̸= m− k, m− k+ 1,

ρ(k) if i = n− k,

ρ(k+ 1)ρ(k) if i = m− k+ 1. □
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We conclude this section by having a closer look at the action of the Garside element 1m .

Proposition 3.12. Let ρ be a factorization, then

ρ12
m =

µ(ρ)ρ.

Proof. We will use the well known fact that 12
m = λm

m , where λm = σ1 . . . σm−1 (see Definition 3.1). It is
easy to see that for an e-v-graph 0, 0λm is obtained from 0 by sliding all the edges along the edge
labeled 1 and then relabel all the edges according to i→ i − 1 mod m, or equivalently, interchanging the
two vertex labels of the edge labeled 1 and then relabeling the edges according to i 7→ i−1 mod m. After
m iterations all the edges have their original labels, and each edge has interchanged its labels, in the order
of the original e-labeling. This means that the vertex labels have been relabeled according to µ(0). □

At the level of e-graphs the vertex labels are not important so it follows:

Corollary 3.13. Action by 12
m fixes all e-graphs, and therefore the action of 1m is an involution on the

set of all e-graphs.

Recall that in Section 2A we made the convention that in the case of an e-v-graph 0 the vertex labeling
of 0∗ is that the vertex that corresponds to the migt −�v gets the same label as v. With this definition of
duality we have that (0∗)⊺ = 01. Let ∗̄ be the dual defined by the convention that the vertex of the dual
that corresponds to the migt −�v gets the same label as v, in other words, v∗̄ =−�v . Then we can prove that:

Theorem 3.14. For an e-v-labeled graph with m edges, or factorization with m monodromies, x , we have

x ∗̄ = (x1−1
m )⊺.

In particular for a factorization ρ = τ1 . . . τm we have

ρ ∗̄ = τ
τ2τ3...τm
1 , τ

τ3...τm
2 , . . . , τ

τm
m−1, τm .

We will need the following lemma in the proof:

Lemma 3.15. 1⊺
m =1∗m =1−1

m .

Proof. If 1∗m = 1−1
m then 1

⊺
m = (1−1

m )1m = 1−1
m . To prove the former we proceed by induction. For

m = 1, 2 it is clear. Assuming that it has been proved for m we have

1∗m+1 = δ∗m+1 1∗2,m+1 = λ−1
m+1 1−1

2,m+1 = (12,m+1 λm+1)
−1
=1−1

m+1,

where we used items (4) and (5) of Proposition 3.2, and the easily checked fact that δ∗m = λ−1
m . □

Proof of Theorem 3.14. Clearly the migts of 0⊺, for an e-v-graph 0 are the inverses of the migts of 0,
and therefore 0∗̄ is the reverse of the mind-body dual of the reverse of 0. So

0∗̄ = ((0⊺)∗)⊺ =
(
((0⊺)1m)⊺

)⊺
= 0⊺1m = (01⊺)⊺ = (01−1

m )⊺.

The formula for the ρ ∗̄ is just the expanded form of this. □
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3C. Loop braid group action. The loop braid group L Bm in m strands is an extension of the braid
group and has been defined several times in the literature under a variety of different names and points
of view, we refer the reader to [16] for a survey of the different manifestations of these groups. We
will follow the spirit of [25]: L Bm is generated by 2(m− 1) generators σ1, . . . , σm−1 and s1, . . . , sm−1,
the σi generate a subgroup isomorphic to Bm and the si a subgroup isomorphic to Sm (si stands for the
transposition (i i + 1)) and there are three types of additional relations involving generators of both types:
σi sj = sj σi for |i − j |> 1, si si+1σi = σi+1 si si+1, and σi σi+1 si = si+1 σi σi+1.

L Bm is isomorphic to a subgroup of the automorphism group of Fm , where the σi acts like a braid,
while si interchanges the i-th and (i + 1)-th generators. It follows that the Hurwitz action extends to
an action of L Bm , where si just interchanges the i-th and (i + 1)-th monodromy (or the labels of the
corresponding edges for an e-graph).

Definition 3.16. The element of L Bn corresponding to the permutation
∏⌊m/2⌋

i=1 (i, m+ 1− i) is denoted
by Dm . Notice that Dm is the image of 1m under the standard surjection Bm→ Sm .

The dualizer is the element dm :=1m Dm ∈ L Bm .

It is clear that ρDm = ρ⊺, so we have the following theorem justifying the name dualizer:

Theorem 3.17. If x is an e-graph with m edges, or a factorization with m monodromies, we have

x∗ = xdm .

4. Properly embedded graphs

The reader may have noticed the close analogy of the mind-body dual with the dual of a graph embedded
in a (closed oriented) surface. In this section we elaborate on that analogy. We refer the reader to [28]
and [32] for the rich theory of graph embeddings and maps. Most of the constructions in this section are
entirely analogous to the usual case of embeddings in a closed surface, so some of the details are skipped
trusting the reader to supply them.

Definition 4.1. Let F be an oriented surface with boundary and 0 a graph. A proper embedding of 0

into F is an embedding i : 0→ F such that:

(1) The vertices of 0 are mapped in the boundary of F , i.e., i(V )⊂ ∂ F , and the interior of each edge
of 0 is mapped into the interior of F .

(2) F \ i(0) is a disjoint union of simply connected subsets, called the regions of the embedding, and
the interior of each region is homeomorphic to an open disc.

(3) ∂ F \ i(V ) is a disjoint union of open intervals, called the arcs of the embedding, and the closure of
each region contains exactly one arc.

A properly embedded graph (peg for short) is a graph endowed with a proper embedding into a surface.
We will abuse notation by not distinguishing a peg from its image, and we will use the same symbol to
denote a peg, its underlying graph, or even the surface that the graph is embedded.

An isomorphism of pegs is an orientation preserving homeomorphism of their surfaces that restricts
to a graph isomorphism on the images of the graphs. Two pegs are called isomorphic if there is an
isomorphism between them.8

8More nuanced notions of maps and equivalences between pegs will be considered in the planned work [3].
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Figure 16. Properly embedded tree (left) and unicycle (right).

We emphasize that, contrary to the usual convention in the theory of graph embeddings, neither 0 nor
the surface F is assumed connected. We also emphasize that the regions are not open or closed and that
their closure is not necessarily a closed disk. For example, the closure of one of the regions of the peg in
the right side of Figure 16 is a “pinched annulus”.

The prototype of a peg is a noncrossing tree. Noncrossing trees are well studied in the literature, see,
for example, [20] and [36], from our perspective a noncrossing tree is a tree properly embedded in a
disk. The left side of Figure 16 shows a noncrossing tree, and the right side shows a unicycle9 properly
embedded in an annulus (drawn with thick black lines). See also the right side of Figure 18 that shows
the graph of Figure 1 properly embedded in a torus with a disk removed.

If 0 is properly embedded in F then the vertices and arcs endow the boundary with the structure of a
1-complex, i.e., a graph. The orientation of ∂ F further endows it with a digraph structure, and clearly
that digraph is the functional digraph of a permutation.

Definition 4.2. The monodromy digraph of a peg 0 is the inverse of the digraph ∂ F described above.
The monodromy of 0 is the permutation of V defined by this digraph. As usual we will use the same
symbol µ(0) to denote the monodromy of a peg or its functional digraph.

Given a graph 0 pegged in the oriented surface F , the orientation of F induces a leo structure on 0:
for any vertex v order the edges in ν(v) starting from the rightmost one and proceeding according to the
orientation.

The leo structure of the definition above means that a peg 0 has a medial digraph. That digraph can be
considered actually embedded (not properly) in F : simply put the vertex of M in the middle of the edge
of 0 that it corresponds to, and draw the edge that connects two consecutive edges inside the region of 0

in whose boundary they lie.
Given an e-graph (or more generally a leo) there is a natural way to construct a peg, analogous to the

way one defines a cellularly embedded graph from a rotation scheme, see [28], and the discussion in
Section 4B. One obtains a sort of ribbon graph with the vertices in the boundary instead of the interior.
We describe this procedure with more details below.

Definition 4.3. The peg associated with a leo 0 is obtained as follows: Thicken the star of each vertex,
into a ribbon surface as shown in Figure 17 (for a vertex of degree 4), so that the vertex is at the boundary
and each edge is thickened into a ribbon with the ribbons arranged according to the local order around

9That is a connected graph with exactly one cycle.
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Figure 18. The peg of the e-v-graph of Figure 1.

that vertex. Then glue, via an orientation reversing homeomorphism of the interval the free ends of any
pair of ribbons that correspond to the two half edges of the same edge of 0 together to get a surface F
with 0 embedded in it in such a way that the vertices are on the boundary. We use P(0) to denote the
peg of a leo 0.

For example, the left side of Figure 18 shows the thickening of the stars of the vertices of the e-graph
of Figure 1 while the right side shows them assembled into a peg.

Notice that the boundary of each region (colored with different colors) is the union of a migt of 0

and an arc of ∂ P(0). In fact one can easily see that this is always the case:

Lemma 4.4. P(0) is indeed a peg and is isomorphic to the peg obtained by attaching a half disk, that is,
a domain homeomorphic to {(x, y) ∈D2

: y ≥ 0}, along each migt of 0, in such a way that the part of the
boundary of the half disk that lies on the real axis is identified with the migt.

Proof. It’s clear that the resulting complex is an orientable ribbon surface, with the vertices of the graph
in the boundary, and the interior of the edges in the interior. To see that the regions are indeed open
discs with exactly one arc in their boundary, notice that each thickened edge separates its ribbon in to
two simply connected regions whose interior is an open disc, and when we glue the half edges together
the four regions are glued together according to the migts of 0 because the gluing is happening via an
orientation reversing homeomorphism. □

We note that an alternative construction of P(0) as the total space of a branched covering over the
disc is given in Section 4D below, see Theorem 4.28.

We have the following general properties:

Lemma 4.5. Let 0 be an e-graph. Then:

(1) P(0) has the same number of connected components as 0.

(2) χ(P(0))= χ(0).
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Figure 19. A peg that doesn’t come from an e-graph.

(3) The monodromy digraph of P(0) is isomorphic to the monodromy digraph of 0.

(4) If 0 is connected and µ(0) ∈ SV has b disjoint cycles then genus of P(0) is

g = 1
2(2+m− n− b).

Proof. Clearly the surface of P(0) can be homotopically collapsed to 0 so items (1) and (2) are immediate.
Item (3) follows from the fact that the boundary of a region of P(0) consists of a migt and an arc, and since
P(G) is oriented, the migt and the arc have opposite orientations. Item (4) is also clear, since the resulting
surface has b boundary components. □

We remark that the notion of peg is more general than that of e-graph. Indeed given any leo 0,
e-realizable or not, one can define the peg P(0). For example, the peg of Figure 19 does not come from
an e-graph, in fact it is P(0) for the non-e-realizable leo of Example 2.14 (see Figure 7).

Definition 4.6. An e-peg is a peg that is P(0) for some e-graph 0.

4A. The dual of a peg. We can now interpret mind-body duality in terms of pegs. Given a peg there is a
natural way to define its dual analogous to the way one defines the dual of a cellularly embedded graph.

Definition 4.7. The dual peg of a peg 0 is the peg 0∗ obtained as follows:

• If 0 is embedded in the surface F then 0∗ is embedded is F⊺, that is, F endowed with the opposite
orientation.

• The vertices of 0∗ are in one-to-one correspondence with the regions of 0; when we draw 0∗ we
place its vertices on the arcs of the corresponding regions.

• The edges of 0∗ are in one-to-one correspondence with the edges of 0, the edge e∗ that corresponds
to the edge e connects the vertices of 0∗ that correspond to the two regions of 0 that e lies in the
boundary of.

For example, the duals of the pegs in Figure 16 are shown with lighter purple lines. The reason we
consider 0∗ to be embedded in the oppositely oriented surface than that of 0 will become clear later in
this section.

This notion of duality for noncrossing trees is implicit in [27], although they do not explicitly consider
the dual as a noncrossing tree. An explicit notion of dual for noncrossing trees was defined in [29],
however properly speaking the notion defined there, though closely related to ours, is not a real duality
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since it fails to be involutory; rather it reflects the action of the Garside element (see Section 3). See also
Section 6B.

Since the boundary of each region of 0 contains exactly one arc and exactly one migt of 0, and two
regions share an edge if and only if the corresponding migts do, the following proposition is clear.

Proposition 4.8. If 0 is an e-graph then, the peg that corresponds to 0∗ is the dual of the peg that
corresponds to 0, i.e., P(0∗)= P(0)∗.

4B. Relation with cellularly embedded graphs. There is a direct connection with the usual cellular
embeddings to a closed surface. We will use the abbreviation ceg to refer to a cellularly embedded graph
in a closed surface.

As noted the construction of a peg from a leo, given in the previous subsection is directly analogous to
the construction of a ceg from a rotation system. Using that we can see that any peg can be “completed”
to a ceg.

Definition 4.9. The closure of a compact oriented surface with boundary F is the surface F obtained
by F by attaching 2-cells along its boundary components.

If i : 0→ F is a peg then its closure is the ceg ī : 0→ F obtained by composing i with the natural
inclusion F ↪→ F . When we abuse notation and refer to a peg by its underlying graph 0 we will further
abuse the notation by denoting its closure by 0.

As we have already remarked, the construction of the peg of an e-graph is very similar to the construction
of a ceg given a rotation system. In fact the following is clear.

Lemma 4.10. The rotation system of 0 is obtained by the leo of 0 by “completing” each local edge
order to a cyclic order.

A natural question that arises at this point is what cegs are completions of an e-peg? An obvious
necessary condition is that there should be at least as many vertices as regions, but as we will see shortly
this is not sufficient, for example, we will see that the ceg in Figure 22 does not come from an e-graph.
In order to answer this question we introduce the concept of the medial digraph of a ceg.

The medial graph M(0) of a ceg 0 is defined (see, for example, [7]) as the graph that has vertices the
edges of 0, and an edge connecting any two vertices that correspond to a pair of consecutive edges in
the rotation system given by the embedding. Since we consider embeddings into oriented surfaces we
observe that M(0) has a natural orientation given by the cyclic order, so we will refer to M(0) as the
medial digraph of the ceg 0.

The medial digraph M of a ceg 0 is embedded in the same surface that the original graph is. Indeed
one can place the vertex of the medial digraph in the middle of the corresponding edge of the graph, and
draw the edge connecting the vertices that correspond to two consecutive edges inside the region that
has the corresponding edges in its boundary. If 0 has n vertices then the edges of M(0) can be colored
with n colors corresponding to the vertices of 0, where all the edges corresponding to a rotation around
a vertex are colored by the color of that vertex. Notice that if e is an edge then at the corresponding
vertex of M there are edges of two different colors, say blue and red and the cyclic order induced from
the embedding is red-in, blue-out, blue-in, red-out.

The regions of the medial digraph correspond to either vertices, or regions of the original graph, and
their boundaries consist of (oriented) cycles. The boundary cycle of a region that corresponds to a vertex
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Figure 20. An embedded K4 and its medial digraph.

of the original graph is monochromatic, and the boundary cycle of a region that corresponds to a region
of the original graph is properly edge colored, that is any two adjacent edges are colored with different
colors.10 These concepts are illustrated in Figure 20 for the standard genus 0 embedding of the complete
graph on four vertices.

The medial digraph of the dual of a ceg is isomorphic to the medial digraph of the original graph, or its
inverse depending on whether we consider the dual ceg embedded in the oppositely oriented, or the same
surface as the original. We make the convention that for a graph 0 embedded in the closed surface F ,
it’s dual 0∗ is embedded in F⊺.

If 0 is a peg then the medial digraph of the ceg 0 is obtained from M(0) by adding an edge (of the
appropriate color) from the last to the first vertex of every chain in the PCD of 0. Removing those edges
from M(0), makes it into a dag.

Definition 4.11. A feedback arc set (FAS) in a digraph D is a set of edges whose removal converts D
into a dag (see, for example, [9, Chapter 10].)

A set of edges in an edge-colored digraph is called diverse if it contains a representative of each color.

Clearly a ceg 0 that comes from a factorization, i.e., it is the completion of an e-peg, has a diverse FAS,
since each vertex of 0 gives a monochromatic cycle in M(0). With these concepts in place we can now
state that:

Proposition 4.12. The ceg 0, with n vertices, comes from a factorization exactly when its medial digraph
has a FAS of cardinality n.

Proof. If 0 is an e-peg, then M(0) is a dag contained in, and having exactly n edges less than, M(0).
Conversely, since the medial digraph M(0) of a ceg has n monochromatic cycles, a FAS S with n edges

will contain an edge in the cycle of each vertex. Removing S therefore will give a leo structure on 0,
whose medial digraph is a dag, and whose completion will be the rotation system of 0. □

As an example consider the genus 0 embedding of K4 in Figure 20. The set of edges {de, f a, bd, eb} is
a diverse FAS for its medial digraph. Taking a topological sort of the resulting dag give us the factorization
(1, 2), (1, 3), (2, 4), (1, 4), (2, 3), (3, 4) of id, see Figure 21.

As an example of an nonpeggable ceg consider the plane graph in Figure 22. It’s clear that its colored
digraph does not admit a diverse FAS so it does not come from an e-graph.

10Recall that we consider loopless graphs. For graphs with loops this observation is not necessarily true.
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Figure 21. An e-labeling for the embedded K4 in Figure 20.
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Figure 22. A nonpeggable ceg and it’s medial digraph.

In general, if 0 is peg then 0∗ and (0)∗ are not isomorphic as graphs. If ρ = (1 3), (1 2), (1 3)

then ρ∗ = (1 3), (2 3), (1 2), and the reader can easily check that the duals of the completions of the
corresponding pegs, which are planar, are different.

However, one can easily see that:

Theorem 4.13. If for a peg 0 we have µ(0)= id then (0)∗ = 0∗.

Proof. If µ(0)= id then each boundary component of P(0) contains exactly one point, and the closure
of each region is a “pinched” annulus, and so the regions of 0 are in one-to-one correspondence with
the regions of 0, and this correspondence obviously preserves incidence relations between regions and
edges. Since the vertices, edges, and regions of 0 and 0 are in one-to-one correspondence and those
correspondences preserve incidence relations, it follows that ( 0 )∗ = 0∗. □

Example 4.14. It is known that the complete graph Kn admits a self-dual11 embedding into a closed
oriented surface, if and only if, n ≡ 0 or 1 (mod 4), (see [37]). These are exactly the degrees for which
the complete graph has an even number of edges, and so it’s possible to give Kn an e-labeling with
monodromy equal to the identity. We can ask then, whether the theory of e-pegs we developed can be
used to prove this result. In this work we will give a simple proof for the cases n = 4 and n = 5 to
illustrate the basic ideas.

For n = 4, start with the self-dual factorization (see Corollary 3.8)

ρ0;4 := (1 2), (1 2), (2 3), (2 3), (3 4), (3 4)

11In the sense that the underlying graph of the dual ceg is also complete.
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and notice that if β = σ2 σ4 σ−1
3 then ρ0 β = (1 2), (1 3), (2 4), (1 4), (2 3), (3 4), whose associated graph

is complete is the complete e-v-graph on the right side of Figure 21. On the other hand, we also
have that ρ0 β∗ = (1 2), (2 3), (1 4), (1 3), (2 4), (3 4), whose associated graph is also complete. Using
Theorems 4.13 and 3.10 we conclude that the e-labeling of K4 in Figure 21 gives a self-dual embedding
of K4 into the sphere.

For n = 5, one can start with the self-dual factorization

ρ0;5 := (1 2), (1 2), (2 3), (2 3), (3 4), (3 4), (4 5), (4 5), (1 5), (1 5)

and observe that if β = δ2,10 σ−1
3 σ−1

5 σ−1
7 σ−1

9 then

ρ0;5 β = (1 2), (2 5), (2 3), (1 3), (3 4), (2 4), (4 5), (3 5), (1 5), (1 4)

and
ρ0;5 β∗ = (1 2), (1 5), (3 5), (2 5), (2 4), (2 3), (1 3), (3 4), (4 5), (1 4)

both factorizations with complete associated e-v-graphs, thus giving self-dual embeddings of K5 into a
torus.

Remark 4.15. Even though K6 does not admit self-dual embeddings into a closed surface, it can be
self-dually pegged in surfaces with boundary. Indeed the factorization

ρ1 := (1, 2), (3, 5), (1, 3), (4, 6), (2, 4), (1, 4), (5, 6), (1, 6),

(2, 3), (2, 5), (1, 5), (3, 4), (4, 5), (2, 6), (3, 6)

pegs K6 into a torus with three boundary components, and the factorization

ρ2 := (1, 2), (3, 6), (1, 3), (4, 5), (4, 6), (2, 4), (2, 3), (1, 5),

(1, 4), (5, 6), (3, 4), (2, 5), (3, 5), (1, 6), (2, 6)

pegs it, self-dually, into a genus 2 surface with one boundary component.

In general we can use mind-body duality to get self-dual embeddings of graphs into closed surfaces by
gluing a pair of dual pegs along their common boundary.

Definition 4.16. Let P1, P2 be two pegs, with µ(P2) = µ(P1)
−1 and f : ∂ P1 → ∂ P2 an orientation

reversing homeomorphism, that maps the vertices of P1 to the vertices of P2. The boundary connected
sum of P1 and P2, with respect to f is the ceg P1# f P2 defined as follows:

• The surface of P1# f P2 is the boundary connected sum of the surfaces of P1 and P2 with respect to f .

• P1# f P2 has the same vertices as P1 and P2, and edges the union of the edges of P1 and the edges of P2.

Clearly P1# f P2 is a ceg and each of its regions is obtained by gluing a region of P1 with the region
of P2 that has the same boundary arc, along their common boundary. Now we can prove:

Theorem 4.17. For every peg P , the boundary connected sum P#id P∗ is self-dually embedded.

Proof. Let C be the boundary connected sum. First since the orientations of P and P∗ are opposite id is
orientation reversing so C is defined. Now observe that each region of C is obtained by gluing a region
of P and a region of P∗ along their boundary arc. If we choose the vertex dual to a region to lie along
that common arc, we see that C∗ = P∗#id P . □
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Figure 23. Subdividing to get a diverse FAS.

Example 4.18. Consider −�K 6 the complete digraph with six vertices, any two of which are connected by
a pair of opposite edges. Theorem 4.17 and Remark 4.15 imply that −�K 6 admits self-dual embeddings into
a surface of genus 4. Furthermore this is a digraph embedding in the sense of [14], i.e., the boundary of
every region is a directed cycle.

We end this subsection by remarking that the theory of pegs is a refinement of the theory of cegs, more at-
tuned to the graph theoretical properties of the graph. For example, if a graph is cellularly embeddable into
a closed surface then so is any graph homeomorphic to it. This is not the case with pegs. Indeed we have:

Proposition 4.19. Any ceg has a subdivision that is the closure of an e-peg.

Proof. Let 0 be a ceg. Subdividing an edge of 0, adds a pair of opposite arcs with a new color to the
medial digraph of 0. Chose a FAS S for M(0), and let S′ be a minimal diverse subset of S (it’s clear that
any FAS contains a diverse set). Now for every arc a in S \ S′ subdivide the edge of 0 that corresponds
to the beginning vertex of a, twice, and then replace, a with a pair of the new edges, each going in
opposite direction. The resulting set S′′ is a diverse FAS for the medial digraph of the subdivided ceg.
See Figure 23. □

4C. On the genus and number of boundary components of e-pegs. For an e-graph 0, the Euler
characteristic of P(0) is the Euler characteristic of 0, and the number of boundary components b equals
the number of cycles in the disjoint cycle decomposition of its monodromy µ(0). A natural question that
arises is: given a graph 0 what can we say about the values of b that arise from the different edge-labelings
of 0? The following proposition provides two obvious necessary, but not in general sufficient, conditions.

Proposition 4.20. For every edge-labeling of 0, the number b of disjoint cycles of µ(0), or equivalently
the number of boundary components of P(0), satisfies

b ≤ n and b ≡ χ(0) (mod 2).

Proof. Every boundary component of P(0) contains at least one vertex of 0, so b ≤ n. Also, since the
genus of a closed surface is an integer, by item (4) of Lemma 4.5 we infer that b has the same parity
as χ(0). □

To see that these conditions are not sufficient consider the graph 0 shown on the left side of Figure 22:
we have n = 3, and χ(0)=−1 so the value b= 3 satisfies both conditions, but, as one can easily see, for
every edge-labeling of 0 the monodromy is a 3-cycle, so that b = 1.

Question 4.21. For what class of graphs are the conditions of Proposition 4.20 sufficient?

We don’t know the complete answer but we can prove that complete graphs belong in that class.
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Theorem 4.22. For every complete graph Kn all values of b allowed by Proposition 4.20 occur. Actually
all possible conjugacy classes of µ consistent with Proposition 4.20 occur.

In the proof of Theorem 4.22 we will use the following lemma, the proofs of which are straightforward.

Lemma 4.23. Let 0 be an e-graph of size m with µ(0) a d-cycle, and let 0′ be the graph obtained
from 0 by adding one new vertex v and connecting it by an edge labeled m + 1 to a vertex u that is
moved by the cycle µ(0). Then µ(0′) is a (d + 1)-cycle; namely if µ(0) = (. . . , u′, u, u′′, . . .) then
µ(0′)= (. . . , u′, v, u, u′′, . . .).

Definition 4.24. Let v be a vertex, and e an edge of the e-graph 0 not incident to v. Then a T -operation
from the vertex v on the edge e is the following modification: If i is the label of e, increase all edge-labels
greater than i by 2, and change i to i + 1. Then add two new edges labeled i and i + 2 connecting v to
the endpoints of e. See Figure 24.

Lemma 4.25. The operation T doesn’t change the monodromy of the graph.

Proof of Theorem 4.22. We proceed by induction on n. The theorem is obvious for n = 1, 2, 3 and proven
in Figure 25 for n = 4. Assume then the theorem proven for all values less than n.

If n ≡ 0 (mod 4), then µ has to induce a partition into an even number of parts b. If b= n then µ= id.
To construct an e-labeling of Kn with µ(Kn)= id, start with an e-labeling of Kn−4 with µ(Kn−4)= id
and an e-labeling of K4 using labels,

(n
2

)
− 6, . . . ,

(n
2

)
with µ(K4) = id. Then chose a partition of the

vertices of Kn−4 into 1
2

(n−4
2

)
pairs, and apply a T operation from each vertex of K4 on each of the edges

of Kn−4 determined by those pairs. The result is a Kn with monodromy equal to id.
If b < n, and the corresponding partition is k1+ · · · + kb = n, with kb > 1, chose an e-labeled Kn−1

with monodromy of type (k1, . . . , kb−1) and add a new vertex v. Choose a vertex u of Kn−1 that belongs
in the (kb−1)-cycle and partition the rest of the vertices of Kn−1 into pairs. Now add an edge connecting
v and u and label it

(b−1
2

)
+ 1, resulting in a graph with monodromy of type (k1, . . . , kb). Then apply T

bv

b

b

i bv

b

b

i +

i

i + 2
T

Figure 24. The T -operation.
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=Figure 25. Proof of Theorem 4.22 for n= 4: µ= (1, 2, 3) (left), µ= (1, 2)(3, 4) (center)
and µ= id (right).



A DUALITY FOR LABELED GRAPHS AND FACTORIZATIONS WITH APPLICATIONS 663

operations from v to the edges determined by the partition into pairs of the remaining vertices of Kn−1.
At the end we get an e-labeled Kd whose monodromy has type (k1, . . . , kb).

If n ≡ 1 (mod 4), then the possible values of b are 1, 3, . . . , n. Let n = k1+ · · ·+ kb be the partition
induced by µ. If k1 is odd, by the inductive hypothesis we can find an e-labeled Kn−1 with monodromy
of type (k2, . . . , kb, 1, . . . , 1), where there are k1−1 ones (if k1 = 1 there are no ones). Add a new vertex
and connect it to the k1−1 fixed points of µ(Kn−1) with edges labeled

(n−1
2

)
+1, . . . ,

(n−1
2

)
+k1−1. The

resulting graph has monodromy of type (k1, . . . , kb). At this stage, there are an even number of vertices
of Kn−1 not connected to the new vertex, so we can partition them into pairs and apply T moves from
the new vertex to get an e-labeled Kn with the desired monodromy.

If k1 is even, then we start with an e-labeled Kn−1 with monodromy of type (k2, . . . , kb− 1, 1, . . . , 1),
where there are k1 ones. Add a new vertex v and connect it to one of the vertices of the (kb − 1)-
cycle with an edge labeled

(n−1
2

)
+ 1, and to k1 − 1 of the fixed points of µ(Kn−1) by edges labeled(n−1

2

)
+2, . . . ,

(n−1
2

)
+ k. The resulting graph has monodromy of type (k1, . . . , kb), and there are an even

number of vertices not connected to the new vertex. Then we can use T moves to get an e-labeled Kn

with the desired monodromy.
If n ≡ 2 (mod 4), then b= 1, . . . , n−1. If n = k1+ . . .+kb is a partition of n then bK > 1 and we can

choose a Kn−1 with monodromy of type (k1, . . . , kb− 1). Add a new vertex and connect it to a vertex of
the (kb−1)-cycle by a edge labeled

(n−1
2

)
+1. The result is a graph with monodromy of type (k1, . . . , kb)

and an even number of edges unconnected to the new vertex. So we can apply T -moves from the new
vertex to get an e-labeled Kn with the desired monodromy.

If n ≡ 3 (mod 4), then b = 2, . . . , n− 1. Let n = k1+ . . .+ kb be a partition of n. If k1 is odd, choose
a Kn−1 with monodromy of type (k2, . . . , kb, 1, . . . , 1), where there are k1− 1 ones. Add a new vertex
and connect it to the fixed points of µ(Kn−1) by edges labeled

(n−1
2

)
+1, . . . ,

(n−1
2

)
+k1−1. This gives a

graph with monodromy of the right type and an even number of vertices not connected to the new vertex.
So we can use T -moves to complete the proof.

If k1 is even, choose a Kn−1 with monodromy of type (k2, . . . , kb− 1, 1, . . . , 1), where there are k1

ones. Add a new vertex and connect it to a vertex on the kb−1-cycle by an edge labeled
(n−1

2

)
+1, and to

k1− 1 fixed points of µ(Kn−1) with edges labeled,
(n−1

2

)
+ 2, . . . ,

(n−1
2

)
+ k. This gives a graph with the

right monodromy and an even number of edges not connected to the new vertex. So again we can use
T -moves to complete the proof. This completes the inductive step and the proof of the theorem. □

Item (4) of Lemma 4.5 implies that in general peggable embeddings have genera in the upper part of
the genus range of a graph. These and related topics will be addressed in more detail in [3].

4D. Branched coverings interpretation. In this subsection we provide an alternative construction of the
peg associated with a factorization via the theory of branched coverings of the two-dimensional disk D2.

Recall that the Bm-action on the free group comes from the fact that Bm is the mapping class group
relative to the boundary of a D2

m , a disk with m punctures, while the fundamental group π1(D
2
m) is a

free group with m generators, see, for example, [12], [31], and [24]. A factorization ρ can be thought
of as a representation π1(D

2
m)→ Sn and therefore gives a covering of D2 branched over m points, and

the Hurwitz action can be thought of as an action of Bm to the set of (equivalence classes of) branched
coverings over the disk D2. For details on branched coverings see [11] and [2], the later describes the
Hurwitz action in detail.
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Figure 26. The standard Hurwitz system and its image under 1 (left), and its dual (right).

A free generating set of π1 can be represented by a Hurwitz system i.e., an ordered system of arcs
connecting each branching point to the basepoint of the disk, which we take to be on the boundary
circle, and whose interiors are pairwise disjoint. An arc in the system represents the loop that starts at
the basepoint, follows the arc to a small neighborhood of the puncture, goes once around the puncture
counterclockwise and returns to the basepoint along the arc. To be concrete we consider the unit disk
in R2, the basepoint b to be (0,−1), while the m branching points to be equally spaced along the interval
[−1, 1], and we take the standard Hurwitz system h0, to be the m straight line segments connecting the
basepoint to the branching points, this is shown in the left side of Figure 26 in black. The Bm action
on Fm determines a left action on the set of (isotopy classes of) Hurwitz systems, for example the image
of h0 under the action of the Garside element 1m is shown in the left side of Figure 26 in green.

A factorization in Sn gives a simple branched covering, that is a branched covering where the preimage
of each branching point has only one singular point and n−2 regular points called pseudosingular. There
is an explicit model for the simple branched covering corresponding to a factorization ρ (see, for example,
[11] and [2]) and we briefly recall that construction. First choose a cut system for D2

m , consisting of m
segments connecting each branch point to the boundary, to be explicit we take the m vertical segments
in the upper half disk, and “cut” the disk open along this cut system. Then take n labeled copies of the
disk (the sheets of the covering) and glue them together along the cuts and according to the monodromy
sequence, that is, for i = 1, . . . , m if the i-th monodromy of ρ is (k l) we glue the i-th cuts of the k-th
and l-th sheet together, and “sew” back together the i-th cut of any other sheet. The surface resulting
from all these gluings is the total space of the covering. This construction is illustrated in Figure 27 for
the factorization (1 2), (2 3).

Definition 4.26. The essential preimage of a Hurwitz system is defined to be the union of all the preimages
of the arcs that contain a singular point.

The reverse of a Hurwitz system h is the Hurwitz system h⊺ that has the same arcs as h but in reverse
order: the i-th arc of h⊺ is the (m+ 1− i)-th arc of h.

The dual of a Hurwitz system h is the Hurwitz system h∗ := (1mh)⊺ with basepoint slightly to the left
of the basepoint of h.

For example, the dual of the standard Hurwitz system is shown in green in the right side of Figure 26.
We can now prove the following theorem.
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Theorem 4.27. Let p : F → D2 be a simple branched covering. Then for any Hurwitz system h, the
essential preimage of h is a graph pegged in the total space of the covering. Moreover the dual peg is the
essential preimage of the dual Hurwitz system h∗.

Proof. Let x be an arc of h, then p−1(x) consists of n arcs, one in each sheet of the covering, Of these
preimages, only two are essential, and they meet at the same singular point. So x contributes to the
essential preimage an arc connecting two points in the boundary of the total space, namely the preimages
of b in the two sheets that are glued together in the cut that corresponds to x . It follows that the essential
preimage of h is a graph 0 embedded in F with all the vertices in the boundary. To see that 0 is indeed
properly embedded we first observe that the complement of the full preimage of h consists of n disjoint
domains with one arc in their boundary, and interior homeomorphic to an open disc. Indeed, if we
remove h from D2 we are left with a contractible set, with exactly one arc on the boundary and its interior
homeomorphic to a disc. That set has n homeomorphic preimages, that constitute the complement of the
whole preimage of h in F . A component of the complement of 0 is obtained from a component of the
complement of the full preimage, by possibly inserting some semiopen arcs, and it is easily seen that this
still results in a contractible set with exactly one arc in its boundary and interior homeomorphic to an
open disc.

The fact that the essential preimage of h∗ is 0∗ follows from Theorem 3.4. □

From the explicit construction of the branched covering p : F→ D2, associated with a factorization ρ

described above one can easily see that the essential preimage of the standard Hurwitz system h0 is a
graph isomorphic to 0(ρ). Indeed if the k-th monodromy of ρ is (i j), then the whole preimage of the
k-th arc of h consists of n−2 “short” arcs connecting the n−2 preimages of the basepoint x0 in the sheets
with labels different than i, j to the n−2 points in the pseudosingular locus above xk , and one “long” arc
that consists of the two preimages of the arc that start at the sheets labeled i and j and are glued together
at the singular point above xk , see Figure 27, for an example when m = 2 and n = 3. As a corollary then
we have an alternative construction of the peg associated with an e-graph 0, and its mind-body dual:

Theorem 4.28. For a factorization ρ, the peg P(0(ρ)) is the essential preimage of the standard Hurwitz
system in the branched covering determined by ρ. Furthermore it’s dual peg is the essential preimage
of h∗0.

An example of the theorem is shown in Figure 27 for the factorization (1, 2), (2, 3) and its mind-body
dual (1, 2), (1, 3).

Remark 4.29. The medial digraph of the peg P(0), for an e-graph 0 can also be interpreted via
the associated branched covering. Consider the n − 1 oriented intervals connecting xi to xi+1, for
i = 1, . . . , n−1, shown in blue on the right side of Figure 26. Clearly the subset of the preimage of those
intervals, consisting only of those arcs that connect two singular points is a digraph isomorphic to the
medial digraph of 0.

The relation of e-labeled graphs with branched covering was observed in [8] (see also [32]). However,
they consider branched coverings over the sphere S2, by adding an additional branched point with
monodromy µ(0)−1, so that in effect they obtain the ceg 0.

If ρ is a factorization of the identity permutation, it determines not only a branched covering p of
the 2-disk but also a branched cover p̄ of the sphere 2-sphere S2. This is so because the fundamental
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Figure 27. The branched covering (1 2), (2 3) and its dual (1 2), (1 3).

group of S2 with m punctures has a presentation with m generators x1, . . . , xm , corresponding to loops
going around each puncture, and a single relation x1 . . . xm = id. In that case the essential preimage of
the Hurwitz system under p̄ is a ceg, and it is easy to see that it is the completion of the peg obtained as
the essential preimage under p. One can also easily see the following:

Theorem 4.30. Let ρ1 and ρ2 be factorizations with µ(ρ2) = µ(ρ1)
−1, and P1, P2 the corresponding

pegs. Then P1#id P2 is the ceg obtained from the concatenation of the factorizations ρ1 ρ2 interpreted as a
branched cover of the 2-sphere.

5. On cycles and trees

The research on this paper started by the author reading [27]. That paper provides a “structural” bijection φ

from the set of minimal factorizations of an n-cycle to the set of trees on [n]. In this section we give an
exposition of that and related topics in light of the present work.

The set of all cyclic permutations on [n] is denoted by Cn and we choose the standard cyclic permutation
to be ζ0 := (n, n−1, . . . , 1). En stands for the set of edge-labeled trees (e-trees for short), with n vertices,
E∗n for the set of rooted e-trees with n-vertices, Vn for the set of vertex labeled trees (v-trees for short)
with n vertices, and Ln for the set of edge and vertex labeled trees (e-v-trees for short).

We denote the set of all factorizations in Sn of length m by Fm(n). For a permutation π ∈ Sn and
m ∈ N, the set of all factorizations of π as a product of m transpositions is denoted by Fπ

m .

5A. Bijections between F
ζ0
n and Vn. In [17], Dénes proved that:

Theorem 5.1. The graph of a factorization ρ ∈ Fn−1(n) is a tree if and only if µ(ρ) ∈ Cn .
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Proof. If the graph 0(ρ) is a tree, then by item (2) of Lemma 4.5 we have that P(0) is an orientable
surface with Euler characteristic 1, and therefore a disk. It follows that all vertices of 0 lie in a circle and
therefore µ(ρ) is an n-cycle.

Conversely, if µ(ρ) is an n-cycle, P(ρ) is connected and therefore 0(ρ) is a connected graph with
Euler characteristic n− (n− 1)= 1. Therefore 0(ρ) is a tree. □

Using this result one can then establish that:

Theorem 5.2 [17]. For any ζ ∈ Cn there is a bijection fζ : Fζ
→ E∗n .

Proof. Given ρ ∈Fζ we obtain f (ρ) by taking the corresponding graph in Ln , declaring, say, 1 to be the
root and forgetting the v-labels. To go back, starting from a rooted e-tree t , by Theorem 5.1, µ(t) is an
n-cycle in τ ∈ SV and we can label the vertices of t so that the root is labeled 1 and arranging so that the
label of τ(v) is the image under ζ of the label of v for all vertices v. □

Putting all these (n− 1)! bijections together one obtains:

Theorem 5.3 [17]. There is a bijection D : Cn ×E∗n→ Ln .

Corollary 5.4. |F
ζ0
n−1| = nn−2.

Proof. By Cayley’s result, see, for example, [34], Ln has cardinality (n − 1)! nn−2 and since Cn has
cardinality (n−1)! it follows by Theorem 5.3 that E∗n has cardinality nn−2 and therefore so does F

ζ0
n−1 by

Theorem 5.2. □

The fibers of D are rather complicated, given a tree t ∈ Vn there is an e-labeling of t that makes it
being in the image of {ζ }×En if and only if t is noncrossing with respect to ζ . If the degree sequence of
t is d1, . . . , dn then there are (d1)! . . . (dn)! such cycles ζ , see [22] and [20]. It follows that one cannot
extract a bijection F

ζ0
n−1→ Vn from D, and Dénes in [17] posed the problem of finding such an explicit

bijection.
Based on the observations above, Moszkowski, in [35], realized that in order to solve the problem one

has to delabel the vertices of the trees, and provided the following solution:

Theorem 5.5. There is a bijection S : Fζ0
n−1→ Vn .

Proof. S is the composition of fζ0 with a bijection En→ Vn defined by labeling the root of the tree 1,
increasing all e-labels by 1 and then sliding each e-label to the vertex of that edge that is further away
from the root. Starting from a v-tree, we can recover the rooted e-tree, by declaring the vertex 1 to be the
root, and decreasing the vertex labels by 1 and then sliding each v-label to its incident edge that is closest
to the root; therefore S is a bijection. □

We remark that the description above comes from [27], and is also contained in [38].
Goulden and Yong in [27] constructed a new bijection φ :F

ζ0
n →Vn , which with our notation is defined

by the following diagram:
F

ζ0
n E∗n

Vn E∗n

fζ0

φ ∗

S
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where ∗ : E∗n→ E∗n is the mind-body dual. This bijection enjoys two “structural” properties which we
now explain.

For a transposition τ define it’s difference index to be the cyclic distance of its moved points, in other
words, if τ = (s, t), s < t then δ(τ )=min{t − s, n− t + s}, and for a factorization ρ = τ1, . . . , τn define
its difference distribution to be (d1, . . . , dn), where di is the number of elements in ρ with difference
index i .

For an edge e of a tree t ∈Vn define its edge-deletion index ε(e) to be the minimum of the orders of
the two trees that result from t after we delete e, and the edge-deletion distribution of t to be (a1, . . . , an)

where ai is the number of edges of t with edge-deletion index i .
For a factorization ρ ∈ F

ζ0
n−1 define its degree distribution, d(ρ)to be the degree distribution of the

associated e-v-tree. For a vertex i of a v-tree t ∈Vn define its maximal minimally increasing path to be
the path obtained by starting at i follow the edge that leads to the smallest of its neighbors and then keep
going to the smaller neighbor that is larger than the vertex we are in, for as long as such neighbors exist.
The path-length distribution of t is the sequence l(t)= (l1, . . . , ln) where li is the number of vertices of t
that have maximal minimal increasing path of length i .

Theorem 5.6. The bijection φ : F
ζ0
n → Vn satisfies

(1) δ(ρ)= ε(φ(ρ)),

(2) d(ρ)= l(φ(ρ)).

Proof. Both properties follow from the properties of mind-body duality. The first one from the fact that
if τ has difference index k then e∗, the dual of the corresponding edge e of the associated tree, will have
deletion index k. The second one follows from the fact that the maximal minimally increasing paths are
the image of migts under S. □

Item (1) was observed in [27], item (2) is not explicitly stated there, although it is implicit in the
discussion.

5B. Mind-body duality for rooted e-graphs and flagged PCDs. It turns out that for e-v-trees, mind-
body duality at the level of factorizations can be described via the functions fζ (see Theorem 5.2) and
mind-body duality at the level of rooted e-trees. Mind-body duality can be extended to rooted e-graphs
in an obvious way: if 0 is a rooted e-graph with root v0 then we can take the root of 0∗ to be v∗0 , i.e.,
the trail that starts at v0. Alternatively, the Hurwitz action of the (loop) braid group extends to rooted
e-graphs, the root just stays the same, and we can use Theorem 3.17 to define the dual of a rooted e-graph.
It’s straightforward to check that these two approaches define the same notion. It’s also easy to see that
the following diagram commutes, where ∗ stands for mind-body duality of the relevant sets:

F
ζ0
n−1 E∗n

F
ζ−1

0
n−1 E∗n

fζ0

∗ ∗

f −1
ζ
−1
0

Remark 5.7. We note that one could use f −1
ζ0

for the bottom arrow to define duality between factorizations
of the standard cycle, i.e., one could define a duality F

ζ0
n−1→F

ζ0
n−1, to be the conjugate f −1

ζ0
◦∗◦ fζ0 . This
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Figure 28. The flag of the dual of a flagged PCD.

observation will be used in [6] to define a “true” duality for noncrossing trees, and study it’s properties.
See also Remark 5.15 below.

Clearly choosing a root for an e-graph, or more generally a leo, is equivalent to choosing one of the
chains of the PCD of its medial digraph, and we can translate mind-body duality of rooted e-graphs
(or leos) in terms of PCDs with a distinguished chain. We formalize this in the following definition.

Definition 5.8. A flagged PCD on a binary digraph M is a PCD C on M endowed with a distinguished
chain f ∈ C called its flag.

For a chain c in a PCD we use the notation α( f ) (respectively ω( f )) to denote the first (respectively last)
vertex of c.

The mind-body dual of a flagged PCD (C, f ) is the flagged PCD (C∗, f ∗) where f ∗ is defined as
follows: α( f ∗)= α( f ) and if f is the only chain that starts at α( f ) then f ∗ is the only chain of C∗ that
starts at α( f ), otherwise the first edge of f ∗ is the outgoing edge incident at α( f ) that does not belong
to f , if no such edge exist then f ∗ is a trivial chain, see Figure 28 where the flags of the relevant PCDs
are shown in red.

By Lemma 2.15 the underlying graph of the medial digraph of an e-tree is a tree.

Definition 5.9. A ditree is a digraph whose underlying graph is a tree.

We finish this subsection by mentioning that the enumeration of factorizations, or equivalently simple
branched coverings, is a well established area of research with connections to geometric topology, algebraic
geometry, and mathematical physics, and there are many results with bijective proofs for various “Hurwitz
numbers”. See, for example, [19]. The author hopes that the notion of mind-body duality introduced
in this paper will help provide explicit bijections explaining known enumerative coincidences, as well
discovering new ones.

5C. Self-dual e-trees. In every context where an interesting concept of duality is defined, a natural
question that arises is whether there are any self-dual objects. The question for general graphs will be
studied in further projects, in this subsection we concentrate on trees. In the context of mind-body duality
it is obvious that there are no self-dual factorizations or e-v-trees12 since the monodromy of the dual is
the inverse of the monodromy of the original object.13 For e-trees the question is meaningful and has an
interesting answer.

12with the trivial exceptions of n = 1, 2 where the unique objects are obviously self-dual
13See, however, Remarks 5.7 and 5.15 at the end of this section.
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Definition 5.10. An e-tree t is called self-dual if t∗ = t .

Definition 5.11. For an integer n, the updown ditree with n vertices is the ditree with vertices x1, . . . , xn

and an edge from x2i−1 to x2i , and an edge from x2i to x2i+1 for each i = 1, . . . ,
⌊ n

2

⌋
.

The downup ditree with n vertices is the ditree with vertices x1, . . . , xn and an edge from x2i to x2i−1,
and an edge from x2i+1 to x2i for each i = 1, . . . ,

⌊ n
2

⌋
.

A zigzag ditree is an updown or downup ditree.

For even n the updown and downup ditrees are isomorphic, while for odd n there are two (inverse to
each other) zigzag ditrees. The zigzag ditrees are the Hasse diagrams of the zigzag (or fence) posets.
See [41], page 157, Exercise 23 in Chapter 3.

With this definitions in place, we can now prove:

Theorem 5.12. An e-tree t is self-dual if and only if its medial ditree M(t) is a zigzag ditree.

Proof. The medial ditree of an e-tree is a topsorted binary ditree with a PCD. It is clear that the set of
zigzag ditrees coincides with the set of binary ditrees with no internal vertices. So we need to prove that
an e-tree is self-dual if and only if its medial ditree has no internal vertices.

By Definition 2.18, it follows that if M(t) has no internal vertices then M(t) is self-dual and hence, by
Theorem 2.20, t is self dual.

Conversely, since a PCD and its dual, differ at every internal vertex, and M(t), being topsorted, has
labeled vertices, it follows that if M(t) has internal vertices then t is not self-dual. □

It is well known that the number of topological sorts of a zigzag ditree with n vertices is given by the
n-th Euler up/down number. This is sequence A000111 in [40]. This sequence enumerates (among other
things) the set of alternating permutations, see [1].

The fact that A000111 enumerates the set of topological sorts of a given zigzag ditree is not enough to
conclude that it also enumerates self-dual e-trees, because of the presence of automorphisms. Indeed,
while for even n the zigzag ditree has no nontrivial automorphisms, for odd n there is a nontrivial
automorphism of order 2. However, for odd n there are two, inverse to each other, zigzag ditrees and that
introduces a factor of 2 that compensates. So we have:

Corollary 5.13. The number of self-dual e-trees with n vertices is equal to the (n− 1)-th Euler up/down
number.

The self-dual e-trees for n= 3, 4, 5 are shown in Figure 29, on the left side we have the zigzag ditree(s),
on the center all possible topsorted zigzag ditrees, and on the right the corresponding e-graphs.

One can also ask if there are any self-dual rooted e-trees and if so, how many. The answer turns out to
be again the Euler up/down numbers. To see this notice that it follows from the discussion in Section 5B
(see Definition 5.8) that in order for a flagged PCD to be self-dual it is necessary that it’s flag is a trivial
chain whose only vertex is a maximal leaf. Therefore an rooted e-tree is self-dual if and only if it’s medial
ditree is a zigzag ditree, and the flag of its PCD is a maximal leaf. For even m each of the updown and
downup ditrees with m vertices has exactly one maximal leaf, while for odd n the updown ditree has no
maximal leaf, while the downup ditree has exactly two. So we also have the following corollary:

Corollary 5.14. The number of rooted self-dual e-trees with n vertices is also equal to the (n − 1)-th
Euler up/down number.

https://oeis.org/A000111
https://oeis.org/A000111
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Figure 29. Self dual e-trees.

Remark 5.15. This means that if we use the alternative duality of Remark 5.7 there are self-dual e-v-trees,
since that duality is simply a conjugate of the duality of rooted e-trees.

6. Future directions

As we mentioned in the introduction, we expect that the main application of this work will be in finding
new, as well as explaining already known results about Hurwitz numbers. Pegs are more attuned to the
graph theoretical properties of the graph than cegs.
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We conclude by listing a few further works that will use the theory developed in this paper.

6A. Almost minimal factorizations of cycles. The next class of e-graphs after trees is the class of
e-unicycles, i.e., e-graphs with a unique cycle. Using item (2) of Lemma 4.5, and the classification
of surfaces, we see that the surface of the peg of such an e-unicycle is an annulus. It follows that the
monodromy of an e-unicycle is a product of two disjoint cycles, this was also observed in [8] using a
branched covering argument. The mind-body dual of an e-unicycle is also an e-unicycle and so one
obtains interesting “structural” bijections between different classes of e-unicycles.

A particularly simple case is the case of e-unicycles whose monodromy has a fixed point. The set of
these unicycles, with n+ 1 vertices has cardinality nn and a question posed in [27], is (or rather can be
interpreted to be) whether mind-body duality can be used to “explain” this simple counting. It turns out
that the migt of the fixed vertex of such a unicycle is (the closed trail corresponding to) the unique cycle,
and so one of the “structural” properties of mind-body duality is that it takes the neighborhood of the
fixed point to the unique cycle, and that fact can be used to provide bijections between various subsets of
the set of those e-unicycles.

The factorization that corresponds to an e-unicycle with a fixed vertex expresses an n-cycle as the
product of n+ 1 transpositions, while the minimum number of transpositions needed is n− 1, so we call
such factorizations almost minimal. Those and related topics will be studied in [4].

6B. Duality for noncrossing trees. As we’ve mentioned a notion of duality for noncrossing trees has
been defined in [29], however in the context that it was defined (vertex-labeled noncrossing trees), that
duality is not involutory: the dual of the dual is not the original, it becomes involutory, and coincides with
the peg duality as we defined it in Definition 4.7, only if we descend to the level of unlabeled noncrossing
trees. That “duality” is closely related with the action of the Garside element (see Section 3A) and it’s
periodic with period a multiple of n.

In [6] we use the idea of Remark 5.7 to define a “true” duality for (labeled) noncrossing trees, ask the
question “how many self-dual noncrossing trees are there?” and get an interesting answer.

6C. Duality for increasing trees. The class of increasing trees is well studied in the literature, see, for
example, [10], these are rooted v-trees in which the children of every vertex have labels greater than
the vertex. It follows that the root is labeled 1, and we can apply the inverse of the sliding operation
E∗n→Vn defined in the proof of Theorem 5.5 to convert the class of increasing trees to a class of rooted
e-trees that turns out to be closed under the mind-body duality. So one can define a duality in the set of
increasing trees and study its properties. This will be done in [5] where interesting bijection are obtained
for several classes of increasing trees.

We mention that the set of (topsorted) medial ditrees of increasing trees consists of those binary ditrees
that have exactly one minimum, and that set is obviously in bijection with binary increasing trees, which
in turn are in bijection (see, e.g., [18]) with the set of alternating permutations. So the Euler up/down
numbers appear again!

6D. General theory of properly embedded graphs. The focus of this paper is on e-graphs and factor-
izations, and we developed enough of the theory of pegs to be able to treat this case. However, there is
a more general theory of pegs, that treats the case of pegs whose medial digraph is not a dag, as well
as the case of graphs properly embedded in nonorientable surfaces. One can even consider semipegs,
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where some of the vertices lie in the boundary, and some in the interior of the surface. While most of the
ingredients for such a theory are already contained, or have been hinted on, in this work, there are a few
new ingredients needed for such an extension. We plan to pursue this in a future work [3].
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