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ABSTRACT

We derive a formula expanding the bracket with respect to a natural deformation
parameter. The expansion is in terms of a two-variable polynomial algebra of diagram
resolutions generated by basic operations involving the Goldman bracket. A functorial
characterization of this algebra is given. Differentiability properties of the star product
underlying the Kauffman bracket are discussed.

Keywords: Kauffman bracket; state sum; deformation quantization; mapping class group;
Goldman bracket; string topology.

Mathematics Subject Classification 2000: 57M25, 57M35, 57R42

1. Introduction

Throughout let F be a compact connected oriented surface, � means disjoint union.
Let C(F ) be the set of isotopy classes of closed 1-dimensional submanifolds of

the interior of F without inessential components. These are called curve systems
on F . There is the empty curve system ∅ ∈ C(F ).

Let L(F ) denote the set of isotopy classes of framed unoriented links in F × I,
including the empty link ∅. The set L(F ) is identified with the set of isotopy classes
of diagrams D(F ) on F up to Reidemeister moves of type II and III (diagram will
always mean regular diagram). The identification is given by regular projection and
blackboard framing.

Let k be a commutative ring with 1. It is a result of Przytycki [13] that C(F )
is a module basis of the Kauffman bracket skein module K(F ) of F . By definition,
K(F ) is the quotient of the free module k[t, t−1]L(F ) by the submodule generated
by the elements K+ + tK0 + t−1K∞ (resolution) and K �U + (t2 + t−2)K (trivial
component).
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The over-under crossing information of K+ and the orientation of F determine
the resolutions K0 and K∞ in the usual way. U denotes a component whose pro-
jection is an embedded circle on F , which bounds a disk in the complement of the
projection of K+.

Let [K] (respectively [D]) denote the image of a framed link (respectively dia-
gram) in the Kauffman bracket module. The isomorphism

K(F ) → k[t, t−1]C(F )

is established using the Kauffman bracket state sum of diagrams

〈D〉 =
∑

σ

(−t)ζ(σ)−ι(σ)(−t2 − t−2)µ(σ)D(σ) ∈ k[t, t−1]C(F )

for each diagram D on F . The sum is over all Kauffman states σ of D, i.e. assign-
ments of state markers 0,∞ to each crossing of the diagram. The functions ζ (respec-
tively ι) assign to each state its number of 0- (respectively ∞-) markers. Recall that
the assignment of a state marker to a crossing defines a resolution of that crossing.
Then µ assigns to the state σ the number of inessential circles in the resolution
determined by σ. D(σ) is the collection of essential components which appear in
the resolution determined by σ. Note that (ζ + ι)(σ) is equal to the number c of
crossings of D for all σ.

It is easy to see that 〈D〉 only depends on [D]. Using the inclusion C(F ) ⊂ D(F ),
it follows that [D] 	→ 〈D〉 defines a module isomorphism.

Recall that the module K(F ) actually is a k[t, t−1]-algebra with multiplication �

defined by stacking links. For two framed links K, K ′ in F × I, we let [K] � [K ′] be
the element of K(F ) represented by placing K ⊂ F × [1, 2] and K ′ ⊂ F × [0, 1], thus
K�K ′ ⊂ F × [0, 2] (and [0, 2] ∼= [0, 1] in a natural way). For two diagrams D, D′ on
F , we let D � D′ denote some diagram on F defined by having only crossings of D

over D′. Note that D�D′ is not a well-defined diagram but 〈D�D′〉 ∈ k[t, t−1]C(F )
is well-defined because of the isotopy invariance of the Kauffman bracket. For α, β ∈
C(F ) let α�β denote the result of multiplication in K(F ), and expanding using the
Kauffman bracket. Thus α � β ∈ k[t, t−1]C(F ). Note that the �-product is non-
commutative except for F a disk, annulus or 2-sphere.

It is a difficult problem to relate the expansions 〈D〉 respectively α � β with the
geometry of the diagram respectively curves. For general diagrams this is a nontriv-
ial question even in the commutative case. The �-product of two curve systems on
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F is trivially known in the commutative case but its computation is difficult in the
non-commutative case. A complete answer indicating the relation of this problem
with non-commutative geometry has been given for F = S1 × S1 by Frohman and
Gelca [6].

It is our goal to study the combinatorics of the deformation theory of the
Kauffman bracket and the �-product. Assume for the moment that k is a field of
characteristic 0 (not necessarily algebraically closed). Then there is an embedding
k[t, t−1] → k[[h]] defined by mapping t to eh. Using the inclusions

k[t, t−1]C(F ) → k[[h]]C(F ) ⊂ kC(F )[[h]],

we can map 〈D〉 into kC(F )[[h]]. (The second inclusion is proper because C(F ) is
an infinite set.) The image of the bracket in kC(F )[[h]] is still denoted 〈 〉 and we
can write

〈D〉 =
∞∑

j=0

〈D〉jhj

with 〈D〉j ∈ kC(F ). In the case of α, β ∈ C(F ) this defines

α � β =
∞∑

j=0

λj(α, β)hj ,

where for j ≥ 0 the λj extend to k-bilinear mappings

λj : kC(F ) ⊗ kC(F ) → kC(F ).

Note that this sequence determines the �-product.
For a given diagram D the contribution 〈D〉0 of the state sum can be calculated

by applying the skein relations for t = 1, thus K+ + K0 + K∞ = 0 and U + 2 = 0
to the diagram. It has been shown by Bullock, Frohman and Kania-Bartoszynska
[5] that

〈D〉1 =
∑

crossings p

〈Dp,∞〉0 − 〈Dp,0〉0,

where Dp,0 (respectively Dp,∞) are the diagrams resulting from the 0- (respectively
∞-) resolution of the crossing p. In fact in [5], the formula is only given for the first
order contribution λ1(α, β) of the �-product of two simple closed curves. But it is
easy to see that their combinatorial argument immediately applies to all diagrams.

The interest in the two results above comes from its relation with the represen-
tation theory of the fundamental group π1(F ) of the surface F . In fact let Rep(F )
denote the universal SL(2, k)-character ring of π1(F ). It has been shown by Bullock
[4] and Przytycki-Sikora [14] that Rep(F ) is naturally isomorphic with the k-algebra
structure on kC(F ) defined by λ0. In the case of an algebraically closed field k = K,
the algebra KC(F ) can be identified with the ring of character functions A(F ),
i.e. regular functions on the variety of SL(2, K)-representations that are defined

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

7.
16

:8
09

-8
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
O

L
U

M
B

IA
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/1
6/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 7, 2007 17:6 WSPC/134-JKTR 00556

812 N. Apostolakis & U. Kaiser

by evaluations and taking traces. More precisely the isomorphism of K-algebras is
given by

C(F )  α 	→ nα ∈ A(F ),

where nα(ρ) := −tr(ρ(α)) for each representation ρ : π → SL(2, K).
It is the main result of [5] that for K = C,

λ1(α, β) = {nα, nβ},
where { , } is the Poisson bracket on A(F ) defined from the complex symmetric
bilinear form

B(x, y) = −1
2
tr(xy)

on the Lie algebra sl(2, C) following Goldman [7]. Recall that for closed surfaces
this Poisson bracket is defined from a complex symplectic structure derived from
Poincare duality on F and B (see [8]).

In fact Bullock, Frohman and Kania-Bartoszynska prove that the �-product
on CC(F )[[h]] as above defines a deformation of the algebra A(F ) in the sense of
deformation quantization. (In [5] it is also shown that CC(F )[[h]] is isomorphic to
a completed Kauffman bracket algebra K̂(F ) defined from CL[[h]] dividing out by
the closure of the submodule defined from the skein relations as before using the
substitutions t = eh.) We only like to point out that all results extend to the case
of an algebraically closed field K.

It is our goal in this paper to prove the following result generalizing the combi-
natorial first order formula of [5].

Theorem (nontechnical version). For all j ≥ 0 and rings k of characteristic 0,

the jth order term

〈D〉j ∈ kC(F )

is a sum of diagram resolutions of order ≤ j, which are combinatorial generaliza-
tions of 〈 〉0 and 〈 〉1. Corresponding statements hold for the pairings λj.

Note that for all j ≥ 0, 〈 〉j is invariant under Reidemeister moves of type II and
III. In Sec. 5, we will actually prove a relative version of Theorem 1 for diagrams
which possibly contain proper arcs.

The result may seem surprising at first. But if one thinks about the identifica-
tion of curve systems with regular functions, and observes that resolutions formally
behave like derivatives, it could be expected, because regular functions are restric-
tions of polynomials.

The non-technical statement above will have to be refined in the following.
In particular we will define the notion of order. Roughly a diagram resolution of
order j is defined by state summations over j-element subsets of the the set of
crossings with state-contributions depending only on the number of ∞-states of the
state, followed by state-summation over the remaining crossings with contributions
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determined by the number of trivial components weighted with coefficients in k

(obtained by expanding the unknot contribution in powers of h).
In Sec. 6, we will apply the theorem above to study differentiability properties

of the deformation. It turns out that the loop correction terms in the bracket imply
that the bilinear maps λj are not differential operators of order ≤ j in the usual
sense. We will discuss a combinatorial version of differentiability in Sec. 6.

Problem. Interpret the higher order terms λj for j ≥ 2 in terms of the geometry
of the character variety.

Remark. In [2] it is shown that the Poisson bracket on A(F ) is inherited from a
Poisson algebra of chord diagrams. Moreover for surfaces with nonempty boundary
the bracket deformation is inherited from the Kontsevitch integral as constructed
in [2]. Interestingly in this case the representation variety has no global symplectic
structure. Thus it seems particularly interesting to get a better understanding of
the situation for closed surfaces.

In Sec. 2, we will discuss invariance properties of the bracket deformation, in par-
ticular invariance under the mapping class group. This is to motivate our approach
to the diagram resolution algebra in Sec. 3, where we first give an intrinsic descrip-
tion from functorial properties. In Sec. 4, we will prove existence and identify this
algebra with a polynomial algebra in two variables. In Sec. 5, we prove the technical
version of the theorem. In Sec. 6, we discuss the question of differentiability of the
star product defined by the Kauffman bracket.

2. Invariance Properties of the Bracket Deformation

The mapping class group M(F ) = π0(Diff+(F )) of the surface F acts on the set of
curve systems C(F ) in a natural way. This action obviously extends to the Kauffman
bracket algebra and is compatible with the multiplication, that is

g(α � β) = (gα) � (gβ)

for α, β ∈ C(F ) and g ∈ M(F ). Note that in the calculation of bracket of a diagram
D on F , we have

〈gD〉 = g〈D〉 =
∑

σ

(−t)(ζ−ι)(σ)(−t2 − t−2)µ(σ)(gδ(σ))

reducing the action on diagrams to the action on curve systems. Note that M
acts trivially on inessential components. The observation above means that the
deformation of the commutative product on A(F ) defined by the bracket is invariant
under the action of the mapping class group. It has been observed by Goldman that
the symplectic structure and thus the Poisson bracket are invariant under the action
of M(F ).

The ring k[t, t−1] has the natural involution defined by t 	→ t−1. This defines
an anti-involution of the module k[t, t−1]C(F ). Let τ : K(F ) → K(F ) be the anti-
involution defined by changing all crossings of diagrams. This can be interpreted
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as the action of the element of π0(Diff(F × I)), which is defined by the reflection
I × I, t 	→ (1 − t). It follows immediately from the definition of the bracket that τ

corresponds to the ring involution under the bracket isomorphism, i.e.

〈τ(D)〉 = τ〈D〉

for all diagrams D. In particular for any two x, y ∈ K(F ), we have the relation

τ(x � y) = τ(y) � τ(x).

For elements in C(F ) this simplifies to

τ(α � β) = β � α

because C(F ) is invariant under the action of τ . This is a hermitian property of the
deformation defined by the bracket (see [16]).

Note that gτ = τg thus we have a naturally action of M(F )×Z2 ⊂ π0(Diff(F ×
I)) on K(F ).

The ring homomorphism k[t, t−1] → k[[h]] defined for rings k of characteristic 0
(thus k ⊃ Q and eh =

∑∞
j=0(h

j/j!) is defined) is equivariant with respect to the
involution on k[t, t−1] and the involution h 	→ −h on k[[h]]. Note also that for each
j, 〈 〉j is invariant with respect to M(F ) meaning that 〈gD〉j = g〈D〉j , where the
action of M(F ) on the right-hand side is the classical action of M(F ) on curve
systems.

Remark. It follows immediately from the state sum definition that we have the
symmetries

〈τ(D)〉k = (−1)k〈D〉

for all k ≥ 0.

3. The Kauffman Resolution Algebra

For each finite set S let |S| be the number of elements of S.
We will consider connected compact oriented surfaces F with r ≥ 0 boundary

components equipped with a fixed oriented diffeomorphism (parametrization)
⋃
r

S1 → ∂F.

This is briefly called a surface. The image of the ith S1 is denoted ∂iF . The mapping
class group M(F ) is the group of isotopy classes of diffeomorphisms of F fixing ∂F

pointwise.
A diagram on F is a pair (D, C) with D a diagram of a regularly immersed

proper 1-manifold in F with the usual under-over crossing information at each
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crossing, C ⊂ F is a subset of the set of crossings of D. If the ith boundary
component ∂iF contains ji boundary points of D, then we assume that

D ∩ ∂iF =
ji⋃

�=1

{
e

2π
√−1�
ji

}
.

Let (D, C) be isotopic to (D′, C′) if there is an isotopy of F fixing ∂F pointwise
and mapping D to D′ and C to C′. The set of isotopy classes of diagrams is denoted
D(F ) and we will denote the isotopy class of a pair by [D, C].

The set D(F ) naturally decomposes according to |C| and by the number of
boundary points contained in each of the r components. Thus

D(F ) =
⋃

k≥0,j≥0

D(F )[k]{j},

where k is the number elements in C and j = (j1, . . . , jr) is a multi-index with ji

the number of boundary points of D in ∂iF . Thus (1/2)(j1 + · · · +jr) is the number
of arc components of the diagram D. As usual j ≥ 0 means ji ≥ 0 for all i. There
is also a unique isotopy class of diagram ∅ ∈ D(F )[0]{0} with 0 = (0, . . . , 0).

For k ≥ 0 let D(F )[k] := ∪jD(F )[k]{j}. Similar notation applies to the other
grading. Then D(F ) from Sec. 1 can naturally be identified with the subset of those
(D, C) ∈ D(F )[k]{0} with k = |C|. This set is naturally contained in the subset
Da(F ) of all diagrams [D, C] on F for which C is the set of all crossings. We call the
elements of Da(F ) real diagrams. (Representatives of elements of Da(F ) possibly
contain arc components.)

The above decompositions naturally define the structure of a bi-graded (with
the second grading a multi-grading itself) on the free k-module with basis D(F ).
Also there is defined the graded submodule kD(F ) ⊂ kDa(F ) spanned by isotopy
classes of k-crossing diagrams in degree k ≥ 0.

Definition and Remarks. We define the Kauffman bracket module Ka(F ) by
quotiening the free module k[t, t−1]Da(F ) by the usual skein relations. A k-module
basis is given by the set Ca(F ) of isotopy classes of curve systems on F consisting
of arbitrary properly embedded 1-manifolds with specified boundary conditions as
described above, but without inessential closed components. This set is by definition
Da(F )[0] ⊂ D(F )[0]. The right-hand side here contains the elements with C = ∅ but
the diagrams still can have crossings while the left-hand side only contains the real
diagrams of this set. (Note that boundary parallel components may be contained
in the curve systems. Thus our notion of curve system is still different from the
classical approach.) We have decompositions:

Ca(F ) =
⋃
j

Ca(F ){j}

by specifying the boundary pattern. Also note that C(F ) = Ca(F ){0} gives the
set of curve systems only containing closed components considered in Sec. 1.
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The Kauffman bracket module now also decomposes according to the grading. Our
version of Kauffman bracket module is a generalization of the relative Kauffman
bracket module [13]. We like to mention that the weak product defined above actu-
ally lifts to define a graded product structure on the Kauffman bracket module:

Ka(F ){j} ⊗ Ka(F ){j′} → Ka(F ){j + j′}
by placing a diagram D above a diagram D′. Because of isotopy invariance this is
a well-defined product even in this relative case.

Question. Find the SL(2, k)-interpretation of the relative Kauffman bracket
algebra?

The set-up described above suggests to assign to a curve system in Ca(F ){j}
with ∂F �= ∅ a regular map on the space Flat(F ) of flat connection on a trivialized
SL(2, k)-bundle over F with values in k×SL(2, k)|j| and |j| := (1/2)(j1+· · ·+jr) the
number of arcs. The map is defined using the explicit boundary parametrizations,
basepoint and orientation on each S1 to give an ordering of the set of arc components
of a diagram. In fact, given a flat connection, each arc components associates the
holonomy along the arc. This defines the mapping to SL(2, k)|j|. The unordered
collection of closed components defines a product of functions given by calculating
the traces of holonomies. The bracket relations induces an equivalence relation on
this set of maps. Details will be discussed in [10].

The mapping class group acts on diagrams and on the free k-module spanned
by diagrams preserving all gradings. Let φ∗ be the k-endomorphism of degree (0, 0)
induced by φ ∈ M(F ).

Let F (respectively F ′) be surfaces with r ≥ 1 (respectively r′ ≥ 1) boundary
components. Then we can define a new surface F ∪F ′ by glueing the last boundary
circles. The boundary parametrizations can be combined in some obvious way.
Note that all isotopies and diffeomorphisms fix the boundary and can therefore be
matched. We call F ∪ F ′ the glueing of F and F ′. Note that F ∪ F ′ has r + r′ − 2
boundary components. The glueing operation obviously induces glueing operations
of diagrams in the following way:

D(F )[k]{(j1, . . . , jr−1, �)} × D(F2)[k′]{(j′1, . . . , j′r−1, �)}
→ D[k + k′](F ∪ F ′){(j1, . . . , jr−1, j

′
1, . . . , j

′
r−1}.

We let (D, C) ∪ (D′, C′) denote the result of glueing two diagrams. This is only
defined when the number of boundary points in the last boundary components
match. This operation is compatible with isotopy and defines [D, C] ∪ [D′, C′] for
given [D, C] ∈ D(F ), [D′, C′] ∈ D(F ′) which are matching. The glueing operation
extends linearly⊕

�≥0

kD(F ){(j, �} ⊗ kD(F ′){(j′, �} → kD(F ∪ F ′){(j, j′)}

using obvious multi-index notation.
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We say that a diagram (D, C) or its isotopy class [D, C] is a weak product of
diagrams (D1, C1) and (D2, C2) on a surface F if D is given by superimposing D1

and D2 to form a diagram D1 � D2 with all crossings of the form D1 over D2. We
will have C = C1 ∪ C2 thus ignore all new crossings of D1 with D2. In general
this requires modifications in the boundary using natural diffeomorphisms of the
circle to be able to take the union in the boundary. Thus actually (Di, Ci) will be
modified by isotopy of F in a neighbourhood of the boundary circles. We will not
formalize this construction at this point. In general superimposing diagrams is not
a well-defined operation on isotopy classes of diagrams. Thus [D1, C1]� [D2, C2] will
be the notation for any weak product resulting from representatives (D1, C1) and
(D2, C2). Similarly there are defined strong products by adding all crossings of D1

with D2 to the set of crossings C of D.
Now let E(F )[i] denote the set of k-endomorphisms of kD(F ) of bi-degree (−i, 0),

i.e. ρ ∈ E(F )[i] if ρ(D(F )[k]{j}) ⊂ D(F )[k− i]{j} for all k ≥ 0 and all j ≥ 0. (Here
we set D(F )[k] = 0 for k < 0.) Then define the graded algebra

E(F ) :=
⊕
i≥0

E(F )[i].

This is a subalgebra of the k-algebra of all k-endomorphisms of the k-module kD(F ).
We will call the assignment of a graded subalgebra

F 	→ R(F ) ⊂ E(F )

a Kauffman resolution functor if it satisfies the following conditions (1)–(6). (This is
formally a functor if we consider the category of surfaces as objects and morphisms
between surfaces compatible with boundary parametrizations. In fact, morphisms
will induce k-homomorphisms of diagram algebras and thus homomorphisms of
their graded endomorphism algebras in a natural way.)

(1) Mapping class invariance. Given ρ ∈ R(F ) and φ ∈ M(F ), then

φ∗ ◦ ρ = ρ ◦ φ∗

(2) Glueing. Let surfaces F1, F2 be given (both with nonempty boundary) such
that the glueing surface F1∪F2 = F is defined. Then there exists a unique restriction
homomorphism of degree 0:

R(F )  ρ 	→ (ρ|F1) ∈ R(F1)

such that for all diagrams [D, C] with C ⊂ F1 such that D intersects the image of
the distinguished circle in F transversely:

ρ[D, C] = (ρ|F1) ([D ∩ F1, C]) ∪ [D ∩ F2, ∅].
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(3) Weak product. For any two diagrams [D′, ∅], [D, C] ∈ D(F ) for which weak
products are defined, we have:

ρ([D′, ∅] � [D, C]) = [D′, ∅] � ρ[D, C].

Here the right-hand side is interpreted as the linear combination of weak products
(be aware that this operation is not a well-defined operation on isotopy classes) of
some representative (D′, ∅) with the representatives of the terms in ρ[D, C]. The
same identities are supposed to hold with the order of D′, D switched.

Note that for ρ ∈ R(F )[i] and [D, T ] ∈ D(F )[i] we have ρ[D, T ] ∈ kD(F )[0], so
we write formally:

ρ[D, T ] = [ρ[D, T ], ∅],
because the crossing information is empty for all terms. In fact, in general let Di

be a sequence of diagrams with the same set C ⊂ F of crossings with respect to a
choice of representative diagrams. Then

∑
λi[Di, C] =

[∑
λiDi, C

]

has a well-defined meaning.

(4) Generalized divergence. This property results from the idea that pairs
(D, C) can be interpreted formally with D a function and C a set of variables
of the function. Let F be a surface and [D, C] ∈ D(F ), ρ ∈ R(F )[i]. Then

ρ[D, C] =
∑

T⊂C,|T |=i

[ρ[D, T ], C\T ].

In order to make sense of the right-hand expression, we need to justify that C\T
is naturally a subset of all the diagrams in ρ[D, T ] ∈ kD(F ). This is the essential
technical step and follows from the glueing axiom (2) above applied to a splitting
of F along a curve separating the crossings in T from the crossings in C\T . Here
we split the diagram into two diagrams D1 ⊂ F1 with all the crossings of T in D1,
and D2 ⊂ F2 containing the crossings of C\T . Then the glueing axiom implies that
complete diagram D2 is glued back to the terms in (ρ|F1)[D1, T ] thus the result
naturally contains C\T .

(5) Skein relation. For each surface F , there exist two module epimomorphisms
of degree −1:

ζ̃, ι̃ : R(F ) → R(F )

satisfying

ζ̃ ι̃ = ι̃ζ̃,

and such that ζ̃(ρ), ι̃(ρ) are linearly independent for all ρ ∈ R(F ). The homomor-
phisms ζ̃ , ι̃ have to satisfy that for all ρ ∈ R(F )[i] and [D, C] ∈ D(F )[i] the following

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

7.
16

:8
09

-8
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
O

L
U

M
B

IA
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/1
6/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 7, 2007 17:6 WSPC/134-JKTR 00556

Kauffman State Sums and Bracket Deformation 819

skein relation holds:

ρ[D+, C] + (ζ̃(ρ))[D0, C\{+}] + (ι̃(ρ))[D∞, C\{+}] = 0 ∈ kD(F ),

where + is a crossing of D in C, and D0, D∞ are the usual resolutions.

(6) Vacuum condition. For all F and ρ ∈ R[0] there exists a constant θ ∈ k such
that

ρ([∅]) = θ[∅].
Moreover, for each θ ∈ k there exists some ρ ∈ R(F )[0] with this property.

After this long technical preparation we can now state the main result of this
section.

Theorem 1. There exists at most one assignment F 	→ R(F ) ⊂ E(F ) satisfying
properties (1)–(6) above. Moreover, under the assumption that the functor exists,
the value of ρ ∈ R(F )[i] on a diagram [D, C] with |C| = i is determined by a state
summation over Kauffman states on C with the coefficients in k determined only
by the number of ∞-states of a state.

Proof. It follows from the weak product property for (D, C) = ∅ that

ρ[D′, ∅] = [D′, ∅] · ρ[∅].
Because of the grading, ρ can possibly be nonzero on [∅] only for ρ ∈ R[0]. Otherwise
ρ[∅] = 0 and thus ρ vanishes on D(F )[0].

Now in general ρ ∈ R(F )[i] vanishes on D(F )[j] for j < i because of the grading.
Moreover, the divergence property determines ρ on [D, C] with |C| = j〉i from the
values on diagrams in D(F )[i]. The result then is proved by induction over i using
the skein relation in combination with the glueing property. More precisely it follows
from the skein relation that ρ is determined by ζ̃(P ) and ι̃(P ). For i = 1 it follows
that ζ̃(P ) (respectively ι̃(P )) acts on D(F )[0] as multiplication by a constant in k.
Thus due to the linear independence the degree 1 resolution is determined by two
numbers a0, a1 ∈ k. Of course in this case the coefficients of ρ[D, C] are determined
by the number 0 (respectively 1) of ∞-states. For the induction step from i − 1
to i, we first note that by induction hypothesis ζ̃(ρ) is determined by i−1 numbers
giving the contribution of a state sum with i ∞-markers in a state summation over
D0. We will prove that ι̃(ρ) is determined by just one more coefficient. Now ι̃(ρ) is
determined also by i − 1 numbers, and in fact from ζ̃ ι̃(ρ) = ι̃ζ̃(ρ) and ι̃ι̃(ρ). Now
the first contribution is already known from ζ̃(ρ). We can iterate the application of
ι̃ and ζ̃ and use induction hypothesis to reduce to ι̃ i(ρ), which is of degree 0 and
thus determined by a single coefficient. Since in the applications of ι̃ we smooth a
crossing each time it is obvious that this coefficient is determined by the number
of ∞-states.
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It is the main result of the next section that the algebra R(F ) exists for each
compact connected oriented surface and is naturally graded isomorphic to the poly-
nomial algebra k[z, w].

Remarks. (a) It does not seem to be possible to characterize the resolution algebras
R(F ) without extending the axiomatic to surfaces with boundaries possibly con-
taining arc components, even if we are finally only interested in closed surfaces. The
crucial property is the glueing property which defines the locality of the operations.
The glueing axiom is necessary just to formulate the crucial divergence property
which localizes the operation of ρ of degree i on i-crossing diagrams. Similarly it
seems difficult to develop the axiomatic characterization without the flexibility in
the grading by crossing numbers.

(b) Suppose we consider the case j = 0, i.e. no arcs on a closed surface F . In this
case the vacuum condition can be actually deduced from the other properties. Then
we know that ρ[∅] is a k-linear combination of elements of D(F )[0]{0}. Because F

is closed, it follows easily from naturality applied to some Dehn twist φ of sufficient
high order that only the empty diagram can appear in the linear combination. In
fact φ∗[∅] = [∅] while φ can be chosen such that the finite linear combination of
nonempty curve systems is not fixed under φ∗.

The involution τ given by changing crossings obviously extends to an involution
of D(F ) of degree (0, 0) by changing the crossings of C but fixing the other crossings.

4. Existence of the Resolution Algebra

We will consider the sequence of brackets for j ≥ 1, also denoted

〈 〉j : kDa(F ) → kCa(F ),

defining the Kauffman bracket as in Sec. 1. But we now work in the more general
case of diagrams and skein modules possibly containing proper arcs.

In the following the grading of the polynomial algebra k[z, w] is given by the
total degree. We like to point out that the variables z, w correspond to the state
maps ι, ζ and its associated operator versions ι̃, ζ̃ from Sec. 3.

Theorem 2. For each surface F there is a graded homomorphism of k-algebras

χ : k[z, w] → E(F ).

If k is a ring of characteristic 0 then χ is injective and the image is a Kauffman
resolution algebra of F .

Proof. First let

c : k[z, w] → k[z, w]

be the algebra homomorphism defined by mapping z to zw and w to w. The image
of c is the algebra of polynomials in k[z, w] of the form

∑
pi(z)wi with deg(pi) ≤ i.
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Note that the image of a homogeneous polynomial P of degree k is of the form
p(z)wk with a polynomial p in z of degree ≤ k. We will define χP in terms of
the homogeneous components of c(P (z, w)). Given k we will first define χk on
polynomials p(z) of degree ≤ k. Note that p(z) = ao+a1z+ · · ·+akzk is determined
by the mapping

p : {0, 1, . . . , k} → k

with p(j) = aj .
Now let (D, C) ∈ D(F ). A k-state on C is a choice of k-element subset T of

C and a mapping σ : T → {0,∞}. We denote the set of all k-states on (D, C) by
Σk(C). Then define χk : k[z] → E(F ) by

χk(p)[D, C] := (−1)k
∑

σ∈Σk(C)

p(ι(σ))[D(σ), C(σ)],

where D(σ) is the diagram which results from D by smoothing the crossings in
the domain T of σ as determined by σ, and C(σ) = C\T for each state σ : T →
{0,∞}. For each natural number k let πk : k[z, w] → k[z] be the map that sends a
polynomial P (z, w), considered as an element of k[z][w], to its kth coefficient. Now
for a general polynomial P (z, w) ∈ k[z, w] define χ by

χ =
k∑

j=0

χj ◦ πj ◦ c.

Consider two homogeneous polynomials P, Q ∈ k[z, w] of degree j (respec-
tively k). Let p (respectively q) be the corresponding function {0, 1, . . . , k} → k. Let
r : {0, 1, . . . , j + k} → k be the function determined by the polynomial PQ. Note
that if c(P ) = p(z)wj and c(Q) = q(z)wk with deg(p(z) ≤ j and deg(q(z)) ≤ k,
then

c(PQ) = c(P )c(Q) = p(z)q(z)wj+k.

Thus

r(i) =
∑

i=i1+i2,i1≤j,i2≤k

p(i1)q(i2).

It follows from the definition that

χP χQ[D, C] = (−1)j+k
∑

σ∈Σj(C(τ))

p(ι(σ))
∑

τ∈Σk(C)

q(ι(τ))[(D(τ))(σ), C((τ )(σ))],

which is equal to the state sum

(−1)j+k
∑

η∈Σj+k(C(τ))

r(ι(η))[D(η), C(η)].

It is obvious from the definition that χP is compatible with the action of M. It is
also clear that the image satisfies (1)–(6) of Sec. 3. It remains to show injectivity for
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rings k of characteristic 0. We only have to show that P �= 0 implies that χP ∈ E(F )
is not the trivial endomorphism. Let

P = Pi + Pi+1 + · · · + PN

be the decomposition of P into homogeneous components with Pi �= 0. Consider
the following i-crossing diagram of a circle on a disk in F .

We let (D, C) be this diagram with C the set of all crossings of D. Then χ(Pj)
is trivial on D(F )[i] for j > i because there are no j-element subsets of the set of
crossings. The smoothing according to some i-state with σ−1(∞) = � is an � + 1-
component diagram in the disk in F . There are precisely

(
i
�

)
states of this form,

and all give rise to the same diagram. Thus each nontrivial coefficient a� in P will
contribute a coefficient

(
i
�

)
a� �= 0 in χP [D, C], which does not cancel with any other

contribution.

In the following we only consider (D, C) with C the set of all crossings of D. In
this case we only write D both for a representative diagram and its isotopy class.

Examples. (a) For a constant polynomial P = a0 ∈ k ⊂ k[z, ζ] the sum is over the
single 0-element subset of the set of crossings of D and contributes a0D because
|σ−1(∞)| = 0. Thus χa0 is just multiplication by a0. (b) For k = 1 and P = w − z

thus c(P ) = (1 − z)w, we know that p(0) = 1 and p(1) = −1. Thus

χP (D) = −
∑

crossings p of D

(Dp,0 − Dp,∞),

which is just the Poisson bracket defined in Sec. 1.
(c) If D is a diagram with k crossings and P is a homogeneous polynomial of

degree >k, then χP (D) = 0. Thus if diagram resolutions are considered to operate
like differential operators on functions, this behavior very much suggests k-crossing
diagrams to correspond to polynomial functions of degree k. We say that each
element in R(F ) has finite support (with respect to the [ ]-grading respectively
number of crossings if restricted to real diagrams).
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(d) We can apply Theorem 2 to the ring k[t, t−1] itself. Define for k ≥ 0 the
sequence of polynomials

P [k](z, w) = tkwk + tk−2wk−1z + · · · + t−kzk ∈ k[t, t−1][z, w].

Then for each diagram D with k crossings

χP [k](D) = 〈D〉′ ∈ k[t, t−1]Da(F )[0].

Then there is a natural homomorphism

k[t, t−1]Da(F )[0] → k[t, t−1]Ca(F )

defined by mapping the curve system γ to (−t2− t−2)µ(γ)γ0, where µ is the number
of trivial components in γ and γ0 is the result of discarding the trivial components
from γ. The definition of 〈D〉 thus is separated into two steps. Similarly we will
separate the calculation of 〈D〉j for all j ≥ 0. The Kauffman bracket respectively
its extension can be considered as an operator with infinite support:

D(F ) → D(F )[0]

of the form

P̂ =
∞∑

k=0

χP [k] ◦ Πk ∈ E(F ),

where

Πk : D(F ) → D(F )[k]

is the projection onto the kth grading module. It maps D(F )[k] ⊂ D(F )[k] by the
identity and mapping all other D(F )[j] trivially. Thus Πk ∈ E(F )[0] but Πk /∈ R(F ).
Theorem 2 can be considered as an operator expansion of the k[t, t−1]-operator with
infinite support in terms of finite support k-operators.

The following result is immediate from the definition of χ and generalizes the
skein relation from Sec. 3.

Theorem 3. For each homogeneous polynomial P and diagram D with usual
Kauffman triple D+, D0, D∞, the following SL(2, C)-skein relation holds:

χP (D+ − D0 − D∞) + χ(P−akzk)w−1(D0) + χ(P−a0wk)z−1(D∞) = 0.

In order to be able to find combinatorial expressions of

Da(F )  D → 〈D〉j ∈ kCa(F )

in terms of our algebra R(F ), we need to define certain projection homomorphisms
into kCa(F ).
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Let ϕ : N = {0, 1, 2, . . .} → k be any map. Define

ϕ∗ : kD(F ) → kD(F )

by

ϕ∗[D, C] = (−1)|C| ∑
states σ on D

ϕ(µ(σ))[D(σ), ∅],

where as before |C| is the number of crossings of D, µ(σ) is the number of trivial
components of the smoothing of D using σ, and D(σ) is the diagram resulting from
discarding the trivial components from this smoothing.

If applied to (D, C) ∈ Da(F ), then

ϕ∗[D, C] ∈ kCa(F ).

For the function ϕ(i) = (−2)i, we have φ∗(D) = 〈D〉0.
Also note that ϕ∗(P (D)) = 〈D〉1 if P = w − z.
Suppose that k has characteristic 0. Our basic projections are defined from the

sequence of maps

ϕj : N → Q ⊂ k

defined by ϕj(i) is the coefficient of h2j in the expansion of (−t2−t−2)i with t = eh.
Then

ϕj(i) = (−1)i 22j

(2j)!

i∑
k=0

(
i

k

)
(2k − i)2j .

In particular

ϕ0(i) = (−1)i
i∑

k=0

(
i

k

)
= (−2)i,

and

ϕ1(i) = −(−2)i+1i.

Remark. It is important to observe that ϕ∗[D, C] does not depend on the over-
undercrossing information of the crossings in C for any map ϕ.

5. Combinatorial Expansion

We are now ready to state the main result of the paper. We assume that k is a ring
of characteristic zero and identify Q ⊂ k.
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Theorem (technical version). For each k ≥ 0 there exists a polynomial

Pk ∈ Q[z, w]

of degree k (but not homogeneous for k > 1) such that

〈D〉k =
� k

2 	∑
j=0

(ϕj)∗ ◦ χ(Pk−2j)(D) ∈ QCa(F ) ⊂ kCa(F )

for all [D] ∈ Da(F ). Moreover the homogeneous degree k component of Pk is
given by

wk − zwk−1 + z2wk−2 − · · · + (−1)kzk.

The terms with j > 0 are the loop correction terms. They play an important
tole in Sec. 6.

Corollary. Let α, β be two simple essential loops on F and α ·β be a diagram of α

over β. Then for all k ≥ 0:

λk(α, β) =
� k

2 	∑
j=0

(ϕj)∗χ(Pk−2j)(α · β).

The corollary also holds more generally for products for α, β possibly proper arcs.
The polynomials Pk are given for small k by

P0 = 1,

P1 = w − z,

P2 = (w2 − zw + z2) +
1
2
(w + z),

P3 = (w3 − zw2 + z2w − z3) + (w2 − z2) − 1
6
(w − z),

A polynomial P (z, w) is called symmetric respectively anti-symmetric if
P (w, z) = P (z, w) respectively P (w, z) = −P (z, w).

Proposition. The polynomials Pk are symmetric for k even and anti-symmetric
for k odd.

Proof. This follows from the remark at the end of Sec. 2 together with the obvious
fact that if P̄ (z, w) = P (w, z) then χP̄ (D) = χP (τ(D)).

Remarks. (a) Note that k[z, w] has a module splitting in symmetric and anti-
symmetric polynomials. Of course, as an algebra it is generated by z − w and
z + w. While the first polynomial corresponds to the Goldman Poisson bracket,
the symmetric generator does not define an algebraic structure on C(F ). Note that
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the commutator [α, β] = α � β − β �α expands in terms of only anti-symmetric res-
olution operations (i.e. coming from anti-symmetric polynomials via χ). But this
module is not spanned by z − w alone. The important point is that the symme-
try defines an additional Z2-grading on the algebra. Thus our result shows that
essentially the coefficients λj can all be deduced from first order operations. But
the existence of higher order operations seems to be related to the associativity of
the �-product. Compare [3] and also the recent work of Abouzaid on the Fukaya
category of higher genus surfaces [1].

(b) The homogeneous component of maximum degree in each order is reminis-
cent of the natural star products of Gutt and Rawnsley [9].

Proof of the theorem. The main idea of the proof is already contained
in [5]. We discuss a state model computation for (ϕj)∗ ◦ χP and P a homo-
geneous polynomial of degree k. Note that states for the computation here
consist of pairs consisting of a state on a k-element subset and a state on
the remaining set of crossings. The set of those states maps onto the set of
Kauffman states. In fact, many states for (ϕj)∗ ◦ χP will contribute to the
same Kauffman state. Recall that a Kauffman state has ζ(σ) 0-states and ι(σ)
∞-states. Recall that the polynomial P is determined by the sequence of coefficients
a0, . . . , ak giving the weights associated to states on k-element subsets where aj is
the weight corresponding to a state with j ∞-markers. Now there are

(
ι(σ)

j

)(
ζ(σ)
k−j

)
different states, which will all give rise to the same Kauffman state and will be
have weight aj . The idea is to work within a Kauffman state and expand using the
functions ζ, ι and µ on states as variables.

In the calculation of 〈 〉 the term of order hk is calculated from the expansions
of eh(ζ−ι) and the expansion of (−e2h−e−2h)µ by collecting the terms whose degree
adds up to k. We will consider that summand with order k in eh(ζ−ι) and order
0 in (−e2h − e−2h)µ. Note that this means that the contribution from the trivial
components will give multiplication by 2µ precisely as in the definition of (ϕ0)∗.
Then it is easy to see that the other terms are calculated from the polynomials
(ϕj)∗ ◦ Pk−2j . Note that

eh(ζ−ι) =
∞∑

k=0

1
k!

(ζ − ι)khk,

so in order k we have to calculate

1
k!

k∑
j=0

(
k

j

)
(−1)jζk−jιj .

Consider the jth term in this sum with coefficient

cj = (−1)j ιjζk−j

j!(k − j)!
.
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This has to be compared with the term(
ι

j

)(
ζ

k − j

)
,

which is equal to
1

j!(k − j)!
ι!

(ι − j)!
ζ!

(ζ − (k − j))!
or

1
j!(k − j)!

ι(ι − 1) · · · (ι − j + 1)ζ(ζ − 1) · · · (ζ − (k − j) + 1).

This is in homogeneous order k in ζ and ι precisely (−1)jcj . The result now follows
by choosing the coefficients of Pk as in the theorem. Then the highest homogeneous
terms coincide and we have expanded 〈 〉k in terms of the degree k-term P

(k)
k of Pk

as given above and lower order terms. These lower order terms of Pk are necessary
to compensate for the additional contributions of (ϕ0)∗ ◦ P

(k)
k .

The proof of the theorem shows that the explicit calculation of the polynomials
while easy in principle, is in fact a tedious exercise in binomial combinatorics. It
should be very interesting to have an inductive way of calculation which then could
be considered as a combinatorial Baker–Campell–Hausdorff expansion, hopefully
related with geometric structures on the representation variety, see also [11].

6. Differentiability of the Deformation

Let A be a k-algebra. Let D ⊂ Endk(A) be a filtered subalgebra, i.e. a sequence of
sub modules

D0 ⊂ D1 ⊂ · · · ⊂ Dp ⊂ · · · ⊂ Endk(A)

such that the restriction of the multiplication of A satisfies

Di · Dj ⊂ Di+j

for all non-negative integers i, j. For i ≥ 0, elements of Di\Di−1 are called D-opera-
tors of order i. Let

D :=
⋃
i≥0

Di.

Recall that a �-product on a k-algebra A is a k[[h]]-bilinear map

A[[h]] ⊗ A[[h]] → A[[h]],

thus is determined by

A ⊗ A → A[[h]],

and thus by a sequence of k-bilinear homomorphisms

λk : A ⊗ A → A

for k ≥ 0.
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Definition. A �-product on A is called D-differentiable if for all k ≥ 0 the restric-
tions of the corresponding sequence of k-bilinear homomorphisms

λk : A ⊗ A → A

to each variable are D-operators of order ≤ k.

Note that for �-products with λk symmetric or anti-symmetric for each k, it
suffices to consider the restriction to the second (or first) variable.

The above definition generalizes the usual definition of differentiability of defor-
mations of algebras using the filtered subalgebra D = D(A) of differential operators
defined as follows, see [12]: Let D(A)0 := A acting by multiplication of A on A and
inductively for p ≥ 1

D(A)p := {f ∈ Endk(A)|fa − af ∈ D(A)p−1 for all a ∈ A}.
In our situation we have A = kC(F ) equipped with the �-product induced by

the Kauffman bracket in F × I. Then following combinatorial filtration is naturally
defined in this case. We will write ϕi for (ϕi)∗ to simplify notation. Let Dp be the set
of those f ∈ Endk(A), that can be written as linear combinations of homomorphisms

β 	→ ϕr�
χQ�

(α�−1 � · · · (α2 � ϕr1χQ1(α0 � ϕ0χQ0β) · · ·)
with 2r0 + q0 + 2r1 + q1 +2r2 + q2 + · · ·+ 2r� + q� ≤ p for some elements αi ∈ C(F )
for i = 0, . . . , � − 1 and polynomials Qi ∈ k[z, w] of homogeneous degree qi for
i = 0, 1, . . . , � and � ≥ 0.

This obviously defines a filtered subalgebra of Endk(A). It is easy to see that
D0 consists of endomorphisms defined by

β 	→ aβ

for some a ∈ kC(F ). This follows because χQ0 is defined by multiplication with a
constant in k. Note that D0 = D0.

The theorem of Sec. 5 implies:

Theorem. The �-bracket on kC(F ) defined by the Kauffman bracket is D-
differentiable with respect to the filtered subalgebra D defined above.

Note that in this case the restriction of λk to the second variable for fixed α is
given by

ϕ0χPk
+ ϕ1χPk−2 + · · ·

with the polynomials Pj from the theorem in Sec. 5.
Finally we will show that the restriction of λ2 to one of the variables is not a

usual differential operator of order ≤ 2. In order to see this recall that

λ2(α, β) = ϕ0χP2(α � β) + ϕ1(α � β),

because P0 = 1. Even though only the sum of the two terms is a well-defined pairing
kC(F )⊗kC(F ) → kC(F ), it can still be checked whether the differentiability formula
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holds separately for each term. But be aware that the value of each term depends
on the choice of diagram α � β.

We want to check whether

β 	→ λ2(αβ, γ) − αλ2(β, γ)

is an operator of order ≤ 1. Let P := P2. The term ϕ0χP is a differential operator
of order ≤ 2. Consider

∆ := β 	→ ϕ0χP [α � β � γ, (α ∩ γ) ∪ (β ∩ γ)] − ϕ0 (α · χP [β � γ, β ∩ γ]) .

Note that χP is defined by state summations over pairs of crossings, so the above
difference is determined by those states with at least one of the two crossings on α.
The application of ϕ0 does not change the formula since both α and each term in
χP [β � γ, β ∩ γ] have no crossings, and

ϕ0(α � β) = ϕ0(α)ϕ0(β)

for all α, β ∈ C(F ). Note that such a multiplicative property does not hold for the
higher order projections ϕi with i > 0. It follows that for all β′

∆(ββ′) − β∆β′

involves only smoothings of pairs of crossings with one crossing in α and one in β

and therefore is a multiple of β′. Thus the first term of λ2 has the differentiability
property of a differential operator of order ≤ 2.

We now study the terms derived from the second contribution β 	→ ϕ1(α � β)
thus whether

δ : β 	→ ϕ1(α � β � γ) − αϕ1(β � γ)

is an operator of order ≤ 1 for all α, γ. This is the case if

β′ 	→ δ(ββ′) − βδ(β′)

is an operator of order 0 thus given by multiplying β′ by some element of kC(F ).
If we let γ = ∅ and write the condition explicitly we get

β′ 	→ ϕ1(α � β � β′) − αϕ1(β � β′) − βϕ1(α � β′) − βαϕ1(β′).

Thus β′ = ∅ maps to some element φ1(α � β) ∈ kC(F ).
Now consider the situation of α, β two curves with no crossings but both α and

β such that each state smoothing on β �β′ and α�β′ does not involve an inessential
component while there exists a smoothing of α � β � β′ involving an inessential
component.

In this case the differentiability condition is equivalent to

ϕ1(α � β � β′) = αϕ1(β � β′) + βϕ1(α � β′).

Then ϕ1(β′) = ϕ1(α � β) = ϕ1(β � β′) = ϕ1(α � β′) = 0 while ϕ1(α � β � β′) �= 0.
Therefore the second term does not satisfy the differentiability condition. It follows
that λ2 restricted to one of the variables is not a differential operator of order ≤ 2.
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Remark. The arguments above generalize to show that the top term ϕ0χPk
of

λk satisfies the condition of being a differentiable operator of order ≤ k in each
variable. Note that this assertion is not precise in this form since we are discussing
homomorphisms from the module of diagrams into the algebra kC(F ). In fact, the
operation � used above is not well-defined but just a notation for a collection of
all diagrams. What we mean that the differentiability formula holds if we calculate
ϕkχPk

on any diagram α � β, and multiplication in kC(F ) is lifted to kD(F ) in
this way.

It seems a very difficult problem to compare the combinatorial filtered subalge-
bra D with the filtered subalgebra of differential operators D. But this problem is at
the heart of relating the combinatorial deformation with the geometric deformations
of the character variety.
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