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1. Linear systems

Preliminaries.We say that two equations are equivalent if they have the same solution set, and we
use the symbol ⇐⇒ to denote equivalency of equations. For example

3x = 9 ⇐⇒ x = 3,
since both equations have the same solution set, namely {3}. We use the symbol Ô⇒ to indicate
that every solution of the equation on the left side is also a solution of the equation at the right side.
For example

x = 3 Ô⇒ x2 = 9.
Notice that it is not true that

x2 = 9 Ô⇒ x = 3,
because −3 is a solution of the left equation but not of the right.

Date: Fall 2024.
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For an equation with more than one variables a solution is an assignment of a value to each of the
variables that make the equation true. For example assigning x = 3 and y = 4 is a solution of the
equation

10x + 3 y = 42.
Usually there is an implicit order among the variables and we use ordered tuples to denote solutions.
If our variables are x, y, and z then we write (1,−2,4) to denote the assignment x = 1, y = −2 and
z = 4.
Remark 1.1. Notice that whether two equations are equivalent depends on the domain of definition,
in other words where the variables are supposed to vary. For example if x is a real variable (i.e. x ∈ R)
then

x3 = 1 ⇐⇒ x = 1.
But if x is a complex variable (i.e. x ∈ C) then these equations are not equivalent because there are
three cubic roots of unity.

Definition 1.2. A linear equation with n variables x1, x2, . . . , xn is an equation that is an equation of
the form

a1x1 + a2x2 + . . . + anxn = c,
where a1, . . . , an and c are real numbers1.

The numbers a1,⋯, an are called the coefficients and c is called the constant.
If the constant is 0 we say that the equation is homogeneous.

In this part of the class we’ll study systems of linear equations, namely we’ll address the questions:

● How can we solve a linear system?● What sets appear as solution sets of linear systems?

Let’s wet our appetite by looking at a single linear equation.
One variable. A linear equation of one variable has the form

(1) ax = c.
We have two cases:

(1) Non-zero coefficient. If a ≠ 0 then we can divide both sides by a (or equivalently multiply
by a−1):

ax = c ⇐⇒ x = c

a
.

So in this case we have a unique solution.
(2) Zero coefficient. If a = 0 we have two subcases:

(a) Non-zero constant. If c ≠ 0 then there are no solutions, in other words the solution set
is the empty set ∅.

(b) Zero constant. If c = 0 then all numbers are solutions, in other words the solution set is
the set of real numbers R.

In summary we have:

1In this equation the symbols a1, . . . , an and c are parameters while x1, . . . , xn are variables. Unlike variables, param-
eters are considered to have constant (but unspecified) values.
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The solution set of ax = c
The solution set of a linear equation with one variables is

● a point, or● the empty set ∅, or● the whole line R.
The case of non-zero coefficient is the generic case, most linear equations have a unique solution.

“Wait a minute”, I here you say, “what do you mean most?”. Here is what I mean: we can represent
the linear equation ax = c by the point (a, c) ∈ R2, and conversely we can think of any point of R as
representing a linear equation. So the point (3,4) represents the equation 3x = 4 and the point (0,3)
represents the equation 0x = 3.

So we identified the set of linear equations with the Cartesian planeR2, the coefficient a in horizon-
tal axis and the constant c in the vertical. The equations with zero coefficient are then represented by
the vertical axis, a one-dimensional2 subspace of the two-dimensional space. The equation 0x = 0 is
represented by a single point (0,0) a zero-dimensional subspace. “Most” points are outside the ver-
tical axis, so most equations have a unique solution. Furthermore, the generic equation that doesn’t
have a unique solution has no solutions at all.

a

c

b

Figure 1. The space of linear equations with one variable.

Two variables. A linear equation with two variables, say x, y has the form

(2) ax + b y = c,
with a, b, c ∈ R.

2Later in the class we will define what this means.



4 NIKOS APOSTOLAKIS

Let’s first look at a particular equation, for example

(3) 2x − 3 y = 0.
If we divide by the coefficient of y andmove the x-term to the right side we get the equivalent equation

y = 2

3
x.

The solution set of this equation, obviously, consists of all pairs where the second coordinate is two-
thirds of the first coordinate. So the solution set is

S = {(x, 2
3
x) ∶ x ∈ R} .

We can write the solution set in parametric form as follows

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = t
y = 2

3
t

t ∈ R.
This form makes it clear that the solution set is one-dimensional, in the sense that a solution is com-
pletely determined once we choose a value for t.

Using vector notation we can express the solution set as

(5) (x
y
) = t (12

3

) .
We will explain this in more detail later, but for the moment here is a quick explanation. We write

coordinates vertically as columns: instead of (x, y) we write (x
y
) and instead of (1,2/3) we write

( 1

2/3). Later in the class we will say that these are column vectors. In the right hand side of (5) we

have scalar multiplication: we multiply a number and a vector by multiplying each coordinate of the
vector with the number. So,

t (12
3

) = ( t2
3
t
) .

Finally two vectors are equal if their corresponding coordinates are equal. Equation (5) is therefore
just a rewriting of the system of equations (4).

The operation of vector addition for column vectors is also defined coordinate-wise:

(a
b
) + (c

d
) = (a + c

b + d) .
The solution set S is a special subset of R2. It has two special properties, namely, it is closed under

scalar multiplication and vector addition. This means that if we multiply a solution by a number the
result is a solution, and if we add two solutions we get another solution. Indeed, if s is a real number
we have

s ( t2
3
t
) = ( st2

3
st
) = st(12

3

) ,
so a scalar times a solution is a solution. And,

( t12
3
t1
) + ( t22

3
t2
) = ( t1 + t2

2
3
t1 + 2

3
t2
) = ( t1 + t2

2
3
(t1 + t2)) ,

so adding two solutions gives a solution. These two properties can be summarized by saying:
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S is a Vector Space.

Actually the solution set of any homogeneous linear equation is closed under scalar multiplication
and vector addition.

Theorem1.3. The solution set of any homogeneous linear equation is closed under scalarmultiplication
and vector addition.

Proof. Let

(6) a1x1 + . . . + anxn = 0
be a homogeneous equation and (v1, . . . , vn), (w1, . . . ,wn) be two solutions. This means that

a1v1 + . . . + anvn = 0, and a1w1 + . . . + anwn = 0.
Adding these two equations we get

a1v1 + . . . + anvn + a1w1 + . . . + anwn = 0.
Now taking common factors gives

a1 (v1 +w1) + . . . + an (vn +wn) = 0.
Therefore (v1 +w1, . . . , vn +wn) is a solution of (6).

Now let t be any number, then

a1tv1 + . . . + antvn = t (a1v1 + . . . + anvn) = 0,
therefore s (v1, . . . , vn) is a solution of (6). �

Consider now the equation

(7) 2x − 3 y = 6.
Notice that this equation has the same coefficients as Equation (3). Entirely similarly as before we
have that the solution set is

S′ = {(x, 2
3
x) + 6 ∶ x ∈ R} .

In parametric form the solution is

(8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = t
y = 2

3
t + 2 t ∈ R,

and in vector notation:

(9) (x
y
) = t (12

3

) + (0
2
) .

Equations (5) and (9) are very similar, they differ by the vector (0
2
). Where did that come from?

The answer will be revealed if we graph the equations, see Figure 2.

We see then that (0,2) is the y–intercept of the line with equation (7). That’s where (0
2
) came

from. Geometrically, Equation (9) says that the graph the green line is obtained from the blue line by
a vertical translation of two units.

There is nothing special about the y-intercept: take any other point of the blue line, for example the
point with coordinates (3,4). If we translate the blue line using the vector with components (3,4)
we will again get the green line. This connection is explored further in Section 1.3.2.
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x

y

Figure 2. The solution sets of Equations (3) and (7).

In general if at least one of the coefficients in non-zero the equation (2) has a one-dimensional
solution set. Indeed, if a ≠ 0, we can divide by a and move the y-term to the right side to get

x = − b
a
y + c

a
.

Similarly as above, we get that the general solution is

(10) (x
y
) = t ( b

a

1
) + ( c

a

0
) .

The case of zero coefficients. In the trivial case a = b = 0, we have the equation
0x + 0 y = c.

Clearly if c ≠ 0 there are no solutions, and if c = 0 all points (x, y) ∈ R2 are solutions.

The solution set of ax + b y = c
The solution set of a linear equation with two variables is

● a line, or● the empty set ∅, or● the whole plane R2.
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Three or more variables. Let’s again look at a generic example first. Consider the equation

2x + 3 y − z = 1.
Solving for z we get

z = 2x + 3 y − 1.
The solution set

S = {(x, y,2x + 3 y − 1) ∶ (x, y) ∈ R2}
has now two free parameters

Using vector notation we have

(11)
⎛⎜⎝
x

y

z

⎞⎟⎠ = s
⎛⎜⎝
1

0

2

⎞⎟⎠ + t
⎛⎜⎝
0

1

3

⎞⎟⎠ +
⎛⎜⎝
0

0−1
⎞⎟⎠ .

As in the one variable and two variable cases, if all the coefficients are zero we either have no
solutions (when the constant is non-zero), or the solution set is R3 (when the constant is zero).

Clearly this pattern continues in all dimensions. The solution set of a generic3 linear equation with
n unknowns has n−1 independent parameters. If all coefficients are 0 then if the constant is non-zero
the solution set is empty, and if the constant is 0 the solution set is Rn.

The solution set of a1 x1 +⋯ + anxn = c
The solution set of a linear equation with n variables is

● an (n − 1)-dimensional subspace, or● the empty set ∅, or● the whole space Rn.

1.1. Systems of linear equations. Anm×n linear system is a collection ofm linear equations with
n variables. So,

{2x − 3y + 4z = 0
x + y − z = −6

is a 2 × 3 system, while

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = 5
−3x + 2y = 2
9x + πy = −2

is a 3 × 2 system. A solution of a system is a common solution of all the equations, and we say that
two systems are equivalent if they have the same solution sets.

3i.e. with at least one non-zero coefficient.
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Elementary row operations

● Interchange two equations.● Multiply one equation by a non-zero scalar.● Replace Ek by Ek +Eℓ.

Theorem 1.4. Application of an elementary row operation gives an equivalent system.

Proof. The first two operations don’t change the solution set of any equation, so the resulting system
is equivalent to the original.

Let S be the original system and S′ the system that we get by replacing Ek with Ek +Eℓ. It’s easy
to see that S Ô⇒ S′. Indeed, a common solution of Ek and Eℓ is also a solution of Ek +Eℓ.

Now notice that we can go from S′ to S by multiplying Eℓ with −1 and adding it to Ek + Eℓ.
Therefore S′ Ô⇒ S as well. �

Remark 1.5 (An often used combination). In practice we often perform the following combination
of the second and third operation:

(1) multiply Ek by a non-zero scalar λk,
(2) multiply Eℓ by a non-zero scalar λℓ,
(3) replace Ek with E′k +E′ℓ,
(4) change E′ℓ back to Eℓ by multiplying it with λ−1ℓ .

The combined effect of these row operations is to replace Ek by λkEk + λℓEℓ.

Example 1.6. Consider the following 2 × 2 system
{2x + 3y = 5
7x − 3y = 4 .

Multiply the first equation by −7:
{14x + 21y = 35

7x − 3y = 4 .

Multiply the second equation by −2:
{ 14x + 21y = 35
−14x + 6y = −8 .

Replace the second equation by the sum of the first and the second:

{14x + 21y = 35
27y = 27 .

Divide the first equation by 7:

{2x + 3y = 5
27y = 27 .

Now divide the second equation by 27:

{2x + 3y = 5
y = 1 .
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Now let’s multiply the second equation by −3 and add it to the first in one step:

{2x = 2
y = 1 .

Finally we divide the first equation by 2:

{x = 1
y = 1 .

We arrived at a system whose solution set is obvious: S = {(1,1)}.
It turns out that every linear system can be solved by applying a finite number of elementary row

operations. Example 1.6 contains all the ingredients for an algorithm that solves all linear systems.

Example 1.7. Let’s solve the system

{ 2x − y + 3z = 1
−4x + 7y + 5z = 13 .

We first add 7 times the first equation to the second:

{ 2x − y + 3z = 1
10x + 26z = 30 .

Now add the second equation to −5 times the first, and then divide the second equation by 10:

{ − y + 11z = 25
x + 13

10
z = 3 .

Now we multiply the first equation with −1 and (for aesthetic reasons) we interchange the equa-
tions:

{x + 13
10
z = 3

y − 11z = −25 .
The final step is to move the z-terms to the right side:

{x = −13
10
z + 3

y = 11z − 25 .

So we have a one-dimensional solution set. In vector form:

⎛⎜⎝
x

y

z

⎞⎟⎠ = t
⎛⎜⎝
−13

10

11

1

⎞⎟⎠ +
⎛⎜⎝

3−25
0

⎞⎟⎠ .
Let’s also see what can happen when we have more equations than unknowns.

Example 1.8. Consider the 3 × 2 system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = 5
−3x + 2y = 2
9x + 7y = −2

.

We use the first equation to eliminate x from the second and third. To do this we add 3 times the
first equation to the second, and −9 times the first equation to the third.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = 5
− y = 17
16y = −47

.

Solving the second and third equations for y we get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = 5
y = −17
y = 47

16

.

The second and third equations are in contradiction, they cannot both be true. Therefore the system
has no solutions.

Problems in many areas of mathematics (and other sciences) reduce to solving linear systems.

Example 1.9 (Finding the equation of a line). Find the line that passes through (3,7) and (−4,2).
Solution. Let

ax + b y + c = 0
be the equation of the line, where a, b, and c are real numbers and at least one of the a, b is non-zero.
Substituting the coordinates of the given points we get the system

{ 3a + 7b + c = 0
−4a + 2b + c = 0 .

Multiplying the first equation by 4 and the second by 3 gives

{ 12a + 28b + 4c = 0
−12a + 6b + 3c = 0 .

We then replace the second equation with the sum of the two equations, and multiply the first by
1/4 and we get

{3a + 7b + c = 0
34b + 7c = 0 .

We’ve eliminated a from the second equation, and nowwe’ll eliminate b from the first. Now replace
the first equation by 34 times the first equation plus −7 times the first:

{102a − 15c = 0
34b + 7c = 0 .

Now divide the first equation by 102 and the second by 34 coefficients to get

{a − 5c/34 = 0
b + 7c/34 = 0 .

This means that a one-dimensional solution set:

S = {( 5
34

c,− 7

34
c, c) ∶ c ∈ R} .

When c = 0we get the solution (0,0,0) that doesn’t satisfy the requirement that at least one of a, b
is non-zero. So any equation of the form

5c

34
x − 7c

34
y + c = 0, c ≠ 0
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is an equation of the line that passes through this two points. The simplest of all these equations is,
arguably, obtained for c = 34:

5x − 7y + 34 = 0.
�

Example 1.10 (Determining a quadratic polynomial by three values). For the polynomial p(x) =
ax2 + bx + c we have that p(1) = 3, p(−1) = 1, and p(2) = 10. Find the coefficients of p.

Solution. We have the system, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a + b + c = 3
a − b + c = 1
4a + 2b + c = 10

.

Rather than working with the system itself we will work with its augmented matrix:

⎛⎜⎝
1 1 1

1 −1 1

4 2 1

RRRRRRRRRRRRR
3

1

10

⎞⎟⎠
Think of it like this: we pretend that the variables a, b, and c as well as the additions symbols are

invisible and that the equal signs “=” have been replaced by vertical bars.
We use the following strategy: First we get an upper triangular matrix: we use a11 to kill all the

other entries in the first column. Then we use a22 to kill everything bellow it, and so on until we get
all entries below the diagonal to be 0.

⎛⎜⎝
1 1 1

1 −1 1

4 2 1

RRRRRRRRRRRRR
3

1

10

⎞⎟⎠ ∼
⎛⎜⎝
1 1 1

0 −2 0

0 −2 −3
RRRRRRRRRRRRR

3

= 2−2
⎞⎟⎠ ∼

⎛⎜⎝
1 1 1

0 −2 0

0 0 −3
RRRRRRRRRRRRR

3

= 2

0

⎞⎟⎠
The next step is then to go back and kill all the entries above the diagonal until we are are left with

a diagonal matrix. We will start with the lowest diagonal entry a33 and we use it to kill a23 and a13.
In our case, a23 is already 0, so we go to a13: we multiply the third row by 1/3 and add it to the first.

Next we go to a22 and use it to kill a12: we multiply the second row by 1/2 and add it to the first.

⎛⎜⎝
1 1 0

0 −2 0

0 0 −3
RRRRRRRRRRRRR

3−2
0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 −2 0

0 0 −3
RRRRRRRRRRRRR

2−2
0

⎞⎟⎠
Now that we have a diagonal matrix we can easily solve, just divide each row by its first non-zero

entry:

⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
2

1

0

⎞⎟⎠
So the solution of the system is a = 2, b = 1, and c = 0. So our polynomial is

p(x) = 2x2 + x.
We can verify that indeed, p(1) = 3, p(−1) = 1, and p(2) = 10. �

Example 1.11. Let’s again consider a quadratic binomial p(x) = ax2 + bx + c, and suppose that we
now are given that p(1) = 2, p(−1) = −2, and p(2) = 4. What is the polynomial now?
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Solution. Entirely similarly as before we get the system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a + b + c = 2
a − b + c = −2
4a + 2b + c = 4

.

with /augmented/ matrix

⎛⎜⎝
1 1 1

1 −1 1

4 2 1

RRRRRRRRRRRRR
2−2
4

⎞⎟⎠
As before we want to first obtain a triangular matrix.

⎛⎜⎝
1 1 1

0 −2 0

0 −2 −3
RRRRRRRRRRRRR

2−4−4
⎞⎟⎠ ∼

⎛⎜⎝
1 1 1

0 −2 0

0 0 −3
RRRRRRRRRRRRR

2−2
0

⎞⎟⎠ ∼
⎛⎜⎝
1 1 0

0 −2 0

0 0 −3
RRRRRRRRRRRRR

2−4
0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 −2 0

0 0 −3
RRRRRRRRRRRRR

3−4
0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
0

2

0

⎞⎟⎠
So we get the solution a = 0, b = 2, and c = 0. Even though the system has a solution the polynomial

we obtain p(x) = 2x is not really quadratic. �

Remark 1.12. Notice that the two systems in the previous two examples have the same coefficients
and that the procedure we used to solve them was identical: we performed the exact same row oper-
ations. So even though the solutions are different the solution sets have the same nature: they both
consist of a single solution.

Example 1.13. Consider the 3 × 3 system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − 3y + 2z = 4
2x + 5y − z = −3
3x + 2y + z = 1

Let’s again do our thing.

⎛⎜⎝
1 −3 2

2 5 −1
3 2 1

RRRRRRRRRRRRR
4−3
1

⎞⎟⎠ ∼
⎛⎜⎝
1 −3 2

0 11 −5
0 11 −5

RRRRRRRRRRRRR
4−11−11
⎞⎟⎠ ∼

⎛⎜⎝
1 −3 2

0 11 −5
0 0 0

RRRRRRRRRRRRR
4−11
0

⎞⎟⎠
Now let’s divide the second row by 11.

⎛⎜⎝
1 −3 2

0 1 −5/11
0 0 0

RRRRRRRRRRRRR
4−1
0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 7/11
0 1 −5/11
0 0 0

RRRRRRRRRRRRR
1−1
0

⎞⎟⎠
Notice that the last row is all zeros. What does this mean? If we make the variables visible again

the last equation is now the trivial equation

0x + 0 y + 0 z = 0.
This is a tautology4, and its presence does not really affect the solution set. So we might as well delete
the third row to get the system

{x + 7
11
z = 1

y − 5
11
z = −1 .

So we have a one-parameter family of solutions. That is, the solution set is 1-dimensional:

4This means that the equation is true for all values of the variables
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S = {(1 − 7

11
z,−1 + 5

11
z, z) ∶ z ∈ R} .

We can write this in “vector form” as follows:

⎛⎜⎝
x

y

z

⎞⎟⎠ = t
⎛⎜⎝
−7/11
5/11
1

⎞⎟⎠ +
⎛⎜⎝
1−1
0

⎞⎟⎠ .
Example 1.14. Let’s solve to solve the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2x1 + 3x2 − 3x3 + 5x4 = 2

−4x1 + 7x2 + x3 = −7
3x2 + 2x4 = 1

−2x1 + 13x2 − 2x3 + 7x4 = 10

.

We have the augmented matrix

⎛⎜⎜⎜⎝

2 3 −3 5−4 7 1 0

0 3 0 2−2 13 −2 7

RRRRRRRRRRRRRRRRRR

2−7
1

10

⎞⎟⎟⎟⎠
.

We use a11 = 2 to kill all other entries in the column and get

⎛⎜⎜⎜⎝

2 3 −3 5

9 13 −5 −10
0 3 0 2

0 0 0 0

RRRRRRRRRRRRRRRRRR

2−11
1

12

⎞⎟⎟⎟⎠
.

Look at the last row (0 0 0 0 ∣ 12)
all the coefficients are 0 but the constant is non-zero. If we make the variables visible again we see
that the last equation is:

0x1 + 0x2 + 0x3 + 0x4 = 12.

This equation has no solutions, and so the system has no solutions either. The solution set is thus the
empty set ∅.

The last two examples show that rows with all but, possibly, the last entries 0 are important.

The importance of zeros

If in the process of solving a linear system we arrive at an augmented matrix
with a row of the form

(0 0 . . . 0 ∣ c)
then

● If c ≠ 0 the system is inconsistent.● If c = 0 we can delete that row from the matrix.
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Before continuing with the theory (and practice) of linear systems we take a detour to properly
introduce matrices. In our first encounter, matrices appeared to be just a convenient book-keeping
device, but appearances are deceptive sometimes. Matrices play a fundamental role in linear algebra.

1.2. Matrices of linear systems. The matrix form of anm × n linear system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 +⋯ + a1nxn = c1
a21x1 + a22x2 +⋯ + a2nxn = c2⋮ ⋮ ⋮
am1x1 + am2x2 +⋯+ amnxn = cm

is

⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n⋮ ⋮ ⋯ ⋮
am1 am2 ⋯ amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2⋮
xn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

c1
c2⋮
cm

⎞⎟⎟⎟⎠
,

or in more compact form

Ax = c.

A is called the matrix of the system, x the vector of unknowns, and c the vector of constants. The
augmented matrix of the system is the matrix A with an extra column that contains the constants.

⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n⋮ ⋮ ⋯ ⋮
am1 am2 ⋯ amn

RRRRRRRRRRRRRRRRRR

c1
c2⋮
cm

⎞⎟⎟⎟⎠
.

The algorithm for solving a linear system consists of using elementary row operations to transform
the augmented matrix of the system into a special form, the so-called row-echelon form. Roughly
speaking, a matrix in row-echelon form exhibits a staircase pattern5.

(1 0

0 1
) , ⎛⎜⎝

11 3 −6
0 −9 3

0 0 4

⎞⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎝

−8 −11 32 5

0 0 1 −9
0 0 0 33

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

0 3 −7 0 1 0

0 0 2 −42 6 11

0 0 0 5 −3 −69
0 0 0 0 0 0

⎞⎟⎟⎟⎠
.

Definition 1.15. A zero row is a row with all entries 0. The leading entry of a non-zero row is the
first non-zero entry in that row.

5The term echelon comes from the French word “échelle” that means “ladder”.
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(Reduced) Echelon form

We say that the matrix A = (aij) is in echelon form if it satisfies the following
two conditions:

(1) The zero rows are at the bottom of the matrix.
(2) All the entries below the leading entry of a non-zero row are 0.
(3) The leading entry of a non-zero row is in a column to the right of any

leading entry above it.

We say that a matrix is in reduced echelon form if it is in echelon form, and it
satisfies the following two additional properties:

(3) All leading entries are equal to 1.
(4) If a column contains a leading 1, all other entries in that column are 0.

If the augmented matrix of a system is in echelon form then the system is easy to solve, by using
back-substitution.

Example 1.16. Consider the system with augmented matrix

⎛⎜⎝
1 2 3

0 1 1

0 0 2

RRRRRRRRRRRRR
0

2−2
⎞⎟⎠ .

The corresponding system is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 2y + 3z = 0
y + z = 2

2z = −2
.

The last equation is practically solved: dividing by 2 gives z = −1. We now substitute the value of
z back to the first and second equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 2y − 3 = 0
y − 1 = 2

z = −1
.

We then solve the second equation and we find y = 3. Substituting back into the first equation gives

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 3 = 0
y = 3

z = −1
.

We finally solve the first equation to get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = −3
y = 3

z = −1
.
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On the other hand, a system whose augmented matrix is in reduced echelon form is super-easy to
solve, in fact it’s solved already!

Example 1.17. Consider the system with augmented matrix

⎛⎜⎝
1 0 0 3

0 1 0 −7
0 0 1 0

RRRRRRRRRRRRR
6

0−3
⎞⎟⎠ .

The system is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 + 3x4 = 6

x2 − 7x4 = 0

x3 = −3
,

and all we need to do to solve it is to move the terms containing the free variable x4 to the right
hand side:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = −3x4 + 6
x2 = 7x4

x3 = −3
.

From these two examples it is clear that if we are able to put the augmented matrix of a system
into echelon form (reduced or not) then we can solve it. We will shortly see that we can put any
matrix in (reduced) echelon form, and that the procedure for doing so is algorithmic, we have actually
being applying this procedure already. So we have two slightly different methods for solving linear
systems: either we stop once we get any echelon form, and use back substitution, or we go all the way
to reduced echelon form. The first method is called Gauss Elimination and the second Gauss-Jordan
Elimination.

Definition 1.18. We say that two matrices A and B are row equivalent, and write A ∼ B, if B is
obtained from A after the application of finitely many elementary row operations.

Theorem 1.19. Row equivalence is an equivalence relation. In other words, it enjoys the following
properties:

(1) It is reflexive. This means that every matrix is row equivalent to itself:
(2) It is symmetric. This means that if A is equivalent to b then B is also equivalent to A:

∀A,B A ∼ B Ô⇒ B ∼ A.

(3) It is transitive. This means that if A is equivalent to B and B is equivalent to C then A is also
equivalent to C :

∀A,B,C A ∼ B and B ∼ C Ô⇒ A ∼ C.

Proof. Reflexivity holds because we can get A by applying zero elementary row operations to A.
Symmetry holds because all elementary row operations are reversible.
Transitivity holds because if we can go from A from B and from B to C then we can clearly go

from A to C : start from A and perform the row operators needed to go to B but don’t stop, perform
the operations needed to go from B to C . �

Wealready have seen the procedure for getting the reduced echelon form of amatrix in our example.
Let’s prove that it always work.

Theorem 1.20 (Kill below first, then kill above).

(1) Every matrix is row equivalent to a matrix in echelon form.
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(2) Every matrix in row echelon form is row equivalent to a matrix in reduced row echelon form.
Therefore, every matrix is equivalent to a matrix in reduced echelon form.

Proof. We will prove that every matrix has an echelon form and then we will show that any echelon
matrix is row equivalent to a reduced echelon matrix.

(1) Starting with a11 we scan the first row for non-zero entries. If there isn’t any then we proceed
to the second row, and scan it starting with its leftmost entry. We continue until we either find
a row that has a non-zero entry or we have scanned the whole matrix without succeeding. In
the later case, all the rows of our matrix are zero rows and so the matrix is already in reduced
echelon form.

If we are successful then the entry we find, say aij , is the leading entry of its row. We
then scan all the entries below and to the left, that is all the entries akℓ with k < i and ℓ > j,
searching for non-zero entries. If we find such a non-zero akℓ we restrict our search to the
entries below and to the left of akℓ. Since every time we find such an akℓ we move below end
to the left, we keep decreasing the number of entries we are searching. Since there are finitely
many entries in our matrix, this cannot go on forever, eventually we’ll find a non-zero entry
only zero columns to the left of it. Call that entry the pivot and denote it by p. Since p ≠ 0 we
can use row operations to kill all the entries bellow it in its column. Since p is the topmost and
leftmost non-zero entry all the other entries in its column and all the entries of the column left
of p are now zero. Make the row of p the first row using row operations.

We repeat the process restricting attention to the entries below and to the right of the first
row. This process eventually will terminate because every time we find a new pivot we de-
crease the size of the matrix we concentrate on.

The matrix we get at the end of this procedure is in echelon form. Indeed, there cannot be
a zero row above a non-zero row because our procedure picks all non-zero rows and moves
them to the top just below the first non-zero row. All the entries below a leading entry p are
zero because we have either killed them when we first found p, or they were 0 already. Finally,
p is to the left of the leading entries of the rows above it, because otherwise it would have been
killed.

(2) Let A be an echelon matrix. We start by dividing each non-zero row by its leading entry, to
obtain an echelon matrix with all leading entries 1. Because all the entries to the left of the
leading 1s are zero, we can kill all entries above the rightmost leading 1 (that is the leading
1 of the last non-zero row) without changing anything in the columns to the left of it, and in
particular without changing the leading entries of the rows above the last non-zero row.

We then restrict attention to the entries above and to the left, and keep going. Again at every
step we reduce the size of the matrix we are concentrating on, and therefore the procedure will
terminate. The final matrix is obviously in reduced echelon form.

�

Gauss and Gauss-Jordan Elimination

When we solve a system, using either Gauss, or Gauss-Jordan, Elimination we
modify the algorithm described above in two ways.

(1) If we scan a row and find no non-zero entries, we just discard that row.
(2) If the leading entry is in the last columnwe stop the procedure and declare

that the solution set is ∅.
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Remark 1.21. I’ve made some choices in the description of the procedure above because I wanted to
present it as an algorithm, a procedure that can be performed without any thought. Other choices are
possible.

For example, dividing each of the rows of an echelon matrix by the leading entry could be done at
any point of the procedure. If the algorithm is to be performed by an infallible entity it seems efficient
to divide at the beginning of the procedure.

However doing so may introduce unwieldy fractions, that could cause more errors when the algo-
rithm is executed by not-so-infallible beings. In such cases it may actually be more efficient to not
divide until the end so as to minimize the probability of error.

In general, just because a procedure can be executed without any thought, it doesn’t mean that we

have to do it without thinking. We are thinking beings after all6. When we try to solve a problem we
can use any method that seems suitable at the moment.

Example 1.22. Consider the matrix

A =

⎛⎜⎜⎜⎝

0 3 −6 6 4 −5

3 −7 8 −5 8 9

6 −16 20 −14 14 24

3 −9 12 −9 6 15

⎞⎟⎟⎟⎠
The pivot is a21 = 3. We use it to kill the first entries of the two rows below the row that contains

the pivot (notice that the entries above the pivot, a11, is already 0).

A ∼

⎛⎜⎜⎜⎝

0 3 −6 6 4 −5

3 −7 8 −5 8 9

0 2 4 −4 −2 6

0 2 4 −4 −2 6

⎞⎟⎟⎟⎠
We then interchange the first and second row:

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5

0 −2 4 −4 −2 6

0 −2 4 −4 −2 6

⎞⎟⎟⎟⎠
Now we concentrate on the submatrix (aij) with i, j ≥ 2. The new pivot is 3 and we use it to kill

the entries below it, that happen to be identical. This is done by adding −2/3 times the second row,
to the third and fourth rows.

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5

0 0 0 0 2/3 8/3
0 0 0 0 2/3 8/3

⎞⎟⎟⎟⎠
Next we get

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5

0 0 0 0 1 4

0 0 0 0 0 0

⎞⎟⎟⎟⎠
This an echelonmatrix. To get the row equivalent reduced echelonmatrix we start killing upwards.

6Or at least we think so
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A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 0 −23

0 3 −6 6 0 −21

0 0 0 0 1 4

0 0 0 0 0 0

⎞⎟⎟⎟⎠
and

A ∼

⎛⎜⎜⎜⎝

3 0 −6 9 0 −72

0 3 −6 6 0 −21

0 0 0 0 1 4

0 0 0 0 0 0

⎞⎟⎟⎟⎠
.

Finally, we divide first and second row by 3 and we get the reduced echelon form:

A ∼

⎛⎜⎜⎜⎝

1 0 −2 3 0 −24

0 1 −2 2 0 −7

0 0 0 0 1 4

0 0 0 0 0 0

⎞⎟⎟⎟⎠
.

There are two kind of columns in a reduced echelon form, those that contain a leading entry and
those that don’t. Columns of the first kind are called basic and those of the second type are called free.
When we solve systems that have coefficient matrix A, the free columns correspond to free variables.

So any system that has coefficientmatrixAwill, as long as it is consistent of course, have a solution
set with three free parameters, i.e. the solution set will be 3-dimensional.

But wait a minute, what do I mean by “the solution set is three-dimensional”? Using this partic-
ular set of row operations we got a reduced echelon matrix with three free columns and this indeed
will give a parametrization with three parameters. But maybe if we use an other sequence of row
operations we will get a parametrization with two, or four, parameters.

That’s a valid objection but it turns out that this can never happen. In fact every matrix is row
equivalent to a uniquematrix in reduced row echelon form. Therefore, the “dimension” of the solution
set is well defined. We will prove that in the next section where we turn our attention to the special
case of homogeneous systems, that is systems where all constants c1, c2, . . . , cn = 0.

1.3. Homogeneous systems. Consider then the generalm × n homogeneous system

(12)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 +⋯ + a1nxn = 0

a21x1 + a22x2 +⋯ + a2nxn = 0

⋮ ⋮ ⋮

am1x1 + am2x2 +⋯+ amnxn = 0

Notice that x1 = x2 = ⋅ ⋅ ⋅ = xn = 0 is a solution of (12). Therefore homogeneous systems are always
consistent, the interesting question then is whether there are other solution besides that obvious one.

Definition 1.23 (Trivial solution of a homogeneous system.). The solution

x1 = 0, . . . , xn = 0

is called the trivial solution7. A solution with at least one of the variables assigned a non-zero value is
called a non-trivial solution.

Remark 1.24. For a homogeneous system the last column of the augmented matrix is redundant, it
will always be the zero-column. So for homogeneous systems we work with the coefficient matrix,
not the augmented matrix.

7The term zero solution is also occasionally used.
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Example 1.25. Consider the homogeneous system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 + x2 + x3 − 2x4 = 0

2x1 − 2x3 = 0

x2 + x3 + 4x4 = 0

.

To solve the system we bring its matrix to reduced echelon form. We first get an echelon form:

⎛⎜⎝
1 1 2 −2
2 0 −2 0

0 1 1 4

⎞⎟⎠ ∼
⎛⎜⎝
1 1 2 −2
0 −2 −6 4

0 1 1 4

⎞⎟⎠ ∼
⎛⎜⎝
1 1 2 −2
0 1 1 4

0 −2 −6 4

⎞⎟⎠ ∼
⎛⎜⎝
1 1 2 −2
0 1 1 4

0 0 −4 12

⎞⎟⎠ ∼
⎛⎜⎝
1 1 2 −2
0 1 1 4

0 0 1 3

⎞⎟⎠ .
And the reduced echelon form:

⎛⎜⎝
1 1 2 −2
0 1 1 4

0 0 1 3

⎞⎟⎠ ∼
⎛⎜⎝
1 1 0 −8
0 1 0 1

0 0 1 3

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0 −9
0 1 0 1

0 0 1 3

⎞⎟⎠ .
We have one free column, and so the corresponding variable x4 is free. So we have a one parameter

solution set:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 = 9t

x2 = −t
x3 = −3t
x4 = t

t ∈ R.

And using “column vectors”:

⎛⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎠
= t

⎛⎜⎜⎜⎝

9

−1
−3
−1

⎞⎟⎟⎟⎠
.

We have two notions of equivalence for m × n systems:

● Semantic Equivalence: Two linear systems are considered equivalent if they have the same
solution sets8.
● Syntactic Equivalence: Two systems are considered equivalent if their (augmented) matri-
ces are row equivalent9.

As is usual the case, syntactic equivalence implies semantic equivalence, and the proof is rather
easy. The converse is also true, that is, if two systems have the same solution set then their augmented
matrices are row equivalent.

We will first prove this implication for homogeneous systems.
Let’s start with the rather trivial case of a homogeneous system with one variable. The matrix of

such a system is anm × 1 matrix, i.e. a column vector. An echelon form of such a matrix is either the
zero column of has all rows after the first 0 and the first non-zero. All matrices that have non-zero
first row are row equivalent to the column vector that has first row 1 and all other rows 0.

Now the only possible solution sets of a homogeneous system with one variable are R and {0}.
This follows because, as we observed in the first section, if x is a solution of a homogeneous equation

8The term semantic is used for concepts related to meaning. Two systems with the same solutions have the same
meaning in the sense that they describe the same set.

9The term syntactic is used for concepts related to syntax, that is the formal properties of a language, in contrast with
the meaning. Row equivalence relates to the form of the system, we defined it without any reference to the solution sets
of the system.
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so is then λx for all numbers λ. If the solution set is {0} then at least one coefficient is non-zero and
therefore the echelon form will be a column with first row non-zero and all such column vectors are
row equivalent. If the solution set is R then all coefficients are 0 and so the column vector is the zero
column.

Now, using induction, we can prove the following theorem.

Theorem1.26. Two reduced echelonm×nmatrices whose homogeneous systems have the same solution
set are equal.

Proof. We have seen that this is the case for systems with one variable. Assuming that the theorem is
true for systems with n variables we will prove that it is also true for systems with n + 1 variables.

Let then A and B be two m × (n + 1) reduced echelon matrices with the same solution set S, and
let A0 and B0 be the matrices obtained from A and B, respectively, by removing the last column.
Consider the subset S0 of those solutions that have the last coordinate 0, that is

S0 = {(x1, . . . , xn, xn+1) ∈ S ∶ xn+1 = 0} .
Then S0 is the solution set ofA0 andB0, and by the inductive step it follows thatA0 = B0. Therefore

A and B can differ only on the last column.
The last columns have also to be the same though. To see this let k be the first row that the last

columns of A and B differ, and let ak ≠ bk be the corresponding entries. Consider now the system
A−B obtained by subtracting the corresponding equations ofA andB. This is a homogeneous system
with only the last column non-zero and all elements of S are also solutions of A −B. For any such
solution the k-th equation of A −B is (ak − bk)xn+1 = 0. By our choice of k this means that xn+1 = 0.
Therefore S = S0, and so the last columns ofA andB are both the zero column otherwise there would
be solutions of A (respectively B) that are not solutions of A0 (respectively B0).

So if the last columns of A and B differ, they are both the zero-column, a contradiction. Therefore
the last columns of A and B are the same. �

Since row equivalent systems have the same solution set, we have the following immediate corol-
laries of Theorem 1.26.

Corollary 1.27. We have:

(1) Two reduced echelon matrices are row equivalent if and only if they are equal.
(2) The reduced echelon form of any matrix is unique.
(3) Two homogeneous systems with the same solution set are row equivalent.

Let’s now consider the question of uniqueness. When does a homogeneous system have a unique
solution? The unique solution will be of course the trivial one. Let’s consider systems with 3 variables
for example. What homogeneous systems with three variables, say x, y, z, admit only the trivial
solution x = y = z = 0?

Let A be the reduced echelon form of the matrix of the system. If A has free columns, then the
system has non-trivial solutions: for example we can just give a non-zero value to one of the free
parameters, and set the remaining free variables (if any) to zero. Therefore in order to have only
the trivial solution all the columns have of A need to be basic, i.e., all the columns have to contain a
leading 1. Since the leading 1s appear in different rows A needs to have at least three rows, i.e. the
system needs to have at least three equations. This means that the first three rows of the system have
to be10

⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ,
10This 3 × 3 matrix is very special, it will play an important role in the following lectures.
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and the remaining rows (if any) have to be zero rows.
More generally, the number of basic variables, is always equal to the number of non-zero rows ofA.

In Example 1.25 we have three non-zero rows and the solution has three basic variables. You should
go back through all the examples we have seen so far and verify that this is always the case.

The columns that are not basic are free and so we have the following theorem, a first version of the
Rank Theorem.

Theorem 1.28 (The Rank Theorem). The number of non-zero rows plus the number of free columns
in the reduced echelon form of A equals the numbers of variables of the system.

1.3.1. Vector subspaces. What kind of subsets of Rn arise as solutions of homogeneous linear sys-
tems? Well, vector subspaces of course! That means that the sum of two solutions is again a solution,
and a scalar multiple of a solution is again a solution. Vector subspaces of Rn are examples of vector
spaces, one of the main objects of study of Linear Algebra.

Definition 1.29 (Column Vectors, vector addition, scalar multiplication). An n-dimensional
column vector is an n × 1 matrix. We identify the n-tuple x = (x1, . . . , xn) ∈ Rn with the column
vector with entries x1, . . . , xn, that is we set

x =

⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠
.

If x,y are two column vectors and λ is a scalar (i.e. a real number) then we define the sum x + y
and the product λx component-wise: if

x =

⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠
, y =

⎛⎜⎜⎜⎝

y1
y2
⋮
yn

⎞⎟⎟⎟⎠
.

then

x + y =

⎛⎜⎜⎜⎝

x1 + y1
x2 + y2
⋮

xn + yn

⎞⎟⎟⎟⎠
, and λx =

⎛⎜⎜⎜⎝

λx1

λx2

⋮
λxn

⎞⎟⎟⎟⎠
.

We also define x − y = x + (−1)y, so that

x − y =

⎛⎜⎜⎜⎝

x1 − y1
x2 − y2
⋮

xn − yn

⎞⎟⎟⎟⎠
.

There are several equivalent ways to define what a vector subspace is. The one we chose below is
convenient for the purposes of this section. For the rest of this section, vector means column vector.

Definition 1.30 (Vector subspace). A subset V ⊆ Rn is called a vector subspace if the following three
conditions hold:

(1) V contains the zero vector, that is 0 ∈ V .
(2) V is closed under vector addition, that is

x,y ∈ V Ô⇒ x + y ∈ V.
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(3) V is closed under scalar multiplication, that is

λ ∈ R,x ∈ V Ô⇒ λx ∈ V.

On route to proving that the solution set of a homogeneous is a vector subspace we prove the
following important result.

Theorem 1.31 (Matrix multiplication is linear). Let A be anm×n matrix, x,y two n-vectors, and
λ a real number. Then

(1) A (x + y) = Ax +Ay.
(2) A (λx) = λ (Ax).

Proof. The k-th entry of A (x + y) is
ak1(x1 + y1) + ⋅ ⋅ ⋅ + akn(xn + yn) = ak1x1 + ak1y1 + ⋅ ⋅ ⋅ + aknxn + aknyn

= (ak1x1 + ⋅ ⋅ ⋅ + aknxn) + (ak1y1 + ⋅ ⋅ ⋅ + aknyn) .
The sum in the first parenthesis is the k-th row of Ax and the sum in the second parenthesis is the
k-th row of Ay. Since this is true for all k the first item has been proved.

Similarly, the k-th row of A (λx) is
ak1(λx1) + ⋅ ⋅ ⋅ + akn(λxn) = λ (ak1x1) + ⋅ ⋅ ⋅ + λ (aknxn)

= λ (ak1x1 + ⋅ ⋅ ⋅ + aknxn) .
Now the last expression is the k-th row of λ (Ax) and so the second item has also been proven. �

Now let x,y be two solutions a homogeneous system with matrix A. Then Ax = Ay = 0. Then,

A (x + y) = Ax +Ay = 0 + 0 = 0.

Thus, x + y is also a solution.
The proof that any scalar multiple of x is also a solution is entirely similar and we leave as an

exercise11.
We have then, as promised, the following theorem.

Theorem 1.32. The solution set of a linear homogeneous system with n variables is a vector subspace
of Rn.

Remark 1.33. We will see later in the course that every vector subspace of R is the solution set of
some homogeneous linear system.

1.3.2. Solution sets of non-homogeneous systems. If we think of the solution set of a homoge-
neous systems as a space of vectors, then we should think of the solution set of a non-homogeneous
system as a space of points. This is more than an analogy, the solution set of a non-homogeneous
system is an affine subspace ofRn. We are not going to define what that means precisely, we give some
examples instead. A one dimensional affine subspace is the set of points in a line, a two dimensional
affine subspace is the set of points in a plane, and so on.

Two points P,Q in Rn determine a vector v =
Ð→
PQ, that we can think geometrically as the directed

segment from P to Q. Of course the same vector is defined by many different pairs of points, in fact

given any point P ′ there is a unique point Q′ such that v =
ÐÐ→

P ′Q′. See Figure 3 for examples,
If the coordinates of P are (p1, p2) and those of Q are (q1, q2) then the components of the vector v

are (q1 − p1, q2 − p2), in particular if we chose the starting point of v to be the origin O(0,0) then the
coordinates of the endpoint of v are exactly the components of v.

We could write thenQ−P = v and P +v = Q, and say that “the difference of two points is a vector
and the sum of a point and a vector is an other point”.

11Do this.
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Figure 3. Points and vectors in R2.

Returning to the solution sets of non-homogeneous systems (refer also to Figure 2 and recall the
surrounding discussion) we have the following theorem.

Theorem 1.34 (Solution sets of non-homogeneous systems). Let A be any matrix, S the solution
set of a non-homogeneous system Ax = c and V the solution set of the homogeneous system Ax = 0.
Then

● The difference of two solutions of the non-homogeneous system is a solution of the homogeneous
system. That is

a,b ∈ S Ô⇒ b − a ∈ V.
● The sum of a solution of the non-homogeneous system and a solution of the homogeneous system
is again a solution of the non-homogeneous system.
● For any solution a0 of the non-homogeneous system we can express any other solution of the
homogeneous system as the sum of a0 and a unique solution of the homogeneous system. That is

S = {a0 + v ∶ v ∈ V } .
Remark 1.35. The third item is sometimes expressed as “The general solution of a non-homogeneous
system is the sum of the general solution of the homogeneous system and a particular solution (of the
non-homogeneous system)”.

Sketch. 12 The first item follows from Theorem 1.31. The second is just a reformulation of the first. To
prove the third item use the first item and the equation a = a0 + (a − a0). �

12Fill the details.
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Example 1.36. Consider the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x + 2y − 3z + 2s − 4t = 2

2x + 4y − 5z + s − 6t = 1

5x + 10y − 13z + 4s − 16t = 4
.

We work with the coefficient matrix. The reduced echelon form is:

A =
⎛⎜⎝
1 2 −3 2 −4
2 4 −5 1 −6
5 10 −13 4 −16

⎞⎟⎠ ∼
⎛⎜⎝
1 2 −3 2 −4
0 0 1 −3 2

0 0 2 −6 4

⎞⎟⎠ ∼
⎛⎜⎝
1 2 −3 2 −4
0 0 1 −3 2

0 0 0 0 0

⎞⎟⎠ ∼ (
1 2 0 11 −10
0 0 1 −3 2

)
So we have two basic variables x, z and three free variables y, s, t. This means that the solution of

the homogeneous system, in vector form is

⎛⎜⎜⎜⎜⎜⎝

x

y

z

s

t

⎞⎟⎟⎟⎟⎟⎠
= a

⎛⎜⎜⎜⎜⎜⎝

2

1

0

0

0

⎞⎟⎟⎟⎟⎟⎠
+ b

⎛⎜⎜⎜⎜⎜⎝

11

0

−3
1

0

⎞⎟⎟⎟⎟⎟⎠
+ c

⎛⎜⎜⎜⎜⎜⎝

−10
0

2

0

1

⎞⎟⎟⎟⎟⎟⎠
.

To solve the original non-homogeneous system then, we need to find only one particular solution.
This is rather easy to do just by substituting values. For example, for x = y = z = z = 0 we find t = 1.
So the solution of the non homogeneous system is

⎛⎜⎜⎜⎜⎜⎝

x

y

z

s

t

⎞⎟⎟⎟⎟⎟⎠
= a

⎛⎜⎜⎜⎜⎜⎝

2

1

0

0

0

⎞⎟⎟⎟⎟⎟⎠
+ b

⎛⎜⎜⎜⎜⎜⎝

11

0

−3
1

0

⎞⎟⎟⎟⎟⎟⎠
+ c

⎛⎜⎜⎜⎜⎜⎝

−10
0

2

0

1

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

0

0

0

1

0

⎞⎟⎟⎟⎟⎟⎠
.

We can interpret the solutions geometrically as follows: the solution set V of the homogeneous
system is a 3-dimensional vector subspace of the standard 5-dimensional real vector space R5. A
basis of V consists of v = 2e1 + e2, u = 11e1 − 3e3 + e4, and w = −10e1 + 2e3 + e5. The solution S of
the non-homogeneous system is the translation of V by the vector e4

13.

The following theorem summarizes our results.

Theorem 1.37 (General solution of linear systems). We have:

● A linear system is consistent if and only if the echelon form of its augmented matrix contains no
rows of the form

(0 0 . . . 0 c)
with c ≠ 0.
● The solution set of a consisted system has as many parameters as the number of free columns in
its reduced echelon form. In particular a consisted system has a unique solution if and only the
reduced echelon form of its matrix14 has ones along the diagonal and zeros everywhere else. For
example a, consistent 4 × 4 system has a unique solution if and only if the reduced echelon form

13By the end of the class all of the above will be making sense.
14The matrix of coefficients not its augmented matrix.
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of its matrix is

⎛⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
.

● Two consistent m × n systems are equivalent (i.e. have the same solution set) if and only if their
augmented matrices are row equivalent.
● Two consistent m × n systems are equivalent (i.e. have the same solution set) if and only if their
augmented matrices have the same reduced row echelon form.
● If the homogeneous system Ax = 0 has only the trivial solution then if the system Ax = c is
consistent it has a unique solution.

Proof. The proof is left as an exercise. All the ingredients are already present in these notes. �
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2. Exercises

(1) Solve each of the following systems:
(a) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 2y + 3z = 0
3x + y + 2z = 0
2x + 3y + z = 0

.

(b) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y + z = 0

−x + 3y + z = 5

3x + y + 7z = 2
.

(c) ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1
5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

.

(2) Find the real number k so that the following system is consistent

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − 2y + 3z = 2
x + y + z = k

2x − y + 4z = k2

.

(3) Find conditions on the real numbers a, b, c, if any, so that the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x + y = 0

y + z = 0

x − z = 0

ax + by + cz = 0

(a) is inconsistent.
(b) Has a unique solution.
(c) Has more than one solution.

(4) Consider the 2 × 2 matrix

A = (a b

c d
)

where a, b, c, d ∈ R.
(a) Prove that if ad − bc ≠ 0 then the reduced row echelon form of A is

(1 0

0 1
)

(b) Prove that if ad − bc ≠ 0 then the system

{ ax + by = k
cx + dy = l

has a unique solution, for all real numbers k, l.
(5) Prove that there is a unique line passing through any two distinct points of the plane.

Hint. Work as in Example 1.9. Show that the system we obtain has non-trivial solutions and
all the non-trivial equations differ by a multiplicative constant.
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(6) Find the cubic polynomial

p(x) = ax3 + bx2 + cx + d
given that p(1) = 0, p(2) = 3, p(−1) = −6, and p(−2) = −21.

(7) Look at Examples 1.10 and 1.11, there is a geometric reason why in Example refexm:qua2 the
polynomial we got was not quadratic. The graph of a quadratic polynomial is a parabola so
in these examples we were trying to find a parabola that passes through three distinct points.
But the points in Example 1.11 are colinear15 and so there is no parabola that passes through
all three of them.
(a) Prove that given any three distinct real numbers x1, x2, x3 and any three real numbers

y1, y2, y3 we can always find a polynomial p(x) = ax2 + bx + c such that p(x1) = y1,
p(x2) = y2, and p(x3) = y3.

(b) The polynomial in part (a) is quadratic (i.e. a ≠ 0) if and only if the points (x1, y1), (x2, y2),
and (x3, y3) are not colinear.

The following is more of an invitation to think than an exercise. A puzzle if you will. See
whether you can figure it out, but don’t feel bad if you

(8) What’s going on with “free” and “basic” variables? In a reduced echelon matrix the free
variables are determined, they are those that correspond to the free columns. Since the reduced
echelon form of a matrix is unique this means that which variables are free and which are basic
are determined in advance for any system.

But how can this be true? Can’t we just choose which variables to solve for? Haven’t we
done that already?

15This means that they lie in a line.
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3. The 2 × 2 case

Let’s analyze the case of a 2 × 2 linear system. Consider the system

{ a1x + b1y = c1
a2x + b2y = c2

The augmented matrix is

(a1 b1
a2 b2

∣ c1
c2
) .

The case where all the coefficients are zero is rather trivial: in that case if both constants are also
zero the solution set is R2, if at least one constant is non-zero the solution set is ∅.

Let’s assume then that one of the coefficients is non-zero. Without loss of generality we can assume
that a1 ≠ 0. For, if a1 = 0 and a2 ≠ 0 then we can interchange the equations and get an equivalent
system with the coefficient of x in the first equation non-zero. If both a1 and a2 are zero then we can
interchange the variables, get a system of two equations where at least one of the coefficients of x is
non-zero, solve that system, and then interchange the variables, again.

Since we assumed a1 ≠ 0 we can multiply the first equation with −a2/a1 and add it to the second:

⎛⎜⎜⎝
a1 b1

0 b2 −
a2b1

a1

RRRRRRRRRRRRRRR
c1

c2 −
a2c1

a1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
a1 b1

0
a1b2 − a2b1

a1

RRRRRRRRRRRRRRRR

c1

a1c2 − a2c1
a1

⎞⎟⎟⎠ ∼
⎛⎜⎝
1

b1

a1
0 a1b2 − a2b1

RRRRRRRRRRRRRR
c1

a1
a1c2 − a2c1

⎞⎟⎠ .

We now look at the second row. Set D = a1b2 − a2b116, and consider two cases: whether D is zero
or not.
Non-zero Determinant. If D ≠ 0 then we can divide the second row by D to get

⎛⎜⎜⎝
1

b1

a1
0 1

RRRRRRRRRRRRRRR

c1

a1
a1c2 − a2c1

D

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝
1 0

0 1

RRRRRRRRRRRRRRRR

c1b2 − c2b1
D

a1c2 − a2c1
D

⎞⎟⎟⎠ .

The expression of the third entry of the first column is the result of simplifying the following

c1

a1
−
b1

a1
⋅
a1c2 − a2c1

D
=
c1 (a1b2 − a2b1) − b1 (a1c2 − a2c1)

a1D
.

If we set Dx = c1b2 − c2b1 and Dy = a1c2 − a2c1 we have formulas that give the solution of a linear
2 × 2 system. These formulas are a special case of Crammer’s rule, that we’ll prove later.

16Later in the class we will see that this is the determinant of the coefficient matrix.
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2 × 2 Crammer’s rule

When a1b2 − a2b1 ≠ 0, the system

{ a1x + b1y = c1
a2x + b2y = c2

has a unique solution given by

x =
Dx

D
, y =

Dy

D
,

where D = a1b2 − a2b1, Dx = c1b2 − c2b1 and Dy = a1c2 − a2c1.

Zero Determinant. If D = 0 we have two cases: if Dy ≠ 0 the system is inconsistent. If Dy = 0 then
the system reduces in a single equation with, as we saw at the beginning of the previous section, a
one parameter solution set.

3.0.1. Geometric interpretation. The conditionD = 0 (orD ≠ 0) has a nice geometric interpretation in
terms of the graphs of the equations that make up our system. We only consider the nontrivial case
where each equation has at least one non-zero coefficient, and therefore its graph is a line.

Theorem 3.1. The lines with equations

a1x + b1y = c1, a2x + b2y = c2

are parallel if and only if D = 0.

Proof. The condition D = 0 is equivalent to

(13) a1b2 = a2b1.

● Case I: a1 = 0. Then the first line is horizontal and the two lines are parallel if and only if
a2 = 0. On the other hand, since b1 has to be non-zero Equation (3.0.1) also holds if and only if
a2 = 0.
● Case II: a1 ≠ 0. We have two cases:

– Case IIa: b1 = 0. Then the first line is vertical and the RHS of Equation (3.0.1) is 0. Since
a1 ≠ 0 Equation (3.0.1) holds if and only if b2 = 0, i.e. if and only if the second line is also
vertical.

– Case IIb: b1 ≠ 0. Then if a2 = 0, since our equations are non-trivial, b2 ≠ 0 and so
Equation (3.0.1) cannot hold. The lines are not parallel either since the second line is
horizontal and the first isn’t.
Finally if a2 ≠ 0 then Equation (3.0.1) is equivalent to

b2

a2
=
b1

a1

which holds if and only if the lines are parallel.

�

This explains our results geometrically, if D ≠ 0 the two lines are not parallel and therefore they
intersect in a point. The coordinates of that point give us the unique solution of the system. If on the
other handD = 0, the two lines are parallel so they don’t intersect and th system has no solution.

But what about the case D = 0 and Dx = 0, where we have a one-parameter solution set? Well,
notice that, assuming a1 ≠ 0 we have
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D = 0 ⇐⇒ b2 =
a2

a1
b1

and

Dx = 0 ⇐⇒ c2 =
a2

a1
c1.

So in that case we can write the second equation as

a2x +
a2

a1
b1y =

a2

a1
c1.

which is the first equation multiplied by a2/a1. So the two equations are equivalent, and the system
has as many solutions as the first equation.

Consider as an example the following three systems:

{x − y = 0
x − y = −2

, { x − y = −2
2x − 2y = −4

, { x − y = 0

2x + 3y = 5
.

The first system is inconsistent, while in the second system the second equation equation is twice
the first. The third system has the unique solution x = y = 1. The graphs of the equations x − y = 0,
x − y = −2 and 2x + 3y = 5 are shown in Figure 4. The lines of the equations in the first system
don’t intersect, both equations in the second system represent the same line, while the graphs of the
equations in the third system intersect at the point with coordinates (1,1).

x

y

Figure 4. Parallel and intersecting lines.
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3.0.2. Another Geometric interpretation. Systems of linear equations arise also when we want
to express a vector as a linear combination of a given set of basic vectors. In R2 we have the standard
basis consisting of the vectors (written as columns)

Every other vector can be uniquely expressed as a sum of multiples of these two basic vectors.
Indeed the components of the vector are the coefficients of such an expression since

(a
b
) = a (1

0
) + b (0

1
) .

Let’s give a few definitions. In the following vector means an element of some Rn.

Linear combinations, span, basis

A linear combination of m not necessarily distinct vectors v1, . . . ,vm is a vector of the form

λ1 v1 + ⋅ ⋅ ⋅ + λn vm

where λ1, . . . , λm are some scalars, called the coefficients of the combination.

The set of all linear combinations is called the linear span of v1, . . . ,vm and is denoted by⟨v1, . . . ,vm⟩,
⟨v1, . . . ,vm⟩ = {λ1 v1 +⋯+ λm vm ∶ λ1, . . . , λm ∈ R} .

If V = ⟨v1, . . . ,vm⟩ then we say that V is spanned by the vectors v1, . . . ,vm. That means that
every element of V is a linear combination of v1, . . . ,vm, if that linear combination is unique
we say that v1, . . . ,vm form a basis of V .

The above discussion can then summarized by saying that e1,e2 form a basis of R2. The term
standard basis suggests that there are other non-standard bases as well. And indeed there are tons of
them!.

Example 3.2 (An other basis of R2). The vectors v = 3e1 − 2e2 and w = −2e1 + 3e2 also form a
basis of R2.

The phrase above claims two things.

(1) It claims that v,w span R2, i.e. that any vector c ∈ R2 is a linear combination of v,w. Un-
packing this further the claim is that given c ∈ R2 we can find x, y ∈ R so that

(14) xv + yw = c.

(2) Furthermore it claims that only one such pair of real numbers exist.

In other words, to say “v,w is a basis of R2” is equivalent to saying “Equation (14) has a unique
solution for all c ∈ R2”.

Let’s then proceed and prove the claim. Let c = c1 1+c2 e2 be an arbitrary vector, then using column
vector notation Equation (14) becomes

x ( 3−2) + y (−23 ) = (c1c2) .
Performing the operations in LHS we get equivalently
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( 3x−2x) + (−2y3y
) = (c1

c2
) ⇐⇒ ( 3x − 2y−2x + 3y) = (c1c2) .

Two vectors are equal if and only if their corresponding components are equal, so the last equation
is equivalent to the system

{ 3x − 2y = c1
−2x + 3y = c2

.

Using Crammer’s rule, we get

x =
3c1 + 2c2

5
, y =

2c1 + 3c2
5

.

Thus, as claimed we have a unique solution, and v,w form a basis of R2.

This example demonstrates the general procedure that we’ll use to find whether a vector is in the
linear span of a given list of vectors. That question reduces to solving a linear system.

Vector equations as systems

The vector equation

x1 v1 + ⋅ ⋅ ⋅ + xn vm = c

is equivalent to the system

Ax = c

where A is the matrix with columns v1, . . . ,vm.

Consider now two arbitrary vectors a = a1 e1 +a2 e2 and b = b1 e1 + b2 e2. The question of whether
c = c1 1 + c2 e2 is in the linear span ⟨a,b⟩ reduces to whether the system

{ a1x + b1y = c1
a2x + b2y = c2

has solutions, and we have a complete answer to that question.

(1) If the determinant D = a1b2 − a2b1 is non-zero then a,b form a basis. Every vector can be
written as a linear combination of a,b in exactly one way.

(2) If the determinant is 0, whether c is in linear span of a,b depends on the value of the deter-
minants Dx and Dy .

In the previous section we interpreted the condition D = 0 in terms of points. Let’s now interpret
it in terms of vectors. Lets start with the case where one of the vectors is the zero vector 0.

One of the vectors is the zero vector. If a = 0 thenD = 0 and the answer depends on whether b is
also zero or not.

Case I: Both vectors are zero. Then the system has solutions only if c = 0. Any x, y are actually
solutions.

⟨0⟩ = {0} .
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Case II: If b ≠ 0 then we have solutions if and only if c is a scalar multiple of b, in other words if and
only if c ∈ ⟨b⟩. Since we can give arbitrary values to x the solution is not unique. So we have

⟨0,b⟩ = ⟨b⟩ .
Even though 0,b is not a basis of the linear span, b by itself constitute a basis.

Both vectors are non-zero. In this case each vector has at least one non-zero component. Let’s
assume that a1 ≠ 0. Then

D = 0 ⇐⇒ b2 =
a2

a1
b1 ⇐⇒ (b1b2) =

b1

a1
(a1
a2
) .

Therefore the condition D = 0 holds if and only if b is a multiple of a. If that is the case then any
linear combination of a and b can be written in terms of only a or only b.

To see this assume that b = λa then

λ1 a + λ2 b = λ1 a + λ2 (λa) = (λ1 + λ2 λ)a.
We have assumed that both a and b are non-zero, so λ ≠ 0 and we can write a = λ−1b so the roles

of a and b can be reversed, and we can write any linear combination in terms of b alone.
In summary, ifD = 0 the two vectors are multiples of each other and we have

⟨a,b⟩ = ⟨a⟩ = ⟨b⟩ .
a,b does not constitute a basis of ⟨a,b⟩17. a (or ) by itself forms a basis however18.
IfD ≠ 0 then the system has unique solution for all c ∈ R2. In that case

⟨a,b⟩ = R2

and a,b form a basis.
The geometric reason that two non-colinear vectors span R2 is the same as in the case of the

standard basis used in the familiar Cartesian coordinate system.
Let v be an arbitrary vector. If we take the starting point of v to be the origin O(0,0) and if its

endpoint is P (p1, p2) then draw a line from P , parallel to the y-axis it will intersect the x-axis at a
point with coordinates (p1,0), and a line parallel to the x-axis intersects the y-axis at a point with
coordinates (0, p2). Then

v = p1e1 + p2e2.
See the left hand side of Figure 5.

x

y

e1

e2

P

Figure 5. Why coordinates work.

17Why?
18Why?
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The same method will work for any two non-parallel lines. Take any two intersecting lines ℓ1 and
ℓ2, call their intersectionO and choose a vector a in the first and a vector b in the second. Any vector

v =
Ð→

OP can be written

v = p1a + p2b,
because the line from P parallel to ℓ2 will intersect ℓ1 and their intersection will determine a vector

that is a multiple of a. Similarly the intersection of a line parallel to ℓ2 will determine a vector that is
a multiple of b.

4. The standard real vector spaces and their subspaces

The standard (real) n-dimensional vector space is the set Rn endowed with the operations of vector
addition and scalar multiplication that we will formally introduce below19. We call element of Rn,
n-vectors or simply vectors when n is understood or irrelevant. Thus an n-vector is an ordered tuples
of real numbers a = (a1, a2, . . . , an). We often identify n-vectors with n × 1 matrices and call them
column vectors, and sometimes we identify vectors with 1 × n matrices and call them row vectors. So
we have three notations for the same vector:

a = (a1, a2, . . . , an), a =

⎛⎜⎜⎜⎝

a1
a2
⋮
an

⎞⎟⎟⎟⎠
, a = (a1 a2 . . . an) .

When n = 1 we identify R1 with R and write for example 3 instead of (3). The case n = 0 is
also included, R0 has a single element, the empty tuple () which we denote by 0, and call it the
(0-dimensional) zero vector. Thus, R = {0}.

For n ≥ 1 we call the n-tuple with all components 0 the (n-dimensional) zero vector and denote it
also by 0. So

0 = (0,0, . . . ,0).
This abuse of notation doesn’t cause confusion because the context makes it clear what 0 stands

for if we write “Consider a ∈ R4 with a ≠ 0” then we clearly mean (0,0,0,0), while in “Two non zero
vectors of R2” we refer to (0,0).

For n ≥ 1 we say that the n-vectors e1, . . . ,en, where ek has 1 at the k-th slot and 0 everywhere
else, form the standard basis of Rn. For example the standard basis of R4 consists of the four vectors

e1 = (1,0,0,0)
e2 = (0,1,0,0)
e3 = (0,0,1,0)
e4 = (0,0,0,1).

Again the use of the same symbol for different things doesn’t usually cause confusion.

Definition 4.1 (Vector addition and scalarmultiplication). Leta = (a1, . . . , an) andb = (b1, . . . , bn)
be two n-vectors and λ a real number. We define

λa = (λa1, . . . , λan)
and

a + b = (a1 + b1, . . . , an + bn).
19We have already see these operations, but in this section we make it official.
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The opposite of a, denoted by −a, is the vector

−a = (−a1, . . . ,−an),
and we denote a + (−b) by a −b. So,

a − b = (a1 − b1, . . . , an − bn).
Example 4.2 (Two dimensional vectors). Let’s see some examples of two dimensional vectors. If
a = (2,−1) and b = (3,2).

5a = (5 ⋅ 2,5 (−1)) = (10,−5),
a + b = (2 + 3,−1 + 2) = (5,1),

a − b = (2 − 3,−1 − 2) = (−1,−3),
−2a + 7b = (−2 ⋅ 2,−2 (−1)) + (7 ⋅ 3,7 ⋅ 2) = (−4,2) + (21,14) = (17,16).

Now, let x, y ∈ R and consider the linear combination

xe1 + y e2 = x (1,0) + y (0,1) = (x,0) + (0, y) = (x, y).
So any vector in R2 can be written as a linear combination of the vectors of the standard basis, and

actually the components of the vector are the coefficients.

In general, if a = (a1, . . . , an) then we have,

(15) a = a1e1 +⋯+ anen.

Theorem 4.3 (Vector Space Axioms). The operations of vector addition and scalar multiplication
enjoy the following properties:

(1) Vector addition is commutative. This means that for any two vectors a, b we have

a +b = b + a.

(2) Vector addition is associative. This means that for any three vectors a, b, and c we have

(a + b) + c = a + (b + c) .
(3) 0 is neutral for addition. This means that for any vector a we have

0 + a = a.

(4) For every vector a we have
a + (−a) = 0.

(5) The number 1 is neutral for scalar multiplication. This means that for every vector a we have

1a = a.

(6) Scalar multiplication distributes over vector addition. This means that if λ is a scalar and a, b
are vectors we have

λ (a + b) = λa + λb.
(7) Addition of scalars distributes over scalar multiplication. This means that

(λ + µ)a = λa + µa.
(8) Multiplication of scalars and scalar multiplication are compatible in the following sense: if λ, µ

are scalars and a is a vector, we have

λ (µa) = (λµ) a.
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The proofs of all of these properties are straightforward, they follow from the analogous properties
of real numbers. For example for (6), we have

λ (a + b) = λ ((a1, . . . , an) + (b1, . . . , bn))
= λ (a1 + b1, . . . , an + bn))
= (λ (a1 + b1), . . . , λ (an + bn))
= (λa1 + λb1, . . . , λ an + λbn)
= (λa1, . . . λ an) + (λb1, . . . , λ bn)
= λ (a1, . . . an) + λ (b1, . . . , bn)
= λa + λb.

There are many other properties that we could have listed. The importance of these particular eight
is that they are sufficient to prove any algebraic property of vectors that we’ll ever need. If we knew
nothing else about vectors except that there are two operations that satisfy these eight properties we
still would be able to prove anything we need to develop our theory.

We list now some useful properties that follow from these “axioms”.

Theorem 4.4 (Some consequences of the axioms). We have:

● For all vectors a, b the equation

a + x = b

has a unique solution.
● For any vector a

−1a = −a

● For any scalar λ we have

λ0 = 0.

● For any vector a

0a = 0.

● For scalar λ and vector a

λa = 0 ⇐⇒ λ = 0 or a = 0.

All of these properties are straightforward to prove directly from the definitions of vector addition
and scalar multiplication and we will be using them freely. We will see proofs from the axioms when
we introduce abstract vector spaces.

Recall the definitions of vector subspace (Definition 1.30 in Section 1.3.1), linear combination, linear
span, and basis (Section 3.0.2).

The following gives an alternative characterization of vector subspaces. It could be used as the
definition instead. For brevity from now on we will simply say subspace instead of vector subspace.

Theorem 4.5 (Alternative definition of Vector subspace). A subset V ⊆ Rn is a subspace if and
only if the following two properties hold:

● V ≠ ∅.
● For all λ,µ ∈ R and a,b ∈ Rn

a,b ∈ V Ô⇒ λa + µb ∈ V.

Proof. A subspace V satisfies (1) since 0 ∈ V .
Also, if λ,µ ∈ R and a,b ∈ V then by the third property listed in Definition 1.30 we have λa ∈ V

and µb ∈ V and therefore by the second property in Definition 1.30 we have λa + µb ∈ V . Thus V
satisfies (2) as well and the only if part has been proved.
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Conversely, if V satisfies the two conditions listed in the theorem then it contains the zero vector.
Indeed take any a ∈ V 20, then by the second property we have

1a + (−1)a ∈ V Ô⇒ 0 ∈ V.

Condition (2) of Definition 1.30 follows from the second property if we take λ = µ = 1 andCondition (3)
if we take λ = 1 and µ = 0. Thus V is a subspace and the if part is also proved. �

By induction we can generalize the second property as follows.

Proposition 4.6. If V is a subspace then all linear combinations of elements of V are elements of V .
That is,

λ1, . . . , λm ∈ R,v1, . . . ,vm ∈ V Ô⇒ λ1 v1 + ⋅ ⋅ ⋅ + λm vm ∈ V.

Before proceeding let’s observe that there are are two “trivial” subspaces. The whole Rn and the
set {0} that contains only the zero vector, and every subspace is between those two subspaces, in the
sense that {0} ⊆ V ⊆ Rn.

Let’s also prove the following important fact.

Theorem 4.7 (Intersection of subspaces is a subspace). If V andW are subspaces ofRn then their
intersection V ∩W is also a subspace of Rn.

Proof. We will prove that V ∩W has the two properties described in Theorem 4.5.
For the first, notice that the zero vector is in the intersection because it is in both V and W . The

intersection therefore is not empty.
For the second, if a,b ∈ V ∩W then a,b ∈ V and therefore λ,a+µb ∈ V . But we also have a,b ∈W

and therefore λ,a + µb ∈W as well. It follows that λa + µb ∈ V ∩W . �

A linear combination of one vector a is just a multiple of that vector. By convention we set that a

linear combination of zero n-vectors to be the zero vector of R̃n.

Theorem 4.8 (Linear Spans are subspaces). For any S ⊆ Rn the linear span ⟨S⟩ is a subspace of Rn.

Proof. Sketch21 For the trivial case S = ∅ we have ⟨S⟩ = {0} which is a subspace.
For non-empty S the three conditions of Definition 1.30 are satisfied because:

(1) 0 = 0a for any a ∈ S.
(2) The sumof two sums ofmultiples of elementsS is obviously also a sum ofmultiples of elements

of S.
(3) We have

λ (λ1 v1 + ⋅ ⋅ ⋅ + λnvn) = (λλ1)v1 + ⋅ ⋅ ⋅ + (λλn)vn.

�

Definition 4.9 (Basis of a subspace). We say that a set of vectors B ⊆Rn is a basis of the subspace
V if any v ∈ V can be expressed as a linear combination of vectors of B in a unique way.

We should clarify what we mean by unique in the definition above. For example we don’t consider

2v1 + 3v1 − v2, 5v1 − v2

different ways of expressing the the same vector as a linear combination of v1 and v2. We also
don’t consider

−3v1 + 2v2 + 0v3, −3v1 + 2v2 + 0v4

20We can do this because V is not empty.
21Fill the details.
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to be different.
Two linear combinations are considered different if after we rewrite them so that every vector

appears only once (i.e. after we combine “like terms”) then there is at least one vector that appears
with different coefficients.

Example 4.10. The fundamental example of a basis is the standard basis ofRn. To see that it is indeed
a basis notice that if c = (c1, . . . , cn) then

c = c1 e1 + ⋅ ⋅ ⋅ + cn en
so the components of c are the coefficients of an expression of c as a linear combination of elements
of {e1, . . . ,en}. This is the only way to get c as a linear combination, because

λ1 e1 + ⋅ ⋅ ⋅ + λn en = (λ, . . . , λn)
and therefore

c = λ1 e1 + ⋅ ⋅ ⋅ + λn en Ô⇒ (c1, . . . , cn) = (λ, . . . , λn).
In general to prove that a set of vectors v1, . . . ,vm forms a basis of a subspace V we have to prove

that the vector equation

x1 v1 +⋯xm vm = c

has a unique solution for all c ∈ V . As we have seen this vector equation is equivalent to the system

Ax = c

where A is the matrix with columns v1, . . . ,vm.
In the case of the standard basis we have the n × n matrix

⎛⎜⎜⎜⎝

1 0 . . . 0

0 1 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . 1

⎞⎟⎟⎟⎠
and by Theorem 1.37 we conclude that the system has a unique solution for all c.

Example 4.11. The vectors

v1 = (1,0,2,3),
v2 = (−1,2,3,1),
v3 = (1,4,−5,0),
v4 = (0,1,−2,1).

form a basis of R4. Indeed the matrix with columns these vectors is

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

2 3 −5 −2
3 1 0 1

⎞⎟⎟⎟⎠
We now obtain an echelon form. We first add −2 times the first row to the third, and −3 the first

row to the fourth. Then we add 5 times the second row to −2 times the second, and 2 times the second
row to the fourth. Then we add 3 times the fourth row to the third.

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

0 5 −7 −2
0 4 −3 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

0 0 34 1

0 0 −11 −1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

0 0 1 −2
0 0 −11 −1

⎞⎟⎟⎟⎠
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We finally add 11 times the third row to the fourth.

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

0 0 1 −2
0 0 0 −23

⎞⎟⎟⎟⎠
Since there is no zero rows we know that the system and no free columns we conclude that the

system has a unique solution for all c. Therefore {v1,v2,v3,v4} is a basis of R4.

All the bases ofRn we have encountered so far have exactly n vectors. The systems we obtain when
we try to express an n-vector as a linear combination of a set with m elements have n equations and
m variables. Thus if we have a set with more than n vectors the system will have free variables so
it’s impossible to have unique solution. If on the other hand, there are less than n vectors the echelon
form of the matrix will have zero rows and therefore it won’t be consistent for all c.

In other words if we have more than n vectors we can’t have uniqueness of solutions, and if we
have less than n vectors we can’t always have existence of solutions.

So we proved the following theorem, that as we will see, says that the dimension of Rn is n.

Theorem 4.12. All bases of Rn have exactly n elements.

Of course, not all sets with n elements are bases of Rn. In Section 3.0.2 we show that if two vectors
are colinear then they don’t form a basis.

Question 4.13. How about subspaces though? How can we find a basis of a subspace? Does any
subspace of Rn have a basis? If so do all bases of a subspace have the same cardinality?

We’ll answer these questions in the next class. As a preparation work through the following exam-
ple.

Example 4.14. Consider the vectors v = (1,0,−1), u = (2,1,0), andw = (−1,1,3). When is a vector
c = (c1, c2, c3) in the linear span of these three vectors?

The question again reduces to solving the vector equation

xv + yu + zw = c,

or equivalently, the system with augmented matrix

⎛⎜⎝
1 2 −1
0 1 1

−1 0 3

RRRRRRRRRRRRR
c1
c2
c3

⎞⎟⎠
Adding the first row to the third, and then subtracting twice the second row from the third we get

the following echelon form:

⎛⎜⎝
1 2 −1
0 1 1

0 0 0

RRRRRRRRRRRRR
c1
c2

c1 − 2 c2 + c3

⎞⎟⎠ .
So in order for the system to have solutions it is necessary to have

(16) c1 − 2 c2 + c3 = 0 ⇐⇒ c3 = −c1 + 2 c2.

When that condition is satisfied we can discard the third row, and then subtract twice the second
row from the first we get:
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(1 0 −3
0 1 1

∣ −c1 + 2 c2
c2

) .
So the condition (16) is also sufficient.
We conclude then that

⟨v,u,w⟩ = {(c1, c2,−c1 + 2 c2) ∶ c1, c2 ∈ R} .
Observe now that,

(c1, c2,−c1 + 2c2) = c1(1,0,−1) + c2(0,1,2) = c1 v + c2 a.
So

⟨v,u,w⟩ = ⟨v,a⟩ .
Let’s express a as a linear combination of v,u,w. The reduced echelon form tells us how to do so.

a = (3 z − 2)v + (−z + 1)u + zw
where z is any real number. Taking z = 0 we get

a = −2v +u

while taking z = 1 we get

a = v +w.

5. Linear dependence, Dimension

Let’s take a closer look at Example 4.14. Let

V = ⟨v,u,w⟩
be the linear span of the vectors defined there. We’ll look for a basis of V .

Before proceeding we introduce the term spanning subset.

Definition 5.1. Let V ⊆ Rn be a vector subspace. We say that a subset S ⊆ V is a spanning subset of
V (or simply, when V is understood, spanning) if

V = ⟨S⟩ ,
i.e. every vector in V is a linear combination of vectors from S.

A spanning subset B of V is said to be a basis of V if every vector of V can be written as a linear
combination of vectors from B in a unique way.

So if S = {v,u,w} then S is a spanning subset of V . However S is not a basis, because as we saw
in Example 4.14 the vector a = (0,1,2) is equal to two different linear combinations of vectors of S,
namely

(17) a = −2v + u and a = v +w.

An other spanning set of V is B = {v,a} so let’s check if this set is a basis. We want to check
whether the vector equation

xv + y a = c
has a unique solution for all c ∈ V . Equivalently, we want to check whether the linear system

⎛⎜⎝
1 0

0 1

−1 2

⎞⎟⎠ (
x

y
) = ⎛⎜⎝

c1
c2
c3

⎞⎟⎠ ,
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has a unique solution for all c ∈ V . By Theorem 1.37 this happens when the homogeneous system

⎛⎜⎝
1 0

0 1

−1 2

⎞⎟⎠ (
x

y
) = ⎛⎜⎝

0

0

0

⎞⎟⎠ ,
has a unique solution. The reduced echelon form of the matrix is

⎛⎜⎝
1 0

0 1

0 0

⎞⎟⎠ ,
and therefore the homogeneous system indeed has only the trivial solution. We conclude then that
the set B = {v,a} is a basis of V .

Once we find a basis we can find many more. For example, the set B′ = {v,w} is also a basis. This
follows from the fact that B is a basis and the second equation in (17).

Claim 5.2. B′ is a basis of V .

Proof. The proof consists of two steps.

Step 1: B′ is a spanning subset of V . Let c ∈ V then since B is a basis there are x, y ∈ R such that

c = xv + y a.

But since a = v +w we have

c = xv + y a

= xv + y (v +w)
= xv + y v + yw

= (x + y)v + yw.

So c can be expressed as a linear combination of vectors from B′.

Step 2: We now need to prove that any c ∈ V can be expressed as a linear combination of elements
of B′ in a unique way. So we have to prove that if two linear combinations of v,w are equal then
they are the same linear combination. In other words, we need to prove that if

(18) x1 v + y1w = x2 v + y2w

then
x1 = x2 and y1 = y2.

We will again use the fact that the uniqueness property holds for B. Now sincew = a−v we have

x1 v + y1w = x1 v + y1 (a − v)
= (x1 − y1)v + y1 a.

and similarly
x2 v + y2w = (x2 − y2)v + y2 a.

So if Equation (18) holds we have

(x1 − y1)v + y1 a = (x2 − y2)v + y2 a.
So we have two linear combinations of v,a that represent the same vector. Since B is a basis this
implies that the coefficients of these two linear combinations have to be equal. So we have

x1 − y1 = x2 − y2 and y1 = y2 Ô⇒ x1 = x2 and y1 = y2.

�
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Notice that the above will work for any v,a,w. If {v,a} is a basis of a subspace V and a = v +w
then {v,w} is also a basis of V .

Exercise. Let v,u,w,a ∈ Rn and V a vector subspace of Rn such that the following hold:

(1) {v,a} is a basis of V .
(2) a = v +w.
(3) a = −2v +u.

Prove that any two of those four vectors form a basis. That is, prove that each one of

{v,w} , {v,u} , {u,w} , {a,w} , {a,u}
is also a basis.

Consider again a general vector subspace of V ⊆ Rn, and let B be a spanning set of V . In order for
B to be a basis every vector of V has to have a unique expression as a linear combination of elements
of B. In particular, the zero vector which is an element of V , has to have only one representation as
a linear combination of elements of B. But we can easily find a linear combination that represents 0,
namely the one where all coefficients are 0. Therefore if there is a non-trivial linear combination

λ1 v1 +⋯+ λm vm = 0,

with v1, . . . ,vm ∈ B and coefficients λ1, λ2, . . . , λm not all 0, then B is not a basis.
It turns out that that’s the only way to prevent a spanning set from being a basis. If the zero vector

can be expressed as a linear combination of vectors from B in only one way, then every other vector
of V has also a unique expression. To see this let’s assume that for some v ∈ V we have two different
expressions

v = λ1v1 + . . . + λk vk

and
v = µ1u1 + . . . + µmum,

where λi ∈ R, vi ∈ B for i = 1, . . . , k and µj ∈ R, uj ∈ B for j = 1, . . . ,m. Then, by adding terms of
the form 0 ⋅ uj to the first expression and terms of the form 0vi to the second if necessary, we can
get two linear combinations where exactly the same vectors from B occur. Let’s then assume that we
have two linear combinations

v = λ1w1 + . . . + λℓwℓ,

and
v = µ1w1 + . . . + µℓuℓ,

where for some k, λk ≠ µk. But then subtracting we have

0 =
ℓ

∑
i=1

(λi − µi)wi

and the k-th term λk−µk ≠ 0. So we got a non-trivial linear combination representing the zero vector.
We have thus proved the following Lemma.

Lemma 5.3. Let S ⊆ Rn be any set. If there are two linear combinations of elements from S with
different coefficients represent the same vector then the zero vector is represented by a non-trivial linear
combination of elements from S.

Definition 5.4 (Linearly dependent and linearly independent sets). A non-trivial linear combi-
nation that represents the zero vector, that is an equation of the form

m

∑
i=1

λi vi = 0

with λi ≠ 0 for some i ∈ {1, . . . ,m}, is called a linear dependency condition among v1, . . . ,vm.
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If there is a linear dependency condition among some elements of a subset S ⊆ Rn we say that S is
linearly dependent.

If S is not linearly dependent we say that it is linearly independent.

With this terminology in place we can summarize the results of our discussion so far in the follow-
ing theorem.

Theorem 5.5. Let V be a vector subspace of Rn and B ⊆ V . Then B is a basis of V if and only if it is
spanning and linearly independent.

Theorem 5.6. The following hold.

(1) If 0 ∈ S then S is linearly dependent.
(2) If S = {v} then S is linearly independent if and only if v ≠ 0.
(3) If S = {v,w} then if and only if vλw or wλv for some scalar λ.
(4) If S is linearly independent and v1, . . . ,vm are distinct elements of S then v1 cannot be expressed

as a linear combination of v2, . . . ,vm.
(5) If S ⊆ S′ and S is linearly dependent then S′ is linearly dependent as well.
(6) If S ⊆ S′ and S′ is linearly independent then S is linearly independent as well.

Proof. (1) We have 420 = 0 an expression of the zero vector as a non-trivial linear combination
of vectors from S.

(2) By Item 1 {0} is linearly dependent. Conversely, if v ≠ 0 then

λv = 0 ⇐⇒ λ = 0.

Thus if v ≠ 0 only the trivial linear combination is equal to the zero vector.
(3) Since v1 = 1v1 expresses v1 as a linear combinations of elements of S, there is no other linear

combination.
(4) A linear dependency among elements of S is also a linear dependency among elements of S′

because all elements of S are also elements of S′.
(5) This is the contra-positive of the previous item.

�

Theorem 5.7. If V has a basis B with cardinality d then any linearly independent subset of V with d

elements is also a basis of V .

The idea of the proof is contained in the proof of Claim 5.2. IfB′ is linearly independent subset of V
with d elements we will construct a sequence of sets B0,B1,B2, . . . ,Bd, where B0 = B and Bd = B′,
and prove that all of them are bases. B1 is obtained from B by replacing one element, say v1 with
an element from B′. B2 is obtained by B1 by replacing one more element of B by an element of B′.
At every step we get a basis Bi that has i elements from B′ and the remaining d − i from B. At the
next step to get Bi+1 we replace one of those elements of Bi that are in B with a new element of B′.
Eventually all the elements of B have been replaced by the elements of B′ and since at every step we
still get a basis, we conclude that B′ is a basis.

We first prove the following Lemma.

Lemma 5.8. If B = {v1, . . . ,vd} is a basis of V and w1 ∈ V is such that

w1 = λ1 v1 + λ2 v2 + ⋅ ⋅ ⋅ + vd

with λ1 ≠ 0 then B′ = {w1,v2 . . . ,vd} is also a basis.
Proof. Since λ1 ≠ 0 we can express v1 as a linear combination of w,v2, . . . ,vn:

(19) v1 =
1

λ1

w1 −
λ2

λ1

v2 −⋯ −
λd

λ1

vd.
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Let be an arbitrary element of V . Then we can write c as a linear combination

c = µ1 v1 + µ2 v2 +⋯+ µd vd.

Substituting the RHS of Equation (19) for v1 and collecting terms gives

c =
µ1

λ1

w1 + (µ2 −
λ2

λ1

) v2 +⋯ + (µd −
λd

λ1

) vd.
Therefore B′ is spanning.

To prove that B′ is also linearly independent, consider a linear dependency

µ1w1 + µ2 v2 +⋯+ µd vd = 0.

Substituting w1 with its expression in terms of B we have

µ1 λ1 v1 + (µ1 λ2 + µ2)v2 +⋯+ (µ1 λd + µd)vd = 0.

Since B is a basis all the coefficients in this linear dependency have to be 0. Since λ1 ≠ 0 we get from
the coefficient of v1 that µ1 = 0. Substituting in the other coefficients then gives µi = 0 for i = 2, . . . , d
as well. �

Remark 5.9. Lemma 5.8 says that we can replace any element v ∈ B by w as long as v appears with
non-zero combination in the expression of w as linear combination of elements of B. For, we can
order the elements of B so that v comes first.

Proof of Theorem 5.7. Let B′ be a linear independent subset of V with d elements. Chose an arbitrary
order of B′, say B′ = {w1,w2, . . . ,wd}.

Now expressw1 as a linear combination of elements ofB. SinceB′ is linearly independent,w1 ≠ 0,
and so at least one element of B will appear with non-zero coefficient in that linear combination, call
that element v1. By Lemma 5.8 the set

B1 = (B ∖ {v1}) ∪ {w1} ,
i.e. the set obtained from B by replacing v1 with w1, is a basis.

Next express w2 as a linear combination of the elements of B1. In that linear combination at least
one element ofB appears with non-zero coefficient, because otherwisew2 would be a multiple ofw1,
impossible since B′ is linearly independent. Choose one such element, say v2, and let B2 be the set
obtained by B1 by replacing v2 with w2, i.e.

B2 = (B1 ∖ {v2}) ∪ {w2} = (B ∖ {v1,v2}) ∪ {w1,w2} .
Again by Lemma 5.8, B2 is a basis.

Next, assuming d > 2, we express w3 as a linear combination of elements of B2. In that linear
combination at least one element of B appears with non-zero coefficient, otherwise w3 is a linear
combination of w1 and w2, impossible since B′ is linearly independent. Then, again by Lemma 5.8,

B3 = (B2 ∖ {v3}) ∪ {w3}
is a basis.

We continue this procedure until all the elements of B have been replaced. At the k-th step we
choose one of the remaining elements of B, say vk, that appears with non-zero coefficient in the
expression of wk as a linear combination of elements of Bk−1. Since B′ is linearly independent, such
vk must exist. We then define Bk via

Bk = (Bk−1 ∖ {vk}) ∪ {wk} .
By Lemma 5.8, Bk is a basis.

After d steps we will get Bd = B′ and therefore B′ is a basis. �

As a corollary we have the following fundamental theorem.
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Theorem 5.10 (Subspaces have well-defined dimension). All bases of a vector subspace have the
same cardinality.

Proof. Let B and B′ be two bases of V . We first remark that both B and B′ are finite sets. Indeed a
subset of Rn with more than n elements is linearly dependent22.

If the cardinality of B is smaller than the cardinality of B′, say B has d elements while B′ has
d + k elements with k > 0, by Theorem 5.7, any subset S of B′ with d elements would be a basis of
V , and thus each of the remaining k elements of B′ would be a linear combination of elements of B′,
contradicting Item (4) of Theorem 5.6.

Similarly the cardinality of B′ cannot be smaller than the cardinality of B. Therefore B and B′

have the same cardinality. �

One final question remains though: Does any subspace have a basis? The answer is yes. To see
why let’s prove the following theorem.

Theorem 5.11 (A maximal independent subset is a basis). A linearly independent subset B of V
is a basis if and only if every subset of V that is a proper superset of B is linearly dependent. In other
words, a linearly independent subset of V is a basis of V if and only if, for any S we have

(20) B ⊊ S ⊆ V Ô⇒ S is linearly dependent.

Proof. LetB = {b1, . . . ,bd} be a basis of V , and v ∈ V ∖B, i.e. an element of V not inB. ThenB∪{v}
is linearly dependent. Indeed there are scalars λ1, . . . , λd such that

v = λ1 b1 +⋯+ λdbd.

But then

−1v + λ1 b1 +⋯+ λdbd = 0.

So 0 can be expressed as a non-trivial linear combination of B ∪ {v}, and thus B ∪ {v} is linearly
dependent. Now if

B ⊊ S ⊆ V

then there is an element v ∈ S ∖B and for such a v

B ∪ {v} ⊆ S
and thus S has a linearly dependent subset. By Item (5) of Theorem 5.6 we conclude that S is linearly
dependent.

Conversely, assume that (20) holds. To prove that B is a basis we need to prove that it is spanning.
Consider then v ∈ V , if v ∈ B then clearly v is a linear combination of elements of B. Assume then
that v ∉ B, in which case B ∪ {v} is linearly independent. Therefore there are λ,λ1, . . . , λd ∈ R such
that

λv + λ1 b1 +⋯+ λdbd = 0

with λ,λ1, . . . , λd not all 0. Then λ ≠ 0 because otherwise we would have a linear dependency among
the elements of B, and therefore

v = −
λ1

λ
b1 −⋯−

λd

λ
bd,

and we expressed v as a linear combination of the elements of B. Thus, all elements of V can be
expressed as linear combinations of the elements of B. �

We now can prove that every vector subspace has a basis.

22Why?
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Theorem 5.12 (Every subspace has a basis). We first consider V = {0}. Then B = ∅, the empty set,
is a basis of V . Indeed ∅ is linearly independent, vacuously. The only set S that satisfies the hypothesis
of (20) is V itself, and is linearly dependent.

If V ≠ {0} we can find a basis as follows. Chose any v1 ∈ V with v1 ≠ 0. Then S1 ∶= {v1} is linearly
independent. If ⟨S1⟩ = V then S1 is a basis. If not chose a second vector v2 ∈ V not in ⟨S⟩ and consider
the set S2 ∶= {v1, v2}. Then S2 is linearly independent otherwise v2 would be in ⟨S1⟩. If ⟨S2⟩ = V then
S2 is a basis of V .

We continue this way until we get a linearly independent set Sd with ⟨Sd⟩ = V . This process cannot
continue for ever because we know that we can’t choose more than n linearly independent vectors, so we
can continue for at most n steps. This means that after a finite number of steps, say d, we won’t be able
to find any vectors in V that are not in the linear span of Sd. The set Sd then will be a basis of V .

We end this section with the definition of the very important concept of dimension.

Definition 5.13. Let V be a subspace of Rn. The common cardinality of all the bases of V is called
the dimension of V and is denoted by dimV . If the dimension of V is d we also say that V is a
d-dimensional subspace of of Rn.

A one-dimensional subspace is sometimes called a line and a two dimensional subspace a plane.

5.1. How to find a basis. We give a few examples that illustrate the concepts we’ve described so far,
and develop a method for finding a basis of a subspace if we have a finite spanning set.

Example 5.14. Which of the following subsets of R4 are vector subspaces?

(1) V = {(a,0, b,0) ∶ a, b ∈ R}.
(2) V = {(a,1, b,0) ∶ a, b ∈ R}.
(3) V = {(a − 2b,3c, b − a, d) ∶ a, b, c, d ∈ R}.
(4) V = {(a, b, c, d) ∶ a, b, c, d ∈ R with d > 0}.

Answer. (1) This set is a subspace. To prove this we will prove that the two conditions in Theo-
rem 4.5 are satisfied.
(a) V ≠ ∅ because by setting, for example a = 0, b = 0 we have that (0,0,0,0) ∈ V .
(b) Let v,w ∈ V and λ,µ ∈ R. Then for some a1, b1, a2, b2 ∈ R we have

v = (a1,0, b1,0), w = (a2,0, b2,0).
Then

λv + µw = λ (a1,0, b1,0) + µ (a2,0, b2,0)
= (λa1,0, λ b1,0) + (µa2,0, µ b2,0)
= (λa1 + µa2,0, λ b1 + µb2,0) .

Therefore λv+µw = (a,0, b,0) where a = λa1+µa2, and b = λb1+µb2 are real numbers.
It follows that

λv + µw ∈ V.

(2) V is not a vector subspace since 0 ∉ V .
(3) V is a vector subspace. We can proceed as in Item (1) and show that the two properties of

Theorem 4.5 are satisfied23. An other method is to show that V is the linear span of a subset
of R4. Then by Theorem 4.8 V is a subspace24.

23Do this
24Use this method for Item (1). That is prove that the set in Item 1 is the linear span of a certain set of vectors.
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For all real numbers a, b, c, d we have

(a − 2b,3c, b − a, d) = (a,0,−a,0) + (−2b,0, b,0) + (0,3c,0,0) + (0,0,0, d)
= a (1,0,−1,0) + b (−2,0,1,0) + c (0,3,0,0) + d (0,0,0,1).

Thus V consists of all linear combinations of the vectors

(1,0,−1,0), (−2,0,1,0), (0,3,0,0), (0,0,0,1)
and is therefore the linear span of these vectors.

It follows by Theorem 4.8 that V is a subspace of R4.
(4) V is not a vector subspace because it is not closed under scalar multiplication. For example(0,0,0,1) ∈ V but −1 (0,0,0,1) = (0,0,0,−1) ∉ V .

�

Example 5.15. Find a basis for each of the sets in Example 5.14 that is a subspace.

Solution. I will do Item (3), and leave Item (1) as an exercise.
Letv1 = (1,0,−1,0), v2 = (−2,0,1,0), v2 = (0,3,0,0), andv4 = (0,0,0,1). SinceS = {v1,v2,v3,v4}

is a spanning set we check if S is linearly independent. If it is then it forms a basis.
S is linearly independent if and only if the homogeneous system Ax = 0, where A is the matrix

with columns v1,v2,v3, and v4, has a unique solution. We therefore have to find an echelon form of
A.

A =

⎛⎜⎜⎜⎝

1 −2 0 0

0 0 3 0

−1 1 0 0

0 0 0 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 −2 0 0

−1 1 0 0

0 0 3 0

0 0 0 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 −2 0 0

0 −1 0 0

0 0 3 0

0 0 0 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 3 0

0 0 0 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
.

Since there are no free columns it follows that the homogeneous system has only the trivial solution
and therefore S is linearly independent. Thus S is a basis of V . �

Example 5.16. Let S = {v1,v2,v3,v4} ⊆ R5, where

v1 = (1,1,1,2,3),
v2 = (1,2,−1,−2,1)
v3 = (3,5,−1,−2,5)
v4 = (1,2,1,−1,4).

Find a basis for V = ⟨S⟩. What is dimV ?

Solution. We again consider the matrix with columns the vectors of S.

A =

⎛⎜⎜⎜⎜⎜⎝

1 1 3 1

1 2 5 2

1 −1 −1 1

2 −2 −2 −1
3 1 5 4

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 1 3 1

0 1 2 1

0 −2 −4 0

0 −4 −8 −3
0 −2 −4 1

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 1 3 1

0 1 2 1

0 0 0 2

0 0 0 1

0 0 0 3

⎞⎟⎟⎟⎟⎟⎠
∼
⎛⎜⎝
1 1 3 1

0 1 2 1

0 0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 1 0

0 1 2 0

0 0 0 1

⎞⎟⎠ .

Since the reduced echelon form has free columns the homogeneous system Ax = 0 has non-trivial
solutions. Each non trivial solution gives a non-trivial linear combination of S that is equal to 0.

The solution set is {(−t,−2t, t,0) ∶ t ∈ R} so by setting t = −1 we get x1 = 1, x2 = 2, x3 = −1, x4 = 0.
Thus we have the following non-trivial linear dependency

v1 + 2v2 − v3 = 0,
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and it follows that

v3 = v1 + 2v2.

We can then throw away v3 and still have a spanning set. That is,

V = ⟨v1,v2,v4⟩ .
Now, B ∶= {v1,v2,v4} is linearly independent. Indeed the the first,second, and fourth columns, of
the reduced echelon form of A give the matrix

⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ .
This matrix is therefore the reduced echelon form of the matrix with columns the elements of B.

Since there are no free columns only the trivial linear combination of B gives the zero vector.
Since B is a basis of V , and B has three elements we have dimV = 3. �

Notice that in the previous example it turned out that the vectors that correspond to the basic
columns actually form a basis of the linear span. This is always the case, and the reason that we call
non-free columns basic.

Let’s see one more example.

Example 5.17. Find a basis and the dimension of the linear span of the vectors

v1 = (3,0,6,3), v2 = (−7,3,−16,−9),
v3 = (8,−6,20,12), v4 = (−5,6,−14,−9),
v5 = (8,4,14,6), v6 = (9,−5,24,15).

Solution. The matrix with columns these vectors is:

A =

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5
6 −16 20 −14 14 24

3 −9 12 −9 6 15

⎞⎟⎟⎟⎠
.

To get an echelon form of A we start by adding −2 times the first row to the third, subtracting the
first row from the fourth. Then we subtract the third row from the fourth and that turns the fourth
row in to a zero row and we discard it. Then we add 2 times the second row to 3 times the third, and
divide the last row by 2

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5
0 −2 4 −4 −2 6

0 −2 4 −4 −2 6

⎞⎟⎟⎟⎠
∼
⎛⎜⎝
3 −7 8 −5 8 9

0 3 −6 6 4 −5
0 −2 4 −4 −2 6

⎞⎟⎠ ∼
⎛⎜⎝
3 −7 8 −5 8 9

0 3 −6 6 4 −5
0 0 0 0 1 4

⎞⎟⎠ .

From the echelon form we see that the basic columns are the first, second and fifth. From the
discussion above it follows that a basis of the linear span is B = {v1,v2,v5}. Since there are three
vectors in the basis we have that the dimension of the linear span is 3. �

Example 5.18. We use the same notation as in Example 5.17.

(1) Express each of the “free” vectors v3,v4,v6 as a linear combination of the elements of B.
(2) Find a fourth vector w to complete B to a basis of R4. In other words, the set {w,v1,v2,v5}

should be a basis of R4.
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Solution. (1) We need to solve the systems

B x = v3, B x = v4, B x = v6,

where B is the matrix with columns the basic vectors v1,v2,v5, that is

B =

⎛⎜⎜⎜⎝

3 −7 8

0 3 4

6 −16 14

3 −9 6

⎞⎟⎟⎟⎠
.

Since all these systems have the same coefficients to solve the we will apply the same row
operations to A. Instead of considering three different augmented matrices, we augment A
with three columns and operate at all of them at once. So we’ll get the reduced echelon of the
following matrix:

⎛⎜⎜⎜⎝

3 −7 8

0 3 4

6 −16 14

3 −9 6

RRRRRRRRRRRRRRRRRR

8 −5 9

−6 6 −5
20 −14 24

12 −9 15

⎞⎟⎟⎟⎠
.

Notice that this matrix has the same columns as A of Example 5.17, but permuted namely
the fifth column has been moved to the third place, and the third and fourth to the fourth
and fifth place, respectively. So if we apply the row operations of Example 5.17 we’ll get the
reduced form of A with columns permuted the same way, that is the following matrix

⎛⎜⎝
3 −7 8

0 3 4

0 0 1

RRRRRRRRRRRRR
8 −5 9

−6 6 −5
0 0 4

⎞⎟⎠ .
The reduced echelon form of the last matrix is25

⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
−2 3 −24
−2 2 −7
0 0 4

⎞⎟⎠ .
Therefore,

v3 = −2v1 − 2v2

v4 = 3v1 + 2v2

v6 = −24v1 − 7v2 + 4v5.

(2) Any linearly independent subset of R4 forms a basis. Therefore the set {w,v1,v2,v5} will be
a basis if (and only if) it is linearly independent, that is if and only if w ∉ ⟨v1,v2,v5⟩. So we
need to find a vectorw so that the system

B x = w

has no solutions. By Theorem 1.37 this happens if and only if the echelon form of its augmented
matrix contains a row of the form

(0 0 0 ∣ c)
with c ≠ 0. Now recall that in the process of obtaining the echelon form of A we discarded

a zero row. This happened after applying the following row operations:

25Do the calculations and verify this.
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(a) Add −2 times the first row to the third.
(b) Add the first row to the fourth.
(c) Subtract the third row from the fourth.
After those operations the matrix B becomes

⎛⎜⎜⎜⎝

3 −7 8

0 3 4

0 −2 −2
0 0 0

⎞⎟⎟⎟⎠
.

So we have to choose a vectorw that the row operations listed above transform it to a vector
w′ with non zero fourth coordinate. The simplest choice for such a w′ is e4. Assume then that
w is such that after these three row operations the augmented matrix of the system B x = w

is

⎛⎜⎜⎜⎝

3 −7 8

0 3 4

0 −2 −2
0 0 0

RRRRRRRRRRRRRRRRRR

0

0

0

1

⎞⎟⎟⎟⎠
.

To recoverw we have to reverse the effect of the rows operations. In other words, we need
to apply to e4 the following operations:
(a) Add the third row to the fourth.
(b) Add the first row the the fourth.
(c) Add 2 times the first row to the third.
None of these reverse operations change e4 though. Thus w = e4. So the set

{w,v1,v2,v5}
is a basis of R4.

�

Basis of linear span

To find a base of the linear span of k vectors v1,v2, . . . ,vk ∈ R
n

(1) Create an n × k matrix A that has the given vectors as columns

A = (v1 v2 . . .vk) .
(2) Find an echelon form for A.
(3) A basis consists of the columns ofA that correspond to the basic columns of the echelon

form.
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6. Matrices as transformations

We have already introduced the notation Ax where A is anm × n matrix andx is an n-vector. We
were writing a system of m equations with n variables as

(21) Ax = c,

where A is the matrix with entries the coefficients of the equations, x is the column vector of the
variables, and c is the column vector of constants.

If we expand the LHS we get an equation of two m-vectors namely,

(22)

⎛⎜⎜⎜⎝

a11x1 + a12x2 +⋯+ a1nxn

a21x1 + a22x2 +⋯+ a2nxn

⋮
am1x1 + am2x2 +⋯+ amnxn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

c1
c2
⋮
cn

⎞⎟⎟⎟⎠
.

Before proceeding, let’s officially define the product of a matrix and a column vector.

Definition 6.1. If A is anm×n matrix and x an n×1 column vector the product Ax is defined to be
the LHS of Equation (22). The result is thus an m × 1 column vector whose k-th row consists of the
element

ak1x1 + ak2x2 + ⋅ ⋅ ⋅ + aknxn =
n

∑
i=1

akixi.

Remark 6.2. Notice: in order for the product Ax to be defined the dimensions have to match, the
number of columns of A has to be equal to the number of rows of x.

When the dimensions match, every row of A has as many entries as x and the result has as many
rows as A. Furthermore each row of Ax is the product of the corresponding row of A with x.

We can think of Ax as a generalization of dot product of two vectors as defined in Vector Calculus.

Example 6.3. If we compute the product of a 1 × 3 matrix (a 3-dimensional row vector) and a 3 × 1
column vector, the result will be a 1 × 1 column matrix.

(2 5 −1) ⎛⎜⎝
−3
5

7

⎞⎟⎠ = (2 ⋅ (−3) + 5 ⋅ 5 + (−1) ⋅ 7) = (12) .
In calculus classes the standard basic vectors ofR3 are often denoted by i, j,k. Now if v = 2 i+5 j−k

and u = −3 i + 5 j + 7k then
v ⋅ u = 12.

So the matrix product of a row vector with a column vector of the same dimension is their dot
product considered as a 1 × 1 matrix.

Ax via dot product

If r1, . . . , rm are the rows of the matrix A then Ax has rows r1 x, . . . , rm x. If we write A as a
column vector of row vectors then we have

⎛⎜⎜⎜⎝

r1
r2
⋮
rm

⎞⎟⎟⎟⎠
x =

⎛⎜⎜⎜⎝

r1 x

r2 x

⋮
rm x

⎞⎟⎟⎟⎠
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Example 6.4. Calculate the product Ax if defined.

(1) A =
⎛⎜⎝
1 2 0

−2 5 1

0 6 1

⎞⎟⎠ , x =
⎛⎜⎝
3

−1
2

⎞⎟⎠
Answer. A is a 3×3matrix and x is a 3×1 column vector so the product is defined. We calculate
the result row by row:

Ax =
⎛⎜⎝
1 ⋅ 3 + 2 ⋅ (−1) + 0 ⋅ 2
−2 ⋅ 3 + 5 ⋅ (−1) + 1 ⋅ 2
0 ⋅ 3 + 6 ⋅ (−1) + 2 ⋅ 2

⎞⎟⎠ =
⎛⎜⎝
1

−9
−2

⎞⎟⎠
�

(2) A = (−2 5 0 −7
3 4 −1 0

) , x =
⎛⎜⎝
0

π

−2

⎞⎟⎠
Answer. The product is not defined because the number of columns of A is different than the
number of rows of x: A is 2 × 4 and x is 3 × 1. �

(3) A = (−2 5 0 −7
3 4 −1 0

) , x =

⎛⎜⎜⎜⎝

0

π

−2√
3

⎞⎟⎟⎟⎠
Answer. The dimensions now match and we have

(−2 5 0 −7
3 4 −1 0

)
⎛⎜⎜⎜⎝

0

π

−2√
3

⎞⎟⎟⎟⎠
= ( −2 ⋅ 0 + 5π + 0 ⋅ (−2) − 7

√
3

3 ⋅ 0 + 4π + (−1) ⋅ (−2) + 0√3) = (5π − 7
√
3

2 + 4π
) .

�

The product Ax can be also calculated column by column. In Section 4, when we wanted to find
the linear span of a set of vectors we saw that the vector equation x1 a1 + ⋅ ⋅ ⋅ + xnan = c is equivalent
to the system Ax = c, where the columns of the matrix A are the vectors a1, . . . ,an.

Ax as linear combination of columns

If a1, . . . ,an are the columns of A, and x = (x1, . . . , xn) then
Ax = x1 a1 + ⋅ ⋅ ⋅ + xn an.

Or, if we write A as a row of column vectors

(a1 a2 . . . am)
⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠
= (x1 a1 + x2 a2 +⋯ + xnan) .
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Example 6.5. Here is an example of how to compute Ax column by column. To compute

⎛⎜⎜⎜⎝

1 3 −2 5 4

1 4 1 3 5

1 4 2 4 3

2 7 −3 6 12

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

−1
0

3

−2
5

⎞⎟⎟⎟⎟⎟⎠
we compute the linear combination of the columns of the matrix with coefficients the components of
the vector:

−1

⎛⎜⎜⎜⎝

1

1

1

2

⎞⎟⎟⎟⎠
+ 0

⎛⎜⎜⎜⎝

3

4

4

7

⎞⎟⎟⎟⎠
+ 3

⎛⎜⎜⎜⎝

−2
1

2

−3

⎞⎟⎟⎟⎠
− 2

⎛⎜⎜⎜⎝

5

3

4

6

⎞⎟⎟⎟⎠
+ 5

⎛⎜⎜⎜⎝

4

5

3

12

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

−1
−1
−1
−2

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

0

0

0

0

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

−6
3

6

−9

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

−10
−6
−8
−12

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

20

25

15

60

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

3

21

12

37

⎞⎟⎟⎟⎠
.

In this section, and for the remaining of the class, we view Equation (21) from a different vantage
point. We think of it as defining a function with domain Rn and codomain Rm. To emphasize this
new point of view let us rewrite it as

(23) y = Ax.

and consider y the dependent and x the independent variable.
If we expand Equation (23) as a vector equation we get

⎛⎜⎜⎜⎝

y1
y2
⋮
ym

⎞⎟⎟⎟⎠
= x1

⎛⎜⎜⎜⎝

a11
a21
⋮

am1

⎞⎟⎟⎟⎠
+ x2

⎛⎜⎜⎜⎝

a12
a22
⋮

am2

⎞⎟⎟⎟⎠
+⋯+ xn

⎛⎜⎜⎜⎝

a1n
a2n
⋮

amn

⎞⎟⎟⎟⎠
Finally, denoting the column vectors by a1,⋯,an we can rewrite Equation (23) as

(24) y = x1 a1 + ⋅ ⋅ ⋅ + xn an.

If f is a function we use the notation f(x) to denote the image of x under the application of the
function f . So for example if f is the function

f ∶ RÐ→ R, x z→ x2 + 3,

then f(2) = 7 because f maps 2 to 7.
We can think of the notation Ax as a shorthand of A(x), it’s the image of x under the function

A, we just omit the parenthesis. This may seem strange at first, but this is what we usually do with
functions of several variables, for example we write

f(x, y, z) = x2 + y2 − 3xz

for a function from R3 to R. But elements of R3 are triples (x, y, z) so if we were really using the
functional notation f(⋅) we would have written

f ((x, y, z)) = x2 + y2 − 3xz.

Nobody does that!

Definition 6.6 (Matrices as linear transformations). Anm×nmatrix with real numbers as entries
determines a function

A∶ Rn
Ð→ R

m, x z→ Ax,

that we call the linear function associated with A, or the linear function induced by A
We use the same symbol for the matrix and the associated linear function.
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The concept of a function plays a central role in mathematics and there are several names used to
signify a function, for example function, map, mapping, correspondence, transformation, operator, . . . .
There are different connotations for each of these terms but we will consider them as synonyms. In
these notes besides the term “linear function” we will often use the terms “linear transformation” and
“linear map”.

Example 6.7 (The zero matrix). Them×n matrix with all entries 0 is called the zerom×n matrix
and is denoted by Omn, or when no confusion is likely, O. It induces the zero linear function, for all
vectors x

Ox = 0.

Example 6.8. Consider the 2 × 3 matrix

M = (1 −2 4

2 0 −1) .
Let’s find formulas for the the function M ∶ R3

Ð→ R2. We have:

(1 −2 4

2 0 −1)
⎛⎜⎝
x

y

z

⎞⎟⎠ = (
x − 2y + 4z
2x − 3z ) .

So we have

M(x, y, z) = (x − 2y + 4z,2x − 3z).
In Section 1.3.1 we proved (see Theorem 1.31) that the function associated with a matrix has two

important properties, it maps the sum of two vectors to the sum of their images and the the product
of a scalar λ and a vector to the product of λ and the image of the vector. We call functions with those
properties linear functions so Theorem 1.31 says that the functions defined by matrices are linear.

Definition 6.9 (Linear function). A function

T ∶ Rn
Ð→ R

m

is said to be linear if it enjoys the following two properties.

(1) It respects vector addition. This means that for any two vectors v,w ∈Rn we have

T (v +w) = T (v) + T (w).
(2) It respects scalar multiplication. This means that for all λ ∈ R and v ∈ Rn we have

T (λv) = λT (v).
Example 6.10 (The identity function is linear). The identity function of Rn is denoted by In, or
when no confusion is likely, simply by I . Thus

I x = x.

The two properties of Definition 6.9 are satisfied by In. Indeed,

(1) For v,w ∈ Rn we have

I (v +w) = v +w = I v + Iw.

(2) For λ ∈ R and v ∈Rn we have

I (λ ) = λv = λI v.
Example 6.11 (Template for proving linearity or lack thereof). Let’s see a linear and a non-
linear function from R3 to R4. You should use this example as a template for proving that a function
is linear or not linear.
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(1) The function T ∶ R3
Ð→ R4 given by the formula

T (x, y, z) = (3x − 2y, x − 2y + 3z, y + z,2x + 3y − z)
is linear.

Proof. To prove that the function is linear we have to prove that it satisfies the two properties
in Definition 6.9. To prove the first property we proceed as follows:

Let v = (v1, v2, v3) and w = (w1,w2,w3) be two arbitrary vectors in R3. Then

v +w = (v1, v2, v3) + (w1,w2,w3)
= (v1 +w1, v2 +w2, v3 +w3).

We now will compute T (v + w). To make the calculations easier to read we use column
vectors. We have

T (v +w) =
⎛⎜⎜⎜⎝

3 (v1 +w1) − 2 (v2 +w2)(v1 +w1) − 2 (v2 +w2) + 3 (v2 +w2)(v2 +w2) + (v3 +w3)
2 (v1 +w1) + 3 (v2 +w2) − (v3 +w3)

⎞⎟⎟⎟⎠
On the other hand,

T (v) =
⎛⎜⎜⎜⎝

3v1 − 2v2
v1 − 2v2 + 3v3

v2 + v3
2v1 + 3v2 − v3

⎞⎟⎟⎟⎠
, T (w) =

⎛⎜⎜⎜⎝

3w1 − 2w2

w1 − 2w2 + 3w3

w2 +w3

2w1 + 3w2 −w3

⎞⎟⎟⎟⎠
.

and so

T (v) + T (w) =
⎛⎜⎜⎜⎝

(3v1 − 2v2) + (3w1 − 2w2)(v1 − 2v2 + 3v3) + (w1 − 2w2 + 3w3)(v2 + v3) + (w2 +w3)(2v1 + 3v2 − v3) + (2w1 + 3w2 −w3)

⎞⎟⎟⎟⎠
.

Rearranging the terms in each component we get

T (v) + T (w) =
⎛⎜⎜⎜⎝

(3v1 + 3w1) + (−2v2 − 2w2)(v1 +w1) + (−2v2 − 2w2) + (3v3 + 3w3)(v2 + v3) + (w2 +w3)(2v1 + 2w1) + (3v2 + 3w2) + (−v3 −w3)

⎞⎟⎟⎟⎠
.

Finally taking common factors we have

T (v) + T (w) =
⎛⎜⎜⎜⎝

3 (v1 +w1) − 2 (v2 +w2)(v1 +w1) − 2 (v2 +w2) + 3 (v2 +w2)(v2 +w2) + (v3 +w3)
2 (v1 +w1) + 3 (v2 +w2) − (v3 +w3)

⎞⎟⎟⎟⎠
= T (v +w).

Thus T respects vector addition.
To prove that T also preserves scalar multiplication we proceed similarly. Let λ ∈ R be an

arbitrary scalar, and v and arbitrary vector as above. Then λv = (λv1, λ v2, λ v3) and we have:

T (λv) =
⎛⎜⎜⎜⎝

3(λv1) − 2(λv2)(λv1) − 2 (λv2) + 3 (λv3)(λv2) + (λv3)
2 (λv1) + 3 (λv2) − (λv3)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

λ (3 v1 − 2 v2)
λ (v1 − 2 v2 + 3 v3)

λ (v2 + v3)
λ (2 v1 + 3 v2 − v3)

⎞⎟⎟⎟⎠
= λ

⎛⎜⎜⎜⎝

3 v1 − 2 v2
v1 − 2 v2 + 3 v3

v2 + v3
2 v1 + 3 v2 − v3

⎞⎟⎟⎟⎠
= λT (v).
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Therefore T respects scalar multiplication as well. Thus, T is linear. �

(2) The function T ∶ R3
Ð→ R4 given by the formula

T (x, y, z) = (xy,x2 + 3y − 1, y, x3 + 3y − z2)
is not linear.

Proof. To prove that a function is not linearwe need to prove that (at least) one of the conditions
is not satisfied. To prove that a condition that is defined with universal quantifiers (i.e. it starts
with for all) we only need to find one counterexample. I will prove that this function does not
have property (2). If I choose λ = 2 and v = (0,0,1) then

T (λv) = T (0,0,2) = (0,0,0,−4)
while

λT (v) = 2 (0,0,0,−1) = (0,0,0,−2).
Since for this particular λ ∈ R and v ∈ R3 we have T (λv) ≠ λT (v), the function is not
linear. �

In the example above we could have proved that T in the first item is linear by showing that it is the
linear function of a matrix. To do this we separate the terms in each row according to their variable,
putting 0 if a variable is missing:

T (v) =
⎛⎜⎜⎜⎝

3 v1 − 2 v2
v1 − 2 v2 + 3 v3

v2 + v3
2 v1 + 3 v2 − v3

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

3 v1
v1
0

2 v1

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

−2 v2
−2 v2
v2
3 v2

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

0

3 v3
v3
−v3

⎞⎟⎟⎟⎠
= v1

⎛⎜⎜⎜⎝

3

1

0

2

⎞⎟⎟⎟⎠
+ v2

⎛⎜⎜⎜⎝

−2
−2
1

3

⎞⎟⎟⎟⎠
+ v3

⎛⎜⎜⎜⎝

0

3

1

−1

⎞⎟⎟⎟⎠
.

Therefore the function is given by the matrix

T =

⎛⎜⎜⎜⎝

3 −2 0

1 −2 3

0 1 1

2 3 −1

⎞⎟⎟⎟⎠
.

It turns out that all linear functions come from matrices. If T is a linear function there is a matrix
A such that for all x we have T (x) = Ax. We will prove this fundamental fact after proving an
important feature of linear functions: they are determined by the values they take in a basis.

As we did with the definition of vector subspace we can combine the two properties that define a
linear function into one.

Theorem 6.12 (Alternative definition of linear function). A function is linear if and only if it
respects linear combinations. In other words, a function T ∶ Rn

Ð→ Rm is linear if and only if for any k

scalars λ1, . . . , λk and any k vectors v1, . . . ,vk we have:

T (λ1 v1 + ⋅ ⋅ ⋅ + λk vk) = λ1T (v1) + ⋅ ⋅ ⋅ + λkT (vk).
Proof. Exercise. See the proof of Theorem 4.5 and proceed similarly. �

When checking if a function is linear we only need to check that it respects linear combinations of
two vectors.

Theorem 6.13 (Alternative statement of Alternative definition of linear function). A function
is linear if and only if it respects linear combinations of two vectors. In other words, a map T ∶ Rn

Ð→ Rm

is linear if and only if for every λ,µ ∈ R and v,w ∈ Rn we have:

T (λv + µw) = λT (v) + µT (w).
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Proof. Exercise. �

Corollary 6.14 (Linear maps send zero to zero). Let T ∶ Rn
→Rm be a linear map. Then

T 0 = 0.

Equivalently,

T 0 ≠ 0 Ô⇒ T is not linear.

Proof. We have
T 0 = T (0 + 0) = T 0 + T 0.

Subtracting T 0 from both sides of this equation yields the result. �

Example 6.15. None of the following functions is linear:

f ∶ RÐ→ R, xz→ 2x − 3

T ∶ R2
Ð→ R

3, (x, y)z→ (x − y + 2,2x + 3 y,42x)
S∶ R3

Ð→ R
2, (x, y, z) z→ (2x − 3 y + z,42).

A very useful consequence of Theorem 6.12 is that if we know the values of a linear function at a
basis then we can compute its value at any vector. We illustrate this with an example.

Example 6.16. For a linear function T ∶ R4
Ð→ R we have

T e1 = −5, T e2 = 3, T e3 = 1, T e4 = −2.

Find T (−2,1,3,4).
Solution. Let v = (−2,1,3,4) then v = −2e1 + e2 + 3e3 + 4e4. It follows that

T (v) = −2e1 + e2 + 3e3 + 4e4
= −2 (−5) + 3 + 3 ⋅ 1 + 4 (−2)
= −10 + 3 + 3 − 8
= −12.

�

So if two linear functions agree on a basis they agree everywhere and are therefore equal.

Theorem 6.17. Let T,S∶ RÐ→ Rm be linear functions and let {v1, . . . ,vn} be a basis of Rn. If

T v1 = S v1, . . . , T vn = S vn

then we have
∀v ∈Rn, T v = S v,

in other words

T = S.

Proof. Let v ∈Rn then there are unique λ1, . . . , λn ∈ R so that

v = λ1v1 +⋯+ λnvn.

Then we have

T v = λ1 T v1 +⋯+ λn T vn

= λ1S v1 +⋯+ λn S vn

= S v.

�
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Now, let’s remember that the linear function defined by a matrixAwith columns a1, . . . ,an is given
by the formula

Ax = x1 a1 +⋯ + xn an

where x = x1 e1+⋯+xn en. In particular we have that the columns ofA are the images of the standard
basis, in other words

ai = Aei, i = 1, . . . , n.

As a consequence we have that any linear function is equal to the linear function that has columns
the images of the standard basis under under that function. So we have the following theorem.

Theorem 6.18. Let T ∶ Rn
Ð→ Rm be a linear function. Then T is equal to the linear function associated

with the matrix with columns T e1, . . . , Ten.

Example 6.19 (The identity matrix). For the identity function we have I en = en. Therefore the
identity function is induced by the n × n matrix with columns e1, . . . ,en. That is,

In =

⎛⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0

0 0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎠
Example 6.20. Consider again the linear function T ∶ R3

Ð→ R4 given by

T (x, y, z) = (3x − 2y, x − 2y + 3z, y + z,2x + 3y − z)
from Example 6.11. We have

T (1,0,0) = (3,1,0,2)
T (0,1,0) = (−2,−2,1,3)
T (0,0,1) = (0,3,1,−1)

and we again get that T is given by the matrix

T =

⎛⎜⎜⎜⎝

3 −2 0

1 −2 3

0 1 1

2 3 −1

⎞⎟⎟⎟⎠
.

So if we know the values of a linear transformation in the standard basis of Rn it’s straightforward
to find its matrix. What about other bases though? A linear transformation is uniquely determined
by its values in any basis, is there a method to find the matrix if the basis is not the standard one?

Indeed there is! We illustrate with an example.

Example 6.21. Consider the basis {v1,v2,v3} of R3 where

v1 = (1,−1,0), v2 = (0,2,−1), v3 = (1,0,2).
For a 3 × 4 matrix A we have that

Av1 = (2,3,0,1), Av2 = (1,1,1,1), Av4 = (0,4,2,0).
Determine the matrix A.

Solution. The solution has two steps. We first express the standard basis in terms of the new basis,
and then we calculate the images of the standard basis i.e. the columns of A.

First Step: So we have to express each ei as a linear combination of v1,v2,v3. So we have to solve
three systems

B x = ei, i = 1,2,3
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where

B =
⎛⎜⎝

1 0 1

−1 2 0

0 −1 2

⎞⎟⎠ .
Rather than doing essentially the same calculations with three different augmented matrices we

augment B with all three vectors at once. At the end of our calculations the first column of the
augmented part will be the coefficients to express e1, the second e2, and the third e3 in terms of the
basis {v1,v2,v3}.

⎛⎜⎝
1 0 1

−1 2 0

0 −1 2

RRRRRRRRRRRRR
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 1

0 2 1

0 −1 2

RRRRRRRRRRRRR
1 0 0

1 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 1

0 2 1

0 0 5

RRRRRRRRRRRRR
1 0 0

1 1 0

1 1 2

⎞⎟⎠ .
In the first step I added the first row to the second row. In the second step I added the second row to

twice the third row. Next I’ll add the third row to −5 times the second, and the first to get a diagonal
matrix. The final step is then to divide each row by the the corresponding diagonal element.

⎛⎜⎝
−5 0 0

0 −10 0

0 0 5

RRRRRRRRRRRRR
−4 1 2

−4 −4 2

1 1 2

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
4/5 −1/5 −2/5
2/5 2/5 −1/5
1/5 1/5 2/5

⎞⎟⎠ .
So all three systems have been solved and we have

e1 =
4

5
v1 +

2

5
v2 +

1

5
v3

e2 = −
1

5
v1 +

2

5
v2 +

1

5
v3

e3 = −
2

5
v1 −

1

5
v2 +

2

5
v3.

Second Step: By the linearity of A we have

Ae1 =
4

5
Av1 +

2

5
Av2 +

1

5
Av3.

Therefore,

Ae1 =
4

5

⎛⎜⎜⎜⎝

2

3

0

1

⎞⎟⎟⎟⎠
+
2

5

⎛⎜⎜⎜⎝

1

1

1

1

⎞⎟⎟⎟⎠
+
1

5

⎛⎜⎜⎜⎝

0

4

2

0

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

2

18/5
4/5
6/5

⎞⎟⎟⎟⎠
Entirely similar calculations26 give

Ae2 =

⎛⎜⎜⎜⎝

0

3/5
4/5
1/5

⎞⎟⎟⎟⎠
, Ae3 =

⎛⎜⎜⎜⎝

−1
1/5
3/5
−3/5

⎞⎟⎟⎟⎠
.

Therefore

26Verify all calculations yourself.
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A =

⎛⎜⎜⎜⎝

2 0 −1
18/5 3/5 1/5
4/5 4/5 3/5
6/5 1/5 −3/5

⎞⎟⎟⎟⎠
.

�

Example 6.22 (3 × 3 Permutation matrices). There are 6 ways to order a set with 3 elements. For
example for the set {1,2,3} we have the following possibilities:

1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1.

Each of these orders is determines a permutation of {1,2,3}, i.e. a one-to-one and onto function
σ∶ {1,2,3} Ð→ {1,2,3}, namely the function that maps i to the element that appears in the i-th
position. So the third ordering is determined the functionwith valuesσ(1) = 2, σ(2) = 1, andσ(3) = 3.
Conversely, a permutation σ gives the ordering σ(1) σ(2) σ(3). For example the permutation with
values σ(1) = 2, σ(2) = 3, and σ(3) = 1 determines the fourth ordering.

Now, given any such permutation we can define a linear transformation R3
Ð→ R3, by permuting

the standard basis accordingly. What I mean is the following: take for example the last ordering 3 2 1,
that corresponds to the permutation σ(1) = 3, σ(2) = 2, σ(3) = 1, and set

T e1 = e3, T e2 = e2, T e3 = e1.

There is one and only one linear transformation that satisfies these conditions, namely (see The-
orem 6.18), the linear transformation associated with the matrix that has columns (listed in order)
e3,e2,e1.

In other words, for any ordering of {1,2,3} we order the vectors of the standard basis the same
way and then take the matrix with those columns. We obtain the following 3 × 3 matrices

⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
1 0 0

0 0 1

0 1 0

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎠ ,
⎛⎜⎝
0 0 1

0 1 0

1 0 0

⎞⎟⎠ .
The first of these permutation matrices is I3 the 3×3 identity matrix, and is obtained by the identity

permutation. Let’s see what P132 does to a vector (x, y, z).
⎛⎜⎝
1 0 0

0 0 1

0 1 1

⎞⎟⎠
⎛⎜⎝
x

y

z

⎞⎟⎠ =
⎛⎜⎝
1 ⋅ x + 0 ⋅ y + 0 ⋅ z
0 ⋅ x + 0 ⋅ y + 1 ⋅ z
0 ⋅ x + 1 ⋅ y + 0 ⋅ z

⎞⎟⎠ =
⎛⎜⎝
x

z

y

⎞⎟⎠ .
So P132(x, yz) = (x, z, y). Let’s also find P312(x, y, z), where P312 is the permutation matrix that

corresponds to the ordering 3 1 2.

⎛⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎠
⎛⎜⎝
x

y

z

⎞⎟⎠ =
⎛⎜⎝
0 ⋅ x + 1 ⋅ y + 0 ⋅ z
0 ⋅ x + 0 ⋅ y + 1 ⋅ z
1 ⋅ x + 0 ⋅ y + 0 ⋅ z

⎞⎟⎠ =
⎛⎜⎝
y

z

x

⎞⎟⎠ .
So P312(x, y, z) = (y, z, x). Notice that we looked at three permutation matricesP123, P132, andP312

and for all three, the image of (x, y, z) was a vector with coordinates some permutation of (x, y, z).
We will see later in the class that the rows of a permutation matrix are also given by a permutation

of the rows of the identity matrix. Furthermore, if P is a permutation matrix and x a column vector,
then the rows of P x are given from the columns of x by the same permutation.

We can verify that this is the case for the three permutation matrices we checked. The rows of I3
are given by the identity permutation and the rows of I3, and the coordinates of I3(x, y, z) are also
given by the identity permutation of the coordinates of (x, y, z).
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The rows of P132 are obtained by interchanging the second and third row of I3, and in P1(x, y, z) =(x, z, y) the second and third coordinate of (x, y, z) are interchanged.
Finally, the first row of P132 is the second row of I3 and the first coordinate of P132(x, y, z) is y.

The second row of P132 is the third row of I3 and the second coordinate of P132(x, y, z) is z. The third
row of P132 is the first row of I3 and the third coordinate of P132(x, y, z) is x.
Exercise. Compute P (x, y, z) for the remaining three permutation matrices and verify that the co-
ordinates are permuted the same way that the rows of P have been permuted.

6.1. New linear functions from old. Let A,B∶ Rn
Ð→ Rm be two functions, and λ ∈ R. We define

a new function A+B, called the sum of A and B, and a new function λA, called the scalar product of
λ and A, as follows

A +B∶ Rn
Ð→ R

m, (A +B) x = Ax +B x,

and

λA∶ Rn
Ð→ R

m, (λA) x = λ (Ax) .
In other words, to find the image of x under A +B we add its images under A and B. To find the

image of x under λA we multiply its image under A by λ.
We also define the opposite of A to be the function

−A∶ Rn
Ð→ R

m, (A) x = − (Ax) .
Clearly −A = −1A.

Theorem 6.23 (Function Spaces are Vector Spaces). Addition and scalar multiplication of functions
satisfy all the axioms listed in Theorem 4.3, where the role of the zero vector is played by the zero function
O. In other words we have the following properties:

(1) Function addition is commutative. This means that for any two functions A, B we have

A +B = B +A

(2) Function addition is associative. This means that for any three functions A, B, and C we have

(A +B) +C = A + (B +C) .
(3) O is neutral for addition. This means that for any function A we have

O +A = A.

(4) For every function A we have

A + (−A) = O.

(5) The number 1 is neutral for scalar multiplication. This means that for every function A we have

1A = A.

(6) Scalar multiplication distributes over function addition. This means that if λ is a scalar and A, B
are functions we have

λ (A +B) = λA + λB.

(7) Addition of scalars distributes over scalar multiplication. This means that

(λ + µ)A = λA + µA.
(8) Multiplication of scalars and scalar multiplication are compatible in the following sense: if λ, µ

are scalars and A is a function, we have

λ (µA) = (λµ) A.
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Proof. To prove that two functions are equal we need to prove that they give the same result when
applied to the same argument. For example to prove that addition is commutative we need to prove
that for all x ∈ Rn we have

(A +B)x = (B +A)x.
Indeed,

(A +B)x = Ax +B x

= B x +Ax

= (B +A)x.
Let’s also prove that addition of scalars distributes over scalar multiplication.
Let x ∈ Rn, and λ,µ ∈ R. Then

((λ + µ)A) x = λ + µ)Ax

= λ (Ax) + µ (Ax)
= (λA )x + (µA) x
= ((λ + µ) A) x.

The proofs of the remaining properties are similar and left as an exercise. �

Wewill visit these operations later in the class. At the moment we concentrate in the case of linear
functions. We have the following two theorems.

Theorem6.24 (The sumof two linear functions is a linear function). IfA,B are linear functions
then A +B is also linear. Furthermore, if the matrix of A is (aij) and the matrix of B is (bij) then the
matrix of A +B is (aij + bij). In other words

⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

b11 b12 ⋯ b1n
b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮

bm1 bm2 ⋯ bmn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

a11 + b11 a12 + b12 ⋯ a1n + b1n
a21 + b21 a22 + b22 ⋯ a2n + b2n
⋮ ⋮ ⋱ ⋮

am1 + bm1 am2 + bm2 ⋯ amn + bmn

⎞⎟⎟⎟⎠
Proof. Let λ,µ ∈ R and x,y ∈ Rn. We have,

(A +B) (λx + µy) = A (λx + µy) +B (λx + µy)
= λAx + µAy + λB x + µB y

= λAx + λB x + µB y + µAy

= λ (Ax +B x) + µ (Ay +B y)
= λ ((A +B) x) + µ ((A +B) y)
= (λ (A +B)) x + (µ (A +B)) y.

Therefore A +B is linear. Now, recall that the j-th column of the matrix of A +B is (A +B)ej ,
but by the definition of A +B we have

(A +B)ej = Aej +B ej .

Therefore the j-th column of A+B is the sum of the j-th column of A and the j-th column of B. �

Theorem 6.25 (A multiple of a linear function is a linear function). If A is a linear function
then λA is also linear for every λ ∈ R. Furthermore, if the matrix of A is (aij) then the matrix of λA is
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(λaij). In other words,

λ

⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

λa11 λa12 ⋯ λa1n
λa21 λa22 ⋯ λa2n
⋮ ⋮ ⋱ ⋮

λam1 λam2 ⋯ λamn

⎞⎟⎟⎟⎠
.

The proof is similar to the proof of Theorem 6.24 and is left as an exercise.
We can combine Theorems 6.24 and 6.25 into a single theorem.

Theorem 6.26 (Linear combinations of linear functions are linear). If A,B are linear function
and λ,µ are scalars then λA + µB is linear with matrix (λaij + µbij).
Example 6.27. We have

3 ( 2 1 0

−1 3 1
) − 4 (3 0 1

2 −1 0
) = ( −6 3 −4

−11 13 3
) .

We next look at the operation of composition. Recall that if g∶ X Ð→ Y and f ∶ Y Ð→ Z are two
functions then the composition f ○ g is defined as follows:

f ○ g∶ X Ð→ Z, (f ○ g) (x) = f (g(x)) .
Let A be anm × n and B an n × k matrix. Then

A∶ Rn
Ð→ R

m, B∶ Rk
Ð→ R

n

and so the composition

A ○B∶ Rk
→ R

m, xz→ A (B x),
is defined. We write AB instead of A ○B.

Theorem 6.28 (Composition of linear maps is linear). If A,B are linear maps such that the com-
position AB is defined, then AB is linear map.

Proof. Let λ,µ ∈ R and x,y ∈ Rn. We have,

(AB) (λx + µy) = A (B (λx + µy))
= A (λB x + µB y)
= λA (B x) + µA (B y)
= λ ((AB) x) + µ ((AB) y) .

�

We want to find a formula for the matrix of AB. Let’s first do this for matrices of relatively low
dimensions. Let’s take A to be 3 × 2 and B to be 2 × 2. Then the composition AB is given by a 3 × 2
matrix. We want to find

A (B x) = ⎛⎜⎝
a11 a12
a21 a22
a31 a32

⎞⎟⎠((
b11 b12
b21 b22

) (x1

x2
)) .

We know that the image of x is a linear combination of the column vectors of B with coefficients
given by the coordinates of x. We have then, using the linearity of A,

A(B x) = A(x1 (b12b21
) + x2 (b21b22

)) = x1A (b12b21
) + x2A (b21b22

) .
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Using again the fact that the image of a vector under A is a linear combination of the columns of
A with coefficients the coordinates of the vector we have

A (b11
b21
) = b11 ⎛⎜⎝

a11
a21
a31

⎞⎟⎠ + b21
⎛⎜⎝
a11
a21
a31

⎞⎟⎠ =
⎛⎜⎝
a11b11
a21b11
a31b11

⎞⎟⎠ +
⎛⎜⎝
a12b21
a22b21
a32b21

⎞⎟⎠ =
⎛⎜⎝
a11b11 + a12b21
a21b11 + a22b21
a31b11 + a32b21

⎞⎟⎠ ,
and, by entirely similar calculations

A (b12
b22
) = ⎛⎜⎝

a11b12 + a12b22
a21b12 + a22b22
a31b12 + a32b22

⎞⎟⎠ .
So,

(AB) x = x1

⎛⎜⎝
a11b11 + a12b21
a21b11 + a22b21
a31b11 + a32b21

⎞⎟⎠ + x2

⎛⎜⎝
a11b12 + a12b22
a21b12 + a22b22
a31b12 + a32b22

⎞⎟⎠ .
Keeping the LHS, the linear combination of columns in the RHS can be expressed as a product of a

2 × 2 matrix and a x. Therefore we have,

(AB) x = ⎛⎜⎝
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22
a31b11 + a32b21 a31b12 + a32b22

⎞⎟⎠ (
x1

x2
) .

So we got that,

(25)
⎛⎜⎝
a11 a12
a21 a22
a31 a32

⎞⎟⎠ (
b11 b12
b21 b22

) = ⎛⎜⎝
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22
a31b11 + a32b21 a31b12 + a32b22

⎞⎟⎠ .
The same ideas can be used to get the formula for the matrix of AB in the general case where A

has dimensionsm × k for m,k ≥ 1 and B has dimensions k × n27 for n ≥ 1.

Let a∗i be the i-th row and bj the j-th column of B. That is we consider A as a column of m row
vectors, each of dimension k, while B is considered as a row of n column vectors each of dimension
k. Let us also set C = AB, anm × n matrix.

The j-th column of C is C ej . But,

C ej = A (B ej) = Abj .

Therefore, by the boxed formula at the bottom of Page 50 the i-th element of the j-th column of C
is the “dot product” of the i-th row of A with the j-column of B.

We have thus proved the following theorem.

Theorem 6.29. Let A be anm× k matrix and B a k ×n matrix. Then the entries of C = AB are given
by

(26) cij = a
∗
i ⋅bj =

k

∑
ℓ=1

aiℓ aℓj.

Or, if we expand the sum in the RHS,

cij = ai1 b1j +⋯ + aik bkj.
27This is the same k. In order for the matrices to be composable the number of rows of B has to equal the number of

columns of A.
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We can express Equation (26) as follows:

⎛⎜⎝
a∗1
⋮

a∗m

⎞⎟⎠ (b1 ⋯ bn) = ⎛⎜⎝
a∗1 ⋅ b1 ⋯ a∗1 ⋅ bn

⋮ ⋱ ⋮
a∗m ⋅ b1 ⋯ a∗m ⋅ bn

⎞⎟⎠ .
Example 6.30. Let’s compute AB and BA where

A = ( 1 2 0

−1 0 3
) , B =

⎛⎜⎝
−1 1

2 0

4 3

⎞⎟⎠ .
We have

AB = ( 1 2 0

−1 0 3
) ⎛⎜⎝
−1 1

2 0

4 3

⎞⎟⎠ = (
−1 + 4 + 0 1 + 0 + 0
1 + 0 + 12 −1 + 0 + 9) = ( 3 1

13 8
) ,

while

BA =
⎛⎜⎝
−1 1

2 0

4 3

⎞⎟⎠ (
1 2 0

−1 0 3
) = ⎛⎜⎝

−1 − 1 −2 + 0 0 + 3
2 + 0 4 + 0 0 + 0
4 − 3 8 + 0 0 + 9

⎞⎟⎠ =
⎛⎜⎝
−2 −2 3

2 4 0

1 8 9

⎞⎟⎠ .
6.2. Some Exercises.

Exercise. Let P ∶ R4
Ð→ R4 be given by

P (x, y, z,w) = (y, z,w,x).
(1) Prove that P is linear using Theorem 6.13.
(2) Find the matrix of P .
(3) Verify that the rows of the matrix of P , listed in order, are e2,e3,e4,e1.

Exercise. An 1 × 1 matrix has only one entry (a). It’s natural to identify this matrix with the real
number a. We have also identified R1 with R. So the linear function defined by a 1 × 1 matrix has
domain and codomain R.

(1) What functions f ∶ RÐ→ R arise as the linear functions associated with 1 × 1 matrices?
(2) When is a linear function f ∶ RÐ→ R one-to-one?
(3) When is a linear function f ∶ RÐ→ R onto?
(4) When is a linear function f ∶ RÐ→ R invertible?
(5) Let f ∶ RÐ→ R be an invertible linear function. What is f−1?
(6) Let f, g be two linear functions R Ð→ R. Prove that f ○ g is also linear. Give the matrix f ○ g

in terms of the matrices of f and g.

Your answers to Questions (2) through (5) should be in terms of the matrices that define the linear
functions.

Exercise. For each of the following functions T

(1) Prove that it is linear.
(2) Find the matrix that gives T .

(1) The function T ∶ Rn
Ð→ Rn given by

T x = λx.

(2) The function T ∶ R3
Ð→ R2 given by

T (x1, x2, x3) = (x1, x2).
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(3) The function T ∶ R2
Ð→ R3 given by

T (x1, x2) = (x1, x2,0).
(4) The function T ∶ R3

Ð→ R2 given by

T (x, y, z) = (x + z, x − z).
Exercise. Let

A =
⎛⎜⎝
1 2 3

0 2 −3
1 −2 3

⎞⎟⎠
(1) Prove that the columns of the matrix form a basis of R3.
(2) Let T be the linear map that interchanges the columns and rows of A. In other words

T a1 = a
∗
1, , T a2 = a

∗
2, T a3 = a

∗
3 ,

where ai (respectively a∗i ) are the columns (respectively rows) of A. Explain why T is well
defined. Then find the matrix of T .

(3) Find T a∗i , for i = 1,2,3.
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7. Range and rank, Kernel and nullity

Let’s introduce some terminology and recall some concepts about functions. A function f with
domainX and codomain Y associates to every x ∈X unique element y ∈ Y , denoted by f(x). We also
use the notation x↦ y to indicate that y = f(x). The notation,

f ∶ X Ð→ Y

means that f is a function with domain X and codomain Y .

Definition 7.1 (Range, Image, Preimage). The set of all elements of Y that are images of elements
of X is called the range of f and denoted by R(f). Thus

R(f) = {f(x) ∶ x ∈X}
= {y ∈ Y ∶ ∃x ∈X, xz→ y} .

If S ⊆ X then the image of S under f , denoted f(S) is the set of the images of all elements of S.
Thus

f(S) = {f(s) ∶ s ∈ S} ⊆ Y.
Note that f(X) =R(f).

If T ⊆ Y then the preimage of T under f , denoted f−1(T ) is the set of all elements of X that are
mapped to an element of T . Thus

f−1(T ) = {x ∈X ∶ f(x) ∈ T} .
Consider now a linear function with matrix A

A∶ Rn
Ð→ R

m, xz→ Ax.

What is the range of A? The definition says that

R(A) = {y ∈ Rm ∶ ∃x ∈ Rn, Ax = y} ,
so y ∈R(A) if and only if the system

Ax = y

has solutions. Now if x = (x1, . . . , xn) is such a solution then

x1 a1 +⋯+ xn an = y,

where a1, . . . ,an are the columns of A. Thus the range of A is the linear span of its columns. So we
have the following theorem.

Theorem 7.2 (Range is the span of the columns). The range of the linear map with matrix A is the
linear span of the the columns of A. In other words, if a1, . . . ,an are the columns of A, then

R(A) = ⟨a1, . . . ,an⟩ .
Definition 7.3 (Rank of a matrix). The rank of a linear map is the dimension of its range. The rank
of a linear map A is denoted by rankA. Thus

rankA = dimR(A).
We can summarize the discussion in Section 5.1 as follows.

Theorem 7.4. The basic columns of an m × n matrix form a basis of R(A). Therefore rankA is the
number of columns in the reduced echelon form of A that contain a leading 1.
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Example 7.5. Find the rank of the following matrix

A =

⎛⎜⎜⎜⎝

1 3 −2 5 4

1 4 1 3 5

1 4 2 4 3

2 7 −3 6 13

⎞⎟⎟⎟⎠
Solution. The reduced row echelon form of A is28

A ∼

⎛⎜⎜⎜⎝

1 0 0 22 −21
0 1 0 −5 7

0 0 1 1 −2
0 0 0 0 0

⎞⎟⎟⎟⎠
.

There are three basic columns and therefore rankA = 3. �

If c ∈ Rm then the solution set of the linear system Ax = c is the preimage of A−1 {{c}}. In
particular the preimage of the zero vector is the solution set of the homogeneous system Ax = 0.

Recall (see Theorem 1.32 in Section 1.3.1) that the solution sets of homogeneous systems are sub-
spaces of Rm.

Definition 7.6 (Kernel andnullity). The kernel (or null space) ofA, denoted by kerA is the preimage
of the zero vector. Thus

kerA = {x ∈ Rn ∶ Ax = 0} .
The dimension of kerA is called the nullity of A and is denoted by nullA. Thus

nullA = dim (kerA).
Throughout Section 1 we were referring to the number of free parameters in the solution of a

system has as the “dimension” of the solution set. This suggests that the nullity of a matrix is the
number of free columns in its reduced echelon form. This is indeed the case. Consider for example
the homogeneous system with matrix the matrix A of Example 7.5. The solution of Ax = 0 is

(27)

⎛⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

−22 s + 21 t
5 s − 7 t
−s + 2 t

s

t

⎞⎟⎟⎟⎟⎟⎠
= s

⎛⎜⎜⎜⎜⎜⎝

−22
5

−1
1

0

⎞⎟⎟⎟⎟⎟⎠
+ t

⎛⎜⎜⎜⎜⎜⎝

21

−7
2

0

1

⎞⎟⎟⎟⎟⎟⎠
, s, t ∈ R.

Thus,letting s = (−22,5,−1,1,0) and t = (21,−7,2,0,1) we have
kerA = ⟨s, t⟩ .

Now the set {s, t} is linearly independent. This follows immediately from the fact that the if the
second vector in (27) is 0 then s = t = 0. Therefore {s, t} is a basis of kerA, and so kerA is two-
dimensional.

Notice that the first three coordinates of s form the opposite of fourth columnof the reduced echelon
form, and the last two extra coordinates are the coordinates of e1. Similarly the first three coordinates
t are the opposites of the fifth column and its last two coordinates those of e2.

A similar pattern will arise always. In order not to get tangled in over complicated notations let’s
consider the case that the free variables are the third, fourth, and seventh. Then the parametric solu-
tion will be

28Do the calculations yourself!
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = −s b13 − t b14 −w b17
x2 = −s b23 − t b24 −w b27
x3 = s

x4 = t

x5 = −s b53 − t b54 −w b57
x6 = −s b63 − t b64 −w b67
x7 = w

Then in vector form the solution is

x = sb′3 + tb
′
4 +wb′7,

where

b′3 = (−b13,−b23,1,0,−b53,−b63,0)
b′4 = (−b14,−b24,0,1,−b54,−b64,0)
b′7 = (−b17,−b27,0,0,−b57,−b67,1).

The set B = {b′3,b′4,b′7} is linearly independent. We can see this by looking only at the free
slots, namely the third, fourth and seventh: we have the coordinates of {e1,e2,e3}. Thus a linear
dependency onB would give a linear dependency on the standard basis ofR3, and that’s not possible.

So we have the following theorem, that we will see again in a more general and precisely stated
form later in the course.

Theorem 7.7. Let A be an m × n matrix and with reduced row echelon form B. The nullity of a A is
the number of free columns B. Furthermore, a basis of kerA is obtained from the free columns of B by
“interpolating” the coordinates of the standard basic vectors at the “free slots”.

As a corollary of Theorems 7.4 and 7.7 we have the following theorem.

Theorem 7.8 (Rank-nullity Theorem). If A in an m × n matrix then

rankA + nullA = n.

Bases of Range and Kernel

The basic columns in an echelon form of the matrix of a linear map give a basis for its range,
and the free columns give a basis for its kernel.

Example 7.9. Consider the linear function T ∶ R4
Ð→ R2 with matrix

T = ( 1 2 3 4

−1 −2 −3 4
) .

The reduced echelon form of T is

B = (1 2 3 0

0 0 0 1
)

The basic columns of B are the first and fourth. So the first and fourth column of T give a basis for
the range of T . So,

R(T ) = ⟨(1,−1), (4,4)⟩ .
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The second and third columns of B will give a basis of kerT . We are missing two coordinates to
make the (opposites of the) second and third columns of B four dimensional and we fill those with
the coordinates of (1,0) and (0,1) interpolated at the second and third slot. Thus the second column
of B gives the vector (2,1,0,0) and the third the vector (3,0,1,0). Thus

R(T ) = ⟨(−2,1,0,0), (−3,0,1,0)⟩ .
Example 7.10. Consider the linear function A∶ R5

Ð→ R4 with matrix

A =

⎛⎜⎜⎜⎝

1 2 −4 −4 5

2 4 0 0 2

2 3 2 1 5

−1 1 3 6 5

⎞⎟⎟⎟⎠
.

The reduced echelon form of A is

A ∼

⎛⎜⎜⎜⎝

1 0 0 −2 0

0 1 0 1 0

0 0 1 1 0

0 0 0 0 1

⎞⎟⎟⎟⎠
.

We have four basic columns and one free. Thus the range is four-dimensional and the first, second,
third and fifth columns of A form a basis of R(A).

The kernel is one dimensional so a basis will have only one vector. We obtain that vector from the
the opposite of the fourth column, by inserting 1 in the fourth slot. Thus

kerA = ⟨(2,−1,−1,1,0)⟩ .
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8. Injective, Surjective, and Invertible linear maps

Recall that we say that a function is one-to-one or injective if it the images of two different elements
is different. Thus a function f ∶ X Ð→ Y is one-to-one if for all x1, x2 ∈ X we have

x1 ≠ x2 Ô⇒ f(x1) ≠ f(x2).
The contra-positive of the above, namely

f(x1) = f(x2) Ô⇒ x1 = x2

is often useful in proving (or disproving) that a function is injective. So if f is injective and y ∈ Y ,
then there can be at most one x ∈ X with f(x) = y. We can express this in terms of preimages by
saying that f is injective if and only if f−1 ({y}) contains at most one element.

f is called onto or surjective if every y ∈ Y is the image of some element in X , i.e. if the range of f
is Y .

Solutions of y = f(x)
Consider the equation

(28) y = f(x).
(1) A function f ∶ X Ð→ Y is injective if for all y ∈ Y Equation (28) has at most one solution.
(2) A function f ∶ X Ð→ Y is surjective if for all y ∈ Y Equation (28) has at least one solution.
(3) A function is a bijection, i.e. both injective and surjective, if and only if for all y ∈ Y

Equation (28) has a unique solution.
(4) If f is a bijection then f has inverse function f−1∶ Y Ð→ X defined so that

x = f−1(y) ⇐⇒ y = f(x).
in other words, f−1(y) is the unique solution of Equation (28).

Recall also that if f is invertible then f−1 is also invertible and (f−1)−1 = f . Finally recall that a pair
of inverse functions is characterized by the equations

f (f−1(y)) = y, f−1 (f(x)) = x
or equivalently,

f ○ f−1 = IY , f−1 ○ f = IX .

Let now

A∶ Rn
Ð→ R

m

be a linear map. Then the equation

y = Ax

is a system of m linear equations and n variables, and the nature of the solution set is determined by
the reduced echelon form of A. The following theorem summarizes most of what we have seen so far
in this class.

Theorem 8.1. Let A be an m ×n and as usual denote the linear function it defines by the same symbol

A∶ Rn
→ R

m, x↦ Ax.

Let B be the reduced echelon form of A. The following hold.

(1) A is injective if and only if B has no free columns.
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(2) A is injective if and only if its kernel contains only the zero vector, i.e.

kerA = {0}
.

(3) A is injective if and only if nullA = 0.
(4) If A is injective then n ≤m.
(5) A is surjective if and only if its columns span Rm.
(6) A is surjective if and only if rankA =m.
(7) A is surjective if and only if B hasm basic columns.
(8) If A is surjective then n ≥m.
(9) A is invertible if and only if B = In, the n × n identity matrix.
(10) A is invertible if and only if the columns of A form a basis of Rn.
(11) If A is invertible then A−1 is linear.
(12) If A is invertible then n =m.

Proof. Most of the statements are reformulations of things we have already proved. Try to understand
why this is the case for each of the statements. I provide some hints to guide you.

(1) This just says that a consistent system has a unique solution if and only if there are no free
variables.

(2) This just says that a consistent system has unique solution if and only if the corresponding
homogeneous system has only the trivial solution.

(3) The nullity of A is the dimension of its kernel. A subspace has 0 dimension if and only if it
equals 0.

(4) If there are more unknowns than equations then B will contain free columns. Conversely if
there are no free columns the solution has no free variables, thus if it exists it is unique.

(5) The range of A is the linear span of the columns of A. A is surjective if and only if the range
of A is Rm.

(6) The rank of A is the dimension of its range. If a subspace of Rm has dimension m then it is
the whole Rm.

(7) The basic columns form a basis of the range of A, so if A is surjective then B has at least m
basic columns. The leading ones have to be in different columns and therefore B cannot have
more thanm free columns.

(8) If there are less variables than equations there are not enough columns to form a basis of Rm.
(9) A is invertible if an only if the system Ax = c has a unique solution, for all c ∈ Rm.
(10) If the system Ax = 0 has only the trivial solution then the columns of A are linearly indepen-

dent. If Ax = y is consistent for all y then the columns of A are spanning.
(11) We have

A (λA−1x + µA−1 y) = λA (A−1x) + µ (A−1 y)
= λx + µy.

So

A−1 (A (λA−1x + µA−1 y)) = A−1 (λx + µy) .
Therefore

λA−1x + µA−1 y = A−1 (λx + µy) .
(12) It follows from (4) and (8).

�

As a consequence of the Rank-Nullity Theorem (see Theorem 7.8), we have the following Theorem.

Theorem 8.2. Let A∶ Rn
Ð→ Rn be a linear map. Then the following are equivalent.
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(1) A is injective.
(2) A is surjective.
(3) A is invertible.

Proof. We will prove that

(1) Ô⇒ (2) Ô⇒ (3) Ô⇒ (1).
If A is injective then nullA = 0 and therefore by Theorem 7.8 we have rankA = n. Thus A is

surjective.
If A is surjective then rankA = n and therefore, again by Theorem 7.8 we have nullA = 0, thus A

is also injective. A is therefore invertible.
If A is invertible then, by definition it is injective. �

Remark 8.3. We remark that this property is not shared by general maps. IfX is an infinite set there
are always functions X Ð→ X that are injective but not surjective, and functions that are surjective
but not injective. For example for the set of natural numbers N the function

f ∶ NÐ→ N, f(n) = 2n,
is injective but not surjective. On the other hand,

g∶ NÐ→ N, g(n) = {n/2 n even

n n odd,

is surjective but not injective.

Theorem 8.4 (Solving matrix equations). If A be an invertible n×n matrix, and C an n×k matrix
for some positive integer k. Then the equation

AX = C

has a unique solution, namely the n × k matrix

X = A−1C.

Similarly, the equation

XA = C

has a unique solution, namely the n × k matrix

X = CA−1.

Remark 8.5. Because composition of functions is generally not commutative, we need to be careful
to multiply in the right order.

Proof. We have:

AX = C ⇐⇒ A−1 (AX) = A−1C
⇐⇒ (A−1A) X = A−1C
⇐⇒ I X = A−1C

⇐⇒ X = A−1C.

The proof for the other equation is entirely similar. Just multiply from the right with A−129. �

29You should do it!
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Example 8.6 (How to find the inverse of a linear function). LetA be an invertible linear function.
Then the columns of (the matrix of) A−1 are the images of the vectors of the standard basis. That is
the j-th column cj of A−1 is given by

cj = A
−1 ej ,

or equivalently,

Acj = ej .

We solve all of these systems simultaneously by finding the reduced echelon form of the augmented
matrix (a1 . . . an ∣ e1 . . . en) .

So to find the inverse of

A =
⎛⎜⎝
1 0 2

2 −1 3

4 1 8

⎞⎟⎠
we proceed as follows.

⎛⎜⎝
1 0 2

2 −1 3

4 1 8

RRRRRRRRRRRRR
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 2

0 −1 −1
0 1 0

RRRRRRRRRRRRR
1 0 0

−2 1 0

−4 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 2

0 0 −1
0 1 0

RRRRRRRRRRRRR
1 0 0

−6 1 1

−4 0 1

⎞⎟⎠
∼
⎛⎜⎝
1 0 2

0 1 0

0 0 −1

RRRRRRRRRRRRR
1 0 0

−4 0 1

−6 1 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
−11 2 2

−4 0 1

6 −1 −1

⎞⎟⎠ .
Therefore

A−1 =
⎛⎜⎝
−11 2 2

−4 0 1

6 −1 −1

⎞⎟⎠ .

How to find the inverse a matrix

If A is an invertible n × n matrix then the reduced row echelon form of the block matrix

(A ∣ I) ∼ (I ∣ A−1) .

Example 8.7 (2 × 2 revisited). Let’s consider again a 2 × 2 matrix

A = (a b

c d
) .

When is A invertible?
We start with the augmented matrix

(a b

c d
∣ 1 0

0 1
) .

If both a, c are 0 then the columns are not linearly independent and thusA is not invertible. Assume
then that a ≠ 0. We add to −c times the first row to a times the second and we get

(a b

0 ad − bc ∣ 1 0

−c a
) .
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If the determinant D ∶= ad − bc = 0 then A is not invertible because a ≠ 0 and thus the system
Ax = e2 has no solutions.

IfD ≠ 0 we divide the second row by D,

(a b

0 1
∣ 1 0

−c/D a/D) ∼ (a 0

0 1
∣ 1 + bc/D −ab/D
−c/D a/D )

= (a 0

0 1
∣ ad/D −ab/D
−c/D a/D ) ∼ 1

ad − bc
(1 0

0 1
∣ d −b
−c a

) .
So when a ≠ 0 and D ≠ 0 we have

(29) (a b

c d
)
−1

=
1

ad − dc
( d −b
−c a

) .
If a = 0 and c ≠ 0 we interchange the rows, and divide the first row by c and the second by b. and

then add d times the second row to −b times the first.

(c d

0 b
∣ 0 1

1 0
) ∼ (1 d/c

0 1
∣ 0 1/c
1/b 0

) ∼ (1 0

0 1
∣ −d/bc 1/c

1/b 0
) = 1

−bc
(1 0

0 1
∣ d −b
−c 0

) .
Thus Equation (29) holds in all cases.

Inverse of a 2 × 2matrix

Let A = (a11 a12
a21 a22

), and D = a11a22 − a12a21. A is invertible if and only if D ≠ 0. Then

(30) (a11 a12
a21 a22

)
−1

=
1

D
( a22 −a12
−a21 a11

) .

Consider now a 2 × 2 system of linear equations:

{ a11 x1 + a12x2 = c1
a12 x1 + a22x2 = c2.

.

If A is invertible then we have (see Theorem 8.4)

Ax = c ⇐⇒ A−1 (Ax) = A−1 c
⇐⇒ (A−1A) x = A−1 c
⇐⇒ I x = A−1 c

⇐⇒ x = A−1 c.

Thus, we can recover Crammer’s rule (see Section 3). Indeed, we have that the solution of the
system is

(x1

x2
) = 1

D
( a22 −a12
−a21 a11

) (c1
c2
) = 1

D
( c1a22 − c2a12−c1a21 + c2a11

) .
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9. The algebra of matrices

In the previous couple of lectures we studied the linear functions induced by matrices. We now are
going to study matrices as algebraic objects of their own right.

If m,n are positive integers we denote by Mm,nthe set of all m × n matrices. The set of n × n
matrices is simply denoted by Mn and its elements are called square matrices of size n. As we have
already done, if a matrix is denoted by a capital letter, say X , then the entry at the i-th row and j-th
column will be denoted by xij , and we write X = (xij).
Remark 9.1. Be careful to distinguish the notations (aij) and aij . The former denotes a matrix while
the latter denotes an entry of that matrix.

The operations of addition, scalar multiplication, and composition of linear functions define anal-
ogous operations on matrices, that we call matrix addition, scalar multiplication, and product.

Definition 9.2 (Matrix addition and scalar multiplication). For any positive integers m,n we
have the operations of addition

Mmn ×Mmn Ð→Mmn, (aij) + (bij) = (aij + bij) ,
and scalar multiplication

R ×Mmn Ð→Mmn, λ (aij) = (λaij) .
Of course, these are the “same” operations we’ve seen in Section 6.1, the only difference is the point

of view. We now view these operations as defined on the set of matrices. In particular all the vector
space axioms, i.e. the properties listed in Theorem 6.23 hold.

Since we have proved30 we don’t really need to prove it again just because we changed our point of
view. It is instructive however to give “purely algebraic” proofs, i.e. proofs that don’t rely on the fact
that matrices induce linear functions, and these properties hold for the corresponding operations of
linear functions.

In fact, all these properties can be proved in exactly the same manner as the corresponding prop-
erties of vector addition and scalar multiplication, see Theorem 4.3. All we need to do is add an extra
subscript in the calculations. Here is how to prove property (8) for example.

Let A = (aij) be a matrix and let λ,µ be scalars. Then using the definition of scalar multiplication
we get

λ (µA) = λ ⎛⎜⎝µ
⎛⎜⎝
a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

⎞⎟⎠
⎞⎟⎠ = λ

⎛⎜⎝
µa11 ⋯ µa1n
⋮ ⋱ ⋮

µam1 ⋯ µamn

⎞⎟⎠ =
⎛⎜⎝
λ (µa11) ⋯ λ (µa1n)
⋮ ⋱ ⋮

λ (µam1) ⋯ λ (µamn)
⎞⎟⎠ .

Now we use the fact that multiplication of real numbers is associative, and again the definition of
scalar multiplication we have that the last matrix is

=
⎛⎜⎝
(λµ) a11 ⋯ (λµ) a1n
⋮ ⋱ ⋮(λµ) am1 ⋯ (λµ) amn

⎞⎟⎠ = (λµ)
⎛⎜⎝
a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

⎞⎟⎠ = (λµ) A.
Exercise. Prove all the Vector Space Axioms (i.e. the properties listed in Theorem 6.23) for matrices
in this manner.

The above discussion suggests that we can think of matrices as vectors. In fact an m × n matrix
consists of mn numbers arranged in a rectangular manner, and if we read them starting with the
leftmost element of the top row we get the coordinates of amn-vector, i.e. and element of Rmn. For
example,

30We did do the proofs left as an exercise. Didn’t we?
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M23 ∋ (1 2 −1
3 −2 0

) ≅ (1,2,−1,3,−2,0) ∈ R6.

If we then identify 2× 3 matrices with 6-dimensional vectors this way, then we see that matrix ad-
dition and scalar multiplication of matrices is just vector addition and scalar multiplication of vectors.
No surprise then that these two sets of operations have the same properties, in some sense they are
the same operations!

We will further pursue these ideas later in these class, we will say then that the identification of
M23 with R6 that we just described is an isomorphism of Vector Spaces.

With the above identification the standard basis of Rmn translates to matrices that have all entries
0 except one 1.

Definition 9.3 (Notation: The Kronecker delta). The Kronecker delta is defined via

δij = {1 i = j

0 i ≠ j
.

The two variables are usually natural numbers but in principle they could be any two mathematical
objects.

Example 9.4. The dot product of two n-vectors v = (vi) and w = (vi) is given by the formula

v ⋅w =
n

∑
j=1

vi δij wj.

The standard basis of Rn consists of the vectors

ei = (δij)nj=1 .
The identity matrix is

In = (δij)ni,j=1 .
Definition 9.5 (The standard basis of Mmn). For i = 1, . . . ,m, and j = 1, . . . , n the basic matrix
Ei,j has the i, j-th entry equal to 1 and all other entries equal to 0. In other words, if ekℓ is the entry
at the k-th row and ℓ-th column then

ekℓ = δikδjℓ.

For example here are the four basic 2 × 2 matrices:

E11 = (1 0

0 0
) , E12 = (0 1

0 0
) , E21 = (0 0

1 0
) , E22 = (0 0

0 1
) .

Now any 2 × 2 matrix can is a linear combination of these four basic matrices. Indeed we have

(a11 a12
a21 a22

) = a11 (1 0

0 0
) + a12 (0 1

0 0
) + a21 (0 0

1 0
) + a22 (0 0

0 1
) .

Proposition 9.6. An m × n matrix can be written as a linear combination of the basic matrices in a
unique way. In fact the i, j-th entry is the coefficient of Eij .

IfA is anm×k andB a k×nmatrix thenA andB define linear maps that can be composed and the
composition is a linear map. From an algebraic point of view, we call the matrix of the composition
AB the product of A and B. Let’s recall the definition.



MTH 42 NOTES 79

Matrix Multiplication

If A = (aij) ∈Mmk and B = (bij) ∈Mkn then their product C ∶= AB ∈Mmn is defined, and if
C = (cij) then,

cij =
k

∑
ℓ=1

aiℓbℓj .

Equivalently, if a∗1 , . . . , a
∗
m are the rows of A, and b1, . . . , bn are the columns of B we have

⎛⎜⎝
a∗1
⋮
a∗m

⎞⎟⎠ (b1 ⋯ bn) = ⎛⎜⎝
a∗1 ⋅ b1 ⋯ a∗1 ⋅ bn
⋮ ⋱ ⋮

a∗m ⋅ b1 ⋯ a∗m ⋅ bn

⎞⎟⎠

The following theorem states some fundamental algebraic properties of matrix multiplication, and
its interactions with matrix addition and matrix multiplication. If we think as matrices as linear maps
then these properties are straightforward to verify. Furthermore they hold for all maps, not only linear
maps. For example, composition of functions is associative. To see this let h∶ X Ð→ Y , g∶ Y Ð→ Z ,
and f ∶ Z Ð→W be three functions. Then

(f ○ g) ○ h = f ○ (g ○ h) .
We first note that the compositions are defined and they have the same domain, namelyX , and the

same codomain, namelyW . To prove that they are equal we need to prove that for all x ∈ X we have

((f ○ g) ○ h) (x) = (f ○ (g ○ h) (x)) .
This is straightforward:

((f ○ g) ○ h) (x) = (f ○ g) (h(x))
= f (g (h(x)))
= f ((g ○ h) (x))
= (f ○ (g ○ h) (x)) .

However, this is an algebraic section. So we will be giving mostly algebraic proofs.

Theorem 9.7 (Matrices form an algebra). The following properties hold for all matricesA,B,C and
all scalars λ,µ provided that the operations are defined31.

(1) Matrix multiplication is associative.

A (BC) = (AB)C.
(2) Matrix multiplication distributes over matrix addition on both sides.

(A +B)C = AC +AB, A (B +C) = AB +AC.

(3) Scalar multiplication is compatible with matrix multiplication.

(λA)B = A (λB) = λ (AB) .
(4) Multiplication with the identity matrix

I A = A, AI = A.

31When is that the case? For each property, find what conditions must hold for the dimensions of A, B, and C for the
operations in each side to be defined.
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Proof. We prove (1) leaving the remaining as an exercise. Let AB = T , and BC = S. Then

tiℓ =
m

∑
j=1

aijbjℓ, sij =
n

∑
k=1

bjkckj.

Then the i, p entry of A (BC)S = AS is

ai1t1p + ai2t1p +⋯+ aintnp =
n

∑
k=1

m

∑
j=1

(aijbjk)ckp.
Similarly, the i, p entry of (AB)C = T S is

n

∑
k=1

m

∑
j=1

aij(bjkckp).
Multiplication of real numbers is associative and therefore for all k, p the k, p entries of A (BC)

and (AB)C are equal. Therefore the matrices are equal. �

Many other properties follow the from the properties listed in Theorem 9.7. A very important is
stated in the following proposition. This proposition if obvious if actually use the definition of the
matrix product, multiplying any number with zero gives zero and adding a bunch of zeros also gives
zero. However we provide a proof using only the four properties listed in Theorem 9.7, the benefit
of this being that the proposition will be true whenever those properties (as well as the vector space
axioms) hold.

Proposition 9.8. If O is them × n zero matrix then for any n × k matrix A we have

OA = O,

where O in the RHS stands for the m × k zero matrix.
Similarly, if B is an k ×m matrix then

BO = O,

where O in the RHS stands for the k × n zero matrix.

Proof. We have
OA = (O +O)A = OA +OA.

Subtracting OA from both sides yields the result.
The proof of the second statement is entirely similar and is left as an exercise. �

Notice that a property we usually expect for multiplication, namely the commutative property is
not listed. The reason is, of course, that it is not true, that is it is not true that for all A,B

(31) AB = BA.

First of all, ifAB is defined,BA is not necessarily defined. In order for both products to be defined
we need to have that if A is an m × n matrix then B is n ×m. And even in that case, AB and BA

have different dimensions in general, the first ism×m and the second n×n. So the only case that we
could have that (31) has a chance of holding is whenm = n. But even then it is not generally true. As
an example consider that standard basis of M33. We can easily verify that

E12E23 = E13, while E23E12 = O.

The last example exhibits an other surprising property of matrix multiplication. Sometimes the
product of two non-zero matrices may be zero. In other words, for matrices A,B it is not true that

AB = O Ô⇒ A = O or B = O.
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9.1. The algebra of Square Matrices. We now concentrate on the set of square matrices Mn. If
A,B are two n × n square matrices, then AB is always defined, and is actually also an n × n matrix.
The set Mn endowed with matrix addition, scalar multiplication, and matrix multiplication is often
referred to, as the algebra of square matrices.

In general, Equation (31) does not hold. Actually most of the times it doesn’t hold. When it does
hold, it’s special and we give it a name.

Definition 9.9 (Commuting matrices). If Equation (31) holds for A,B ∈Mn we say that A and B

commute.

Of course, A always commutes with itself, and the identity matrix I as well as the zero matrix O

commute with all matrices.

Example 9.10. The matrices

A =
⎛⎜⎝
1 2 3

−2 0 1

−1 −3 2

⎞⎟⎠ , B =
⎛⎜⎝
−6 −7 11

−3 −7 −4
3 −8 −2

⎞⎟⎠ ,
commute. Indeed, by direct calculations32 we see that

AB =
⎛⎜⎝
−3 −45 −3
15 6 −24
21 12 −3

⎞⎟⎠ = BA.

Example 9.11 (Finding the set ofmatrices that commutes with a givenmatrix). We often want
to know the set of matrices that commute with a given matrix or even all matrices in a given set. If
S ⊆ Mn then the set of matrices that commute with all elements of S is called the centralizer of S.
Here is an example on how to find the centralizer of a single matrix.

Let A = (1 1

0 1
) . We want to find all matrices M = (x y

z t
) that commute with A. In other words

we want

AM =MA.

Now

AM = (1 1

0 1
) (x y

z t
) = (x + z y + t

z t
) ,

while

MA = (x y

z t
) (1 1

0 1
) = (x x + y

z z + t) .
Therefore we need

(x x + y
z z + t) = (x + z y + t

z t
) .

This is equivalent to the linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = x

x + y = y + t
z = z

t + z = t

.

32Do them!
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Solving this is rather straightforward. From the second equation we have x = t and from the last z = 0.
So we conclude that in order to commute with A, M has to have the form

M = (x y

0 x
) , x, y ∈ R.

Definition 9.12 (Algebra of Matrices). We say that a nonempty subset A ⊆ Mn is a subalgebra,
or that it is an algebra of matrices, if A is closed under the operations of matrix addition, scalar
multiplication, and matrix multiplication. This means that if A,B ∈A and λ ∈ R then

(1) λA ∈A.
(2) A +B ∈A.
(3) AB ∈A.

If in addition any two elements of A commute, that is, if in addition

(4) AB = BA,

then we say thatA is a commutative algebra of matrices.

Theorem 9.13. IfA is an algebra of matrices then:

(1) O ∈A.
(2) A ∈A Ô⇒ −A ∈A.
(3) If A ∈A and A is invertible then A−1 ∈A.
(4) IfA contains invertible elements then I ∈A.

The first two properties follow from the fact thatA is closed under scalar multiplication. Just take
λ = 0 for the first and λ = −1 for the second. The fourth property follows from the third and the fact
thatA is closed under matrix multiplication.

The proof of the third property requires more ammunition than we have currently available. I will
give a proof towards the end of this section but the proof will not be complete because it depends on
a celebrated theorem, the Cayley-Hamilton Theorem that we will see later in the course.

Example 9.14 (Trivialities). The subset {O} consisting only of the zero matrix is clearly a subalge-
bra called the zero subalgebra. There are no invertible elements in this algebra.

Example 9.15 (The algebra of scalar matrices). A slightly non trivial example is the algebra of
scalar matrices. Let

Rn = {λIn ∶ λ ∈ R} .
The elements ofRn are called scalar matrices because they behave like scalars. For example for x ∈ Rn

we have

(λI)x = λx.
Thus multiplying with a scalar matrix λI gives the same result as multiplying with the scalar λ. Sim-
ilarly, adding two scalar matrices, results in the scalar matrix obtained by adding the corresponding
scalars:

λI + µI = (λ + µ) I.
So Rn is a commutative algebra of matrices. The invertible elements are the scalar matrices λI

with λ ≠ 0, and of course

(λI)−1 = λ−1 I.
Example 9.16 (The algebra of diagonal matrices). A diagonal n × n matrix is a matrix D with
dij = 0 for i ≠ j, i.e. non-zero entries can occur only along themain diagonal. If λ1, . . . , λn are n scalars
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then we define diag(λ1, . . . , λn) to be the diagonal matrix with λ1, . . . , λn in the main diagonal. For
example

diag(1,−7,0,42) =
⎛⎜⎜⎜⎝

1 0 0 0

0 −7 0 0

0 0 0 0

0 0 0 42

⎞⎟⎟⎟⎠
.

The scalar matrix λI is thus diag(λ, . . . , λ).
Notice that the i-th row (as well as the i-th column) of diag(λ1, . . . , λn) is λi ei. This means that

when we multiply a diagonal matrix with another matrix only one of the products in the sum that
gives the i, j entry of the product matrix is (possibly) non-zero.

Let A be any matrix with n rows and let, as usual, a∗1 , . . . ,a
∗
n (respectively a1, . . . ,am) be its row

(respectively column ) vectors. Then,

diag(λ1, . . . , λn)A = ⎛⎜⎝
λ1 a

∗
1

⋮
λn a

∗
n

⎞⎟⎠ , A diag(λ1, . . . , λm) = (λ1 a1 . . . λm am) .
So multiplying from a left by a diagonal matrix has the effect of multiplying the rows of A with the

scalars along the diagonal, while multiplying from the right has the effect of multiplying the columns
of A.

It follows that

diag(λ1, . . . , λn) diag(µ1, . . . , µn) = diag(λ1 µ1, . . . , λn µn).
So the product of two diagonalmatrices is also diagonal, and furthermore any two diagonalmatrices

commute. In particular, since scalar matrices are special cases of diagonal matrices we also see that
the set of diagonal matrices is also closed under scalar multiplication.

We also have that

diag(λ1, . . . , λn) + diag(µ1, . . . , µn) = diag(λ1 + µ1, . . . , λn + µn),
and we established that the set of diagonal matrices is a commutative algebra.

It is rather straightforward33 to see that a diagonal matrix is invertible if and only if all diagonal
entries are non=zero. In that case,

diag(λ1, . . . , λn)−1 = diag(λ−11 , . . . , λ−1n ).
Example 9.17 (The algebra of upper triangular matrices). A square matrix T is called (upper)
triangularif all the entries below the main diagonal are 0, in other words T = (tij) is triangular if

i > j Ô⇒ aij = 0.

For example here is an upper triangular 4 × 4 matrix:

⎛⎜⎜⎜⎝

1 11 0 0

0 −7 41 42

0 0 0 7

0 0 0 42

⎞⎟⎟⎟⎠
.

The set of n × n triangular matrices is denoted by ∆n. It is easy34 to see that ∆n is closed under
addition and scalar multiplication. To see that it is also closed under multiplication notice that the
i-th row of a triangular matrix has zero entries up to the (i− 1)-th column, while its j-th column has
all zero entries after the j-th row. So ifA andB are triangular matrices and i > j then the dot product
a∗i ⋅ bj = 0, and therefore the i, j entry of AB is 0.

33Is it?
34It is easy, right?
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So we established that ∆n is an algebra of matrices. For future use we observe that the diagonal
entries of the product of two triangular matrices are just the products of the corresponding diagonal
entries.

The invertible elements of ∆n are exactly the triangular matrices with all diagonal entries non-
zero. For, if this the case then we have a matrix in echelon form with non-zero diagonals. If on the
other hand there a 0 in the diagonal then the corresponding column is a free column, and therefore
the matrix has non-zero nullity.

Example 9.18 (Centralizers). Recall from Example 9.11 that if S ⊆Mn then the centralizer of S is
the set of all matrices that commute with all elements of S. Denoting the centralizer of S by C we
thus have

A ∈ C ⇐⇒ ∀X ∈ S, AX =XA.

I claim that C is an algebra. The claim follows from the following three facts:

● If A andX commute, so do λA and X .

Proof. Assume A and X commute. Then we have

(λA) X = λ (AX) = λ (XA) =X (λA) .
�

● If A andX , and B and X commute, the A +B and X and commute.

Proof. We have

(A +B)X = AX +BX =XA +XB =X (A +B).
�

● If A andX , and B and x commute, the AB and X and commute.

Proof. We have

(AB)X = A (BX) = A (XB) = (AX)B = (X A)B =X (AB).
�

Example 9.19 (A commutative algebra of matrices). Let

A = {(a b

b a
) ∶ a, b ∈ R} .

Then A is a commutative algebra of matrices. Indeed for λ ∈ R and A ∈ A we have

λA = (λa λb

λb λa
) .

We see then that λA ∈A. ThusA is closed under scalar multiplication.

Now let A be as above and let B = (x y

y x
) be a second element of A. Then

A +B = (a + x b + y
b + y a + x) .

Thus A +B ∈ A and we established closure under matrix addition.
For multiplication we have

AB = (ax + b y ay + bx
bx + ay by + ax) = (ax + b y ay + bx

ay + bx ax + b y) .
Hence, AB ∈A andA is closed under multiplication as well.
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We have established then that A is an algebra of matrices. To prove that it is commutative we
compute BA to verify that it is equal to AB.

BA = (xa + y b xb + y a
y a + xb y b + xa) = (ax + b y ay + bx

ay + bx ax + b y) = AB.

SoA is a commutative algebra of matrices.
Now let’s find the invertible elements of A. From Example 8.7 we know that A is invertible when

its determinant is non-zero. Thus an element A ∈A is invertible if and only if

a2 − b2 ≠ 0 ⇐⇒ a ≠ ±b.

In that case

A−1 =
1

a2 − b2
( a −b
−b a

) .
Definition 9.20 (Powers of a matrix). If A ∈Mn and k ∈ N the power Ak is defined recursively as
follows:

{ A0 = I

An+1 = AnA
.

So,

A1 = A0A

= A,

and

A2 = A1A

= AA,

and continuing,

A3 = A2A

= (AA)A,
and so on. In general, An is a product of n copies of A.

Remark 9.21. Because of the associative property of multiplication (the first property in Theo-
rem 9.7), we also have

An+1 = AAn.

This can be proven by induction. We just show it for the third power:

AA2 = A (AA)
= (AA)A
= A2A

= A3.

Powers of matrices enjoy some of the properties of powers that we are familiar with.

Proposition 9.22. If A ∈Mn and k, ℓ ∈ N we have

(1) AkAℓ = Ak+ℓ.

(2) (Ak)l = Ak l.



86 NIKOS APOSTOLAKIS

(3) (λA)k = λkAk.
(4) Ik = I .
(5) Ok = O.

However it’s not true, that (AB)k = AkBk,

unless A and B commute. For example, by definition

(AB)2 = ABAB.

But we can’t swap the second and third factor, unless A and B commute.
In general, we need to be careful when we are doing algebraic manipulations with matrices. For

example if A,B are n × n square matrices, then we have

(A +B)2 = A2 +AB +BA +B2,

which, if A and B commute simplifies to the familiar

(A +B)2 = A2 + 2AB +B2.

Similarly,

(A +B)(A −B) = A2 −AB +BA −B2,

which, if A and B commute, simplifies to the familiar

(A +B)(A −B) = A2 −B2.

Since I commutes with all matrices, we have that

A2 − I = (A − I)(A + I)
and

(A ± I)2 = A2 ± 2A + I.
The following Theorem follows from the more general Theorem 9.36.

Theorem 9.23. If A is invertible, then Ak is also invertible for all natural numbers k and

(Ak)−1 = (A−1)k .
Since later in this section we will prove a more general Theorem about the interaction of matrix

multiplication and inverses let us just see why the theorem is true with an example. Say k = 3. Then
(eschewing parenthesis as associativity allows us to)

A3 = AAA, (A−1)3 = A−1A−1A−1.
Therefore:

A3 (A−1)3 = AAAA−1A−1A−1

= AAI A−1A−1

= AAA−1A−1

= AI A−1

= AA−1

= I.
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Entirely similarly,

(A−1)3 A3 = I.

Thus indeed,

(A3)−1 = (A−1)3 .
So we can now define negative powers, at least for invertible matrices.

Definition 9.24. If A is an invertible matrix, then for any negative integer k we define

Ak = (A−1)−k .
Let’s collect a few basic facts about powers of matrices. The proofs are either straightforward,

already embedded in the discussion we’ve had so far, or are special cases of theorems we’ll prove later
in this section. Make sure that you can provide the proofs, if you can’t at first reading come back after
you finish this section.

Proposition 9.25. The following hold. The powers could be positive or negative integers; in the later
case we assume that the involved matrices are invertible.

(1) Properties (1) through (3) in Proposition 9.22 hold for all integers, providedA is invertible. Property
(4) also holds for all integers. Property (5) of course doesn’t make sense for negative k35.

(2) All powers of the same matrix commute.
(3) IfA is an algebra of matrices, A ∈A and k ∈ Z then Ak ∈A if defined.
(4) If A is invertible then for all matrices B we have:

(A−1BA)k = A−1Bk A,

provided that Bk is defined.

Example 9.26 (Powers of diagonal matrices). Refer to Example 9.16 for the notation used. Let
A = diag(a1, . . . , an) then for all k ≥ 0 we have

Ak = diag (ak1, . . . , akn) .
If all diagonal entries are non-zero this is true for negative k as well.

Let’s prove this by induction. It clearly it is true for k = 0. Now,

Ak+1 = AkA

= diag (ak1, . . . , akn) diag (a1, . . . , an)
= diag (ak1 a1, . . . , akn an)
= diag (ak+11 , . . . , ak+1n ) .

Now, if all diagonal entries are non-zero then (see Example 9.16) A is invertible and if k < 0 then
−k > 0 and

Ak = (A−1)−k = diag (a−11 , . . . , a−1n )−k = diag (ak1, . . . , akn) .
Example 9.27. Consider the matrix

A =
1

2
( 1 −

√
3√

3 1
) .

We have

35Why?
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A2 =
1

4
( 1 −

√
3√

3 1
) ( 1 −

√
3√

3 1
) = 1

4
( 1 − 3 −

√
3 −
√
3√

3 +
√
3 −3 + 1

) = 1

2
(−1 −

√
3√

3 −1
) .

Then

A3 = A2A =
1

4
( 1 −

√
3√

3 1
) (−1 −

√
3√

3 −1
) = 1

4
(−4 0

0 −4) = −I.
Then,

A4 = A3A = −A, A5 = A4A = −A2, A6 = I.

From now on the powers will repeat in cycles of length 6. The next cycle is

A7 = A6A = I A = A,

and then

A8 = A2

A9 = A3

A10 = A4

A11 = A5

A12 = I.

We can express this periodic pattern using modular arithmetic. Any integer m can be uniquely
written asm = 6k + i where k ∈ Z and i ∈ {0,1, . . . ,5}, where k is the quotient and i the remainder of
the divisionm ÷ 6. Then

Am = A6k+i = A6k Ai = (A6)k Ai = IkAi = Ai.

For example, since 12435 leaves remainder 3 when divided by 6 we have

A12435 = A3 = −I.

Or, since 134 leaves remainder 2 we have

A134 = A2 =
1

2
(−1 −

√
3√

3 −1
) .

Example 9.28. Consider the matrix

A = (0 1

0 0
) .

We have

A2 = (0 1

0 0
) (0 1

0 0
) = (0 + 0 0 + 0

0 + 0 0 + 0) = O.

Then,

A3 = A2O = O, A4 = A3O = O, . . .

Thus all power of A after the first are the zero matrix.

Example 9.29. Let’s find the powers of

A =
⎛⎜⎝
1 0 1

0 0 0

1 0 1

⎞⎟⎠
Of course,
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A0 = I, A1 = A.

Now,

A2 =
⎛⎜⎝
1 0 1

0 0 0

1 0 1

⎞⎟⎠
⎛⎜⎝
1 0 1

0 0 0

1 0 1

⎞⎟⎠ =
⎛⎜⎝
1 + 0 + 1 0 + 0 + 0 1 + 0 + 1
0 + 0 + 0 0 + 0 + 0 0 + 0 + 0
1 + 0 + 1 0 + 0 + 0 1 + 0 + 1

⎞⎟⎠ =
⎛⎜⎝
2 0 2

0 0 0

2 0 2

⎞⎟⎠ .
Now notice that

A2 = 2A.

So,

A3 = A2A = (2A)A = 2A2 = 2 (2A) = 4A.
and

A4 = A3A = (4A)A = 4A2 = 4 (2A) = 8A.
And this pattern will continue, to get the fifth power we multiply A4 with A, and we’ll get 8A2 =

16A. Thus we have,

An = 2n−1A =
⎛⎜⎝
2n−1 0 2n−1

0 0 0

2n−1 0 2n−1

⎞⎟⎠ .
We can formalize the above argument to an inductive proof. So we will prove, using induction, that

for all n ≥ 136

An = 2n−1A.

For n = 1 the formula clearly holds since both sides are equal to A. Assuming it holds for n we get

An+1 = AnA = (2n−1A) A = 2n−1A2 = 2n−1 2A = 2nA = 2n+1−1A.

Example 9.30. Let

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
−
1

2

1

2
−
1

2

−
1

2

1

2

1

2
−
1

2
1

2

1

2

1

2

1

2

−
1

2
−
1

2

1

2

1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A direct calculation shows that

A2 = I.

Then,

A3 = A2A = I A = A, A4 = A3A = AA = I.

And therefore37

36Why the formula doesn’t work for n = 0?
37Give an inductive proof of this.
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An = {I n even

A n odd
.

Now that we have powers, scalar multiplication, and addition we can plug a matrix in any polyno-
mial with real coefficients.

Definition 9.31 (Evaluating polynomials at matrices). Let

p(x) = d

∑
j=0

aj x
j = a0 x

0 + a1 x1 +⋯ + ad−1 xd−1 + ad xd,

be a polynomial of degree d, where ai ∈ R, and letA ∈Mn. Then the evaluation of p(x) atA is defined
via

p (A) = d

∑
j=0

aj A
j = a0A

0 + a1A1 +⋯ + ad−1Ad−1 + adAd.

If p (A) = O then we say that A is a root or zero of p(x).
Remark 9.32. Since A0 = I we often write

p (A) = a0 I + a1A +⋯+ ad−1Ad−1 + adAd.

Example 9.33. Let A = (2 −3
3 2

), and let p(x) = x3 − 2x2 − 2x + 6, and q(x) = x2 − 4x + 13.

We calculate:

A0 = (1 0

0 1
) , A1 = (2 −3

3 2
) , A2 = (−5 −12

12 −5 ) , A3 = (−46 −9
9 −46) .

Then

p (A) = A3 − 2A2 = 2A + 6

= (−46 −9
9 −46) − 2 (−5 −1212 −5 ) − 2 (2 −33 2

) + 6 (1 0

0 1
)

= (−46 −9
9 −46) + ( 10 24

−24 10
) + (−4 6

−6 −4) + (6 0

0 6
)

= (−34 21

−21 −34) .
And
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q (A) = A2 − 4A + 13 I

= (−5 −12
12 −5 ) − 4 (2 −33 2

) + 13 (1 0

0 1
)

= (−5 −12
12 −5 ) + ( −8 12

−12 −8) + (13 0

0 13
)

= (0 0

0 0
) .

So A is a root of q(x).
The following theorem is immediate38.

Theorem 9.34. IfA is an algebra of matrices, A ∈A and p(x) is any polynomial, then p(A) ∈A.

9.2. Invertible Matrices. We now focus on invertible matrices. We already know quite a few char-
acterizations of invertible matrices, and we will see a few more down the road. From an algebraic
point of view perhaps the following definition is the most convenient.

Definition 9.35 (General Linear Group). We say that a square matrix A ∈Mn is invertible if there
exists a matrix B in Mn such that

(32) AB = I = BA.

In that case we call B the inverse of A and write A−1 = B.
The set of n × n invertible matrices is called the General Linear Group and is denoted by GL(n).

Theorem 9.36 (Invertible matrices form a group). We have

(1) A ∈ GL(n) Ô⇒ A−1 ∈ GL(n), and actually
(A−1)−1 = A.

(2) A,B ∈ GL(n) Ô⇒ AB ∈ GL(n), and actually39
(AB)−1 = B−1A−1.

Proof. The first is obvious since by definition we have

AA−1 = I = A−1A,

and therefor A is the inverse of A−1.
For the second we have:

(AB) (B−1A−1) = A (BB−1) A−1 = AI A−1 = AA−1 = I.

Similarly, (B−1A−1) (AB) = B−1 (A−1A) B = B−1 I B = B−1B = I.
�

It turns out that we don’t need to check that both products in Equation (32) give the identity matrix.
As the following Lemma shows, if one of the products is the identity the other will be as well.

Lemma 9.37. If AB = I then we also have BA = I and therefore B = A−1. Similarly, if AB = I then
B = A−1.

38Provide the proof
39Notice the reverse of the order!
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Proof. If AB = I then for all x ∈ Rn we have

A (B x) = x.
So, every x ∈ Rn is in the range of A and therefore A is surjective. By Theorem 8.2 it follows that A
is invertible. We have then

AB = I Ô⇒ A−1(AB) = A−1
Ô⇒ (A−1A) B = A−1
Ô⇒ I B = A−1

Ô⇒ B = A−1.

�

The properties listed in Theorem 9.36 have many important consequences, so we abstract them by
introducing the concept of a group. Groups play a fundamental role not only in modern mathematics,
but in physics and other sciences as well.

Definition 9.38 (Group of functions). Let G be a set of functions with domain and codomain the
same setX . We say that G is a group if the following hold:

(1) The identity function of X is in G.
(2) G is closed under composition of functions.
(3) All elements of G are invertible, and their inverses are also in G. That is,

g ∈ G Ô⇒ g−1 ∈ G.

Thus Theorem 9.36 says that GL(n) is a group. Usually the operation of composition is written
as multiplication and we can define powers gn where g ∈ G and n ∈ Z, that satisfy the algebraic
properties (1), (2), and (4) of Proposition 9.22. We will not pursue this further at this point. We’ll come
back to these ideas later though.

In Examples 9.27 and 9.30 we have matrices where one of their powers is the identity matrix.
Lemma 9.37 implies that such matrices are invertible because if Ak = I then Ak−1A = I .

Example 9.39. Let

A =
1

9

⎛⎜⎝
4 7 −4
1 4 8

8 −4 1

⎞⎟⎠ .
We calculate40 that

A2 =
1

9

⎛⎜⎝
−1 8 4

8 −1 4

4 4 −7

⎞⎟⎠ , A3 =
1

9

⎛⎜⎝
4 1 8

7 4 −4
−4 8 1

⎞⎟⎠ , A4 = I.

We conclude that A is invertible and

A−1 = A3 =
1

9

⎛⎜⎝
4 1 8

7 4 −4
−4 8 1

⎞⎟⎠ .
WhenAk = I the matrixA is a root of the polynomial xk−1. More generally we have the following

proposition.

Proposition 9.40. IfX is a root of a polynomial p(x) = akxk +⋯+a1x+a0 with constant term a0 ≠ 0,
then X is invertible.

40Do the calculations!
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Proof. We have

akX
k +⋯ + a1X + a0 I = O ⇐⇒ X (akXk−1 +⋯+ a1 I) = −a0I.

If a0 ≠ 0 then we can divide both sides by a0 to get

X (−ak
a0

Xk−1 −⋯−
a1

a0
I) = I.

So X is invertible by Lemma 9.37, and furthermore

X−1 = −
ak

a0
Xk−1 −⋯−

a1

a0
I,

that is the inverse of X can be expressed as a polynomial in X . �

Example 9.41. In Example 9.33 we saw that A = (2 −3
3 2

), is a root q(x) = x2 − 4x + 13. So, A is

invertible and

A−1 = −
1

13
(A − 4 I) = − 1

13
(−2 −3
3 −2) .

Example 9.42. Let

X =

⎛⎜⎜⎜⎝

−4 1 1 1

−16 3 4 4

−7 2 2 1

−11 1 3 4

⎞⎟⎟⎟⎠
.

Then one can verify41 that X is a root of the following polynomial:

p(x) = x4 − 5x3 + 9x2 − 7x + 2.

It follows that X is invertible, and its inverse is

X−1 = −
1

2
(X3 − 5X2 + 9X − 7 I) .

Since, as you have already calculated,

X2 =

⎛⎜⎜⎜⎝

−18 2 5 5

−56 5 16 16

−29 4 8 7

−37 2 11 12

⎞⎟⎟⎟⎠
, and X3 =

⎛⎜⎜⎜⎝

−50 3 15 15

−144 7 44 44

−81 6 24 23

−93 3 29 30

⎞⎟⎟⎟⎠
,

we find that42

X−1 =
1

2

⎛⎜⎜⎜⎝

3 −2 1 1

8 −2 0 0

−1 −4 5 3

7 −2 −1 1

⎞⎟⎟⎟⎠
.

Down the road, as a consequence of the Cayley-Hamilton Theorem we will see that the converse
of Proposition 9.40 is also true. We state the proposition postponing the proof.

Proposition 9.43. If X is invertible then it is a root of a polynomial with non-zero constant term.

Combining this with 9.34 we get the proof of Theorem 9.13.

Proof of Theorem 9.13. IfA is invertible then by Propositions 9.43 and 9.40 we have that A−1 is a poly-
nomial of A. Theorem 9.34 then implies that A−1 ∈A. �

41Do the calculations!
42Do the calculations!
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10. The transpose of a matrix and the adjoint of a linear operator

We have identified matrices with linear operations by letting matrices act from the left that is the
image of x is obtained by multiplying x from the left, in other words

xz→ Ax.

In order for that to make sense we represent x as a column vector.
Now, an m × n matrix can also act on m-vectors, but it has to act from the right

xz→ xA.

In order for this to make sense we need x to be a row vector. We have

(x1 ⋯ xm) ⎛⎜⎝
a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

⎞⎟⎠ = (x1 a11 + x2 a21 +⋯+ xm am1 ⋯ x1 a1n + x2 a2n +⋯+ xm amn) .
Thus the same matrix defines two linear functions,

R
n
Ð→ R

m, x z→ Ax

and

R
m
Ð→ R

n, xz→ xA.

These two linear maps are called adjoint maps. If one of them is denoted by A the other is denoted
by A∗.

Definition 10.1 (Adjoint operators, Transpose matrices). Let A∶ Rn
Ð→ Rm be a linear operator

induced by multiplication from the left by a matrix A. Then the adjoint of A, is the operator

A∗∶ Rm
Ð→ R

n, xz→ xA.

The transpose of an m × n matrix A, denoted by A∗ is the n ×m matrix with row vectors equal
to the column vectors of A, or equivalently, column vectors equal to the row vectors of A. In other
words, if aij and a∗ij are the elements in the i-th row and j-th column of A, and A∗ respectively, then

a∗ij = aji.

Example 10.2. Consider the 4 × 3 matrix

A =

⎛⎜⎜⎜⎝

−1 42 11

3 5 −10
0 6 4

7 −2 0

⎞⎟⎟⎟⎠
.

The transpose of A is the 3 × 4 matrix A∗, with a∗11 = a11, a
∗
12 = a21, a

∗
13 = a31, and a∗14 = a41, and so

on. Thus,

A∗ =
⎛⎜⎝
−1 3 0 7

42 5 6 −2
11 −10 4 0

⎞⎟⎠ .
Of course, if we transpose the transpose, we’ll get a matrix with rows the columns of A∗, that is

the rows of A. Two matrices with the same rows are of course equal so

(A∗)∗ = A.
For our example, we see that indeed,
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(A∗)∗ =
⎛⎜⎜⎜⎝

−1 42 11

3 5 −10
0 6 4

7 −2 0

⎞⎟⎟⎟⎠
.

Now because, the number of columns of A is equal to the number of rows of A∗ the multiplication
AA∗ is defined and the product is a 3× 3matrix. But also the number of columns of A∗ equals to the
number of rows of A, the multiplication A∗A is also defined with product a 4 × 4 matrix.

Notice that both of these matrices are square matrices, but of different dimension. We have

AA∗ =
⎛⎜⎝
59 −41 −41
−41 1829 436

−41 436 237

⎞⎟⎠ , A∗A =

⎛⎜⎜⎜⎝

1886 97 296 −91
97 134 −10 11

296 −10 52 −12
−91 11 −12 53

⎞⎟⎟⎟⎠
.

Notice that both of these square matrices are symmetric, their rows are identical with their columns.
Now let’s look at A as a linear operator, A∶ R3

Ð→ R4. What is A∗ the adjoint linear operator?

A∗∶ R4
Ð→ R

3,xz→ xA.

What’s the matrix of A∗. It’s columns are the images of the basic vectors ei for i = 1,2,3,4. We
have,

e1 z→ (1 0 0 0)
⎛⎜⎜⎜⎝

−1 42 11

3 5 −10
0 6 4

7 −2 0

⎞⎟⎟⎟⎠
= (−1 ⋅ 1 + 3 ⋅ 3 + 0 ⋅ 0 + 7 ⋅ 0 42 ⋅ 1 + 5 ⋅ 0 + 6 ⋅ 0 − 2 ⋅ 0 11 ⋅ 1 − 10 ⋅ 0 + 4 ⋅ 0 + 0 ⋅ 0)
= (−1 42 11)

Entirely similarly,

e2 z→ (3,5,10), e3 z→ (0,6,4), e4 z→ (7,−2,0).
Thus the columns of the matrix of the adjoint operator, has columns equal to the rows of A. Thus

the matrix of the adjoint operator is the transpose of the matrix of A.
Let’s also look at the reduced echelon forms of A and A∗.

A =

⎛⎜⎜⎜⎝

−1 42 11

3 5 −10
0 6 4

7 −2 0

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

0 0 0

⎞⎟⎟⎟⎠
,

and,

A∗ =
⎛⎜⎝
−1 3 0 7

42 5 6 −2
11 −10 4 0

⎞⎟⎠ ∼
⎛⎜⎜⎜⎜⎝

1 0 0 −292
113

0 1 0 361
113

0 0 1 3411
226

⎞⎟⎟⎟⎟⎠
.

We notice that A, and A∗ have the same rank.
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Example 10.3 (Column and Row vectors as matrices). So far we have treated m × 1 and 1 × n
matrices as column and row vectors, respectively. Let’s now look at them as matrices, and what
operations they induce.

Let a be an n × 1 matrix, then it induces the linear operation that sends 1-vectors to n-vectors.

a∶ R1
Ð→ R

n, ax =
⎛⎜⎝
a1
⋮
an

⎞⎟⎠ (x) =
⎛⎜⎝
a1 x

⋮
an x

⎞⎟⎠ = xa.
Thus, if we identify R1 with R, then we see that the operation induced by a as a matrix, sends a

real number x to x times the vector a.
We can think of this as introducing coordinates in the line determined by a, where 1 corresponds

to a.
The adjoint of a on the other hand, is induced by acting by a from the right, so

a∗∶ Rn
Ð→ R

1, xz→ ax = (x1 ⋯ xn) ⎛⎜⎝
a1
⋮
an

⎞⎟⎠ = (x1 a1 +⋯ + xn am) = x ⋅ a.
Thus a∗, as an operator, sends a vector to its dot product with a. Now since the standard basis is

orthonormal, we have

ei ⋅ a = ai,
and we see that the matrix of a∗ is a row vector, with the same coordinates as a, and of course, the

transpose of a as a matrix.

a =
⎛⎜⎝
a1
⋮
an

⎞⎟⎠ Ô⇒ a∗ = (a1 ⋯ an)

a = (a1 ⋯ an) Ô⇒ a∗ =
⎛⎜⎝
a1
⋮
an

⎞⎟⎠ .

Adjoint Operators, Transpose matrices

The transpose of anm×nmatrix, is an n×mmatrix, such that for anym×1matrix xwe have:

(33) A∗x = (x∗A)∗ .

Using Equation (33) we can prove the following property of the transpose.

Theorem 10.4 (Transpose is an anti-homomorphism). The following hold.

(1) Transpose respects scalar multiplication. That is, for any scalar λ

(λA)∗ = λA∗.
(2) Transpose respects matrix addition. That is,

(A +B)∗ = A∗ +B∗.
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(3) If AB is defined then B∗A∗ is also defined and

(34) (AB)∗ = B∗A∗.
Proof. The proof of (1) and (2) are straightforward and left as an exercise.

For the third, we will use Equation (33). To prove that two functions are equal, we have to prove
that they take the same values on all elements of their domain. So, we have

(AB)∗ x = x∗ (AB)
= (x∗A) B
= B∗ (x∗A)∗
= B∗ (A∗ x)
= (B∗A∗) x.

�

Equation (34) has the same structure as property (2) in Theorem 9.36. Transposing, just like invert-
ing, doesn’t preserve multiplication but it doesn’t totally destroy it either, it just reverses the order of
the factors.

IfA ∈Mn (i.e it is an n×n square matrix) thenA∗ ∈Mn as well. In that caseAk is defined for k ∈ N
and the following holds.

Theorem 10.5. We have for k ∈ N.

(1) If A ∈Mn then

(Ak)∗ = (A∗)k .
(2) If p(x) is any polynomial then

p(A∗) = (p(A))∗ .
Proof. The first follows from Equation (34), and the fact that all powers of the same matrix commute,
using induction. For k = 0 both sides are equal to the identity matrix so the statement is true. Now
assume that we have proved it for k. Then we have

(Ak+1)∗ = (Ak A)∗ = A∗ (Ak)∗ = A∗ (A∗)k = (A∗)k+1 .
Evaluating a polynomial at a matrix involves scalar multiplication, matrix addition, and powers of

matrices. We have seen that transposing respects all of these operations and the result follows. More
formally, let

p(x) = ad xd +⋯+ a1 x + a0 x0.

Then

p (A∗) = ad (A∗)d +⋯ + a1 (A∗)1 + a0 (A∗)0
= ad (Ad)∗ +⋯+ a1A∗ + a0 I
= (adAd)∗ +⋯+ (a1A)∗ + (a0 I)∗
= (adAd +⋯+ a1A + a0 I)∗
= (p(A))∗ .

�

Furthermore, as the following Theorem shows, if A is invertible so is its transpose.

Theorem 10.6 (Transposing and Inverting commute). IfA is invertible then so isA∗. Furthermore

(A∗)−1 = (A−1)∗ .
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Proof. We have:

AB = I Ô⇒ (AB)∗ = I∗
Ô⇒ B∗A∗ = I.

And the result follows from Lemma 9.37. �

Definition 10.7 (Symmetric and orthogonalmatrices). A square n×nmatrixA is called symmetric
if

(35) A = A∗.

Equivalently, for all i, j ∈ {1, . . . , n} we have
aij = aji.

A linear operator A∶ Rn
Ð→ Rn that satisfies Condition (35), is said to be self-adjoint. The set of

symmetric n × n matrices is denoted by Sn.
A square n × n matrix is said to be orthogonal if

(36) AA∗ = I.

A linear operator A∶ Rn
Ð→ Rn that satisfies Condition (36), is said to be a (linear) isomometry, or

an orthogonal transformation.
The set of orthogonal n × n matrices is denoted by O(n) and called the orthogonal group of n-

dimensional space.

The reason for the terminology symmetric should be clear. The entries aij and aji are in symmetric
position with respect to the main diagonal, so when they are equal there is a symmetry in the matrix.
Consider the symmetricmatrixAA∗ of Example 10.2, we can see the symmetry by coloring symmetric
entries with the same color:

⎛⎜⎝
59 −41 −41
−41 1829 436

−41 436 237

⎞⎟⎠ ,
The reason for the terminology orthogonal is that the columns of an orthogonal matrix A form an

orthonormal basis of Rn. When we officially introduce the dot product we will explore this property
further. For now let’s us just state the following Proposition.

Proposition 10.8. A is orthogonal if and only if

ai ⋅ aj = δij .

Proof. The element in the i, j column of A∗A is the inner product of the i-th row of A∗ and the j-th
row of A. But the i-th row of A∗ is the i-th column of A. �

Proposition 10.9. If A is an m × n matrix then AA∗ and A∗A are symmetric matrices.

Proof. We have

(A∗A)∗ = A∗ (A∗)∗ = A∗A.
Similarly, we have

(AA∗)∗ = AA∗.

�
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We will prove that the set of symmetric matrices is closed under scalar multiplication and matrix
addition. But first we note that in general Sn is not closed under matrix multiplication. That is, if A
and B are symmetric their product is not necessarily symmetric. For example, let

A =
⎛⎜⎝
1 2 3

2 −1 0

3 0 −4

⎞⎟⎠ , B =
⎛⎜⎝
3 −1 −5
−1 0 4

−5 4 −4

⎞⎟⎠ .
two symmetric matrices.

Now we calculate,

AB =
⎛⎜⎝
−14 11 −9
7 −2 −14
29 −19 1

⎞⎟⎠
and we see that AB is not symmetric.
BA is not symmetric either:

BA =
⎛⎜⎝
−14 7 29

11 −2 −19
−9 −14 1

⎞⎟⎠ .
However, the sum AB +BA is symmetric:

AB +BA =
⎛⎜⎝
−28 18 20

18 −4 −33
20 −33 2

⎞⎟⎠ .
Theorem 10.10. If λ ∈ R and A,B ∈Mn then:

(1) A ∈ Sn Ô⇒ λA ∈ Sn.
(2) A,B ∈ Sn Ô⇒ A +B ∈ Sn.
(3) A,B ∈ Sn Ô⇒ (AB)∗ = BA.
(4) A,B ∈ Sn Ô⇒ AB +BA ∈ Sn.

Proof. If A∗ = A and B∗ = B we have:

(1) (λA)∗ = λA∗ = λA.
(2) (A +B)∗ = A∗ +B∗ = A +B.
(3) (AB)∗ = B∗A∗ = BA.
(4) (AB +BA)∗ = (AB)∗ + (BA)∗ = B∗A∗ +A∗B∗ = BA +AB = AB +BA.

�

The set of orthogonal matrices on the other hand is closed under taking inverses and under matrix
multiplication. In, other words, O(n) is a subgroup of GL(n).
Theorem 10.11. If λ ∈ R and A,B ∈Mn then:

(1) A ∈ O(n) Ô⇒ A−1 ∈ On.
(2) A,B ∈ O(n) Ô⇒ AB ∈ O(n).

Proof. To prove that a matrix is orthogonal we have to prove that its inverse is equal to its transpose.

(1) We have

A−1 = A∗ Ô⇒ (A−1)∗ = (A∗)∗
Ô⇒ (A−1)∗ = (A−1)−1 .

Therefore A−1 is orthogonal.
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(2) Let A and B be two orthogonal matrices. Then we have

(AB)−1 = B−1A−1
= B∗A∗

= (AB)∗ .
�

10.1. The rank of the transpose. In Section 6 we saw that a matrix A ∈Mmn defines a linear map
A∶ Rn

Ð→ Rm given by

xz→ Ax,

where x ∈ Rn is considered a column vector. We concluded (among other things) that the range of
this linear is spanned by the columns of A, namely

y = Ax ⇐⇒ y =
n

∑
i=1

xi ai.

Entirely similar arguments show that the range of the adjoint linear mapA∗ is spanned by the rows
of A, namely

x = yA ⇐⇒ x =
m

∑
i=1

yi a
∗
i .

Another way to see this is to recall that the columns of the transpose matrix A∗ are the rows of A.
Either way we have the following Theorem.

Theorem 10.12. The range ofA∗ is spanned by the rows ofA. Therefore the rank ofA∗ is the dimension
of the linear span of the rows of A.

Now recall that a basis for the range of A consists of the basic columns of A, that is the columns
that contain a leading 1 in the reduced echelon form of A. Now if ai is a basic column, then the row
that contains the leading one has all zero entries to the left of the leading 1. Therefore all these rows
are linearly independent.

Therefore there are at least rankA linearly independent rows. Therefore we conclude that the
dimension of the linear span of the rows of A is greater of equal to the rank of A. So

rankA ≤ rankA∗.

Applying this to A∗, whose transpose is A, we conclude that

rankA∗ ≤ rankA,

as well.
Therefore we have proved the following theorem.

Theorem 10.13 (Transpose matrices have the same rank). We have

rankA = rankA∗.

When we restrict attention to square matrices we obtain the following corollary.

Corollary 10.14. Let A ∈Mn be a square matrix. Then A is invertible if and only if A∗ is invertible.

We already knew that of course, see Theorem 10.6.
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11. Elementary matrices and row (or column) operations

We have seen two ways of solving systems of linear equations. In Section 1 we developed the
method of using elementary row operation to get the (augmented) matrix of the system to a (reduced)
echelon form. On the other hand, Theorem 8.4 suggests another way, assuming that the matrix of
the system is invertible: just multiply the vector of constants with the inverse of the matrix. In other
words, the solution of

Ax = c,

is

x = A−1 c,

The second method, in practice, is not really that different, since our method of finding the inverse
of a matrix involves row operations anyway (see Example 8.6). In this section we will see that row op-
erations can be thought of as multiplication with some special matrices: when we use row operations
we still multiply with the inverse of the matrix, but we do it in several steps.

Recall that there are three types of elementary operations:

(1) Type I: Interchange two rows.
(2) Type II:Multiply a row by a non-zero scalar.
(3) Type III: Add a row to an other row.

Definition 11.1 (Elementary Matrices). An n × n matrix resulting from the application of a row
operation to the identity matrix In is called an elementary matrix of the same type as the row opera-
tion.

Example 11.2. The following are 4 × 4 elementary matrices of type I, II, and III respectively:

⎛⎜⎜⎜⎝

1 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

1 0 0 1

0 1 0 0

0 0 −2 0

0 0 0 1

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
.

Indeed in the first we have interchanged the second and third row, in the the second we multiplied
the third row by −2, and the for the last we added the fourth row to the first.

Theorem 11.3. Let E be an elementary n×n matrix and A an n×m matrix. Then EA is obtained by
performing to A the same elementary row operation that was performed to I to get E.

Remark 11.4. We have already seen this for Type II elementary matrices. Indeed those are diagonal
matrices with all diagonal entries except one equal to 1 and one diagonal entry equal to a number λ,
and the effect of multiplying with a diagonal matrix was discussed in Example 9.16.

Proof. Recall that the i-th row of the product AB consists of the dot products of the i-th row of A
with the columns ofB. This means that the i-th row of the productAB depends only on the i-th row
of A and no other rows.

Now, let E an elementary matrix of Type I where the rows k and ℓ of I have been interchanged.
Then if i ≠ k, ℓ the i-th row of E is the same as the i-th row of I and therefore the i-th row of the
product EA is the same as the i-th row of the product I A, that is the i-th row of A. On the other
hand the k-th row of E is the ℓ-th row of I , hence the k-th row of EA equals the ℓ-th row of I A = A.
Similarly, the ℓ-th row of EA equals the k-th row of A.

If E is obtained by I by multiplying the row k by λ then all rows of EA except the k-th are the
same as the rows of A. On the other hand, the j-th entry of the k-th row of EA is the dot product

(λek) ⋅ aj = λakj.
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If E is an elementary matrix of type III, obtained, say, by adding the k-th row to the ℓ-th row, then
all the rows of E, except the ℓ-th, are the same as the rows of I thus all the rows of EA, except the
ℓ-th, are the same as the rows of A. On the other hand the ℓ-th row of E is ek + eℓ and so the j-the
entry of the ℓ-row is (ek + eℓ) ⋅ aj = akj + aℓj.

�

Next we prove that all elementary matrices are invertible. But before that let’s introduce some
notation.

Definition 11.5. The elementary matrix obtained by interchanging the k-th and ℓ-th rows of I will
be denoted by Pkℓ, the one obtained by multiplying the k-th row by λ will be denoted by Mk;λ, and
the one obtained by adding the k-th row to the ℓ-th row by Skℓ.

Theorem 11.6. All elementary matrices are invertible. Namely,

(1) P −1kℓ = Pkℓ.
(2) M−1

k;λ =Mk;λ−1 .

(3) S−1kℓ =Mk;−1SkℓMk;−1.

Proof. By Theorem 11.6 when multiplying Pkℓ with Pkℓ interchanges the k-th and ℓ-th rows of Pkℓ

and so
P 2
kℓ = I.

Similarly,
Mk;λ−1 Mk;λ = I.

For (3) notice that Mk;−1 SkℓMk;−1A has the effect of subtracting the k-th row of A from its ℓ-th
row. Indeed Mk;−1 multiplies the k-th row by −1, then Skℓ adds it to the ℓ-th row, and finally Mk;−1

multiplies the k-th row by −1 again reverting it to the original row of A. Therefore,

Mk;−1 SkℓMk;−1 Skℓ = I.

�

So applying an elementary row operation to the augmented matrix of a system is equivalent to
multiplying, from the left, both sides of the corresponding vector equation by an elementary matrix.
Let’s reconsider the 3 × 3 system of Example 1.1043

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + y + z = 3
x − y + z = 1
4x + 2y + z = 10

.

The corresponding vector equation is

(37) Ax = c

where

A =
⎛⎜⎝
1 1 1

1 −1 1

4 2 1

⎞⎟⎠ , and c =
⎛⎜⎝
3

1

10

⎞⎟⎠ .
We started by subtracting the first row from the second. This is really a combination of two ele-

mentary row operations: we first multiplied the second row with −1 and then we replaced the second

43I changed the variables to x, y and z.
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row by the sum of the first and second row. In terms of elementary matrices this is equivalent to first
multiply Equation (37) with M2;−1 and then by S12.

Ax = c ⇐⇒ M2;−1 (Ax) =M2;−1 c ⇐⇒ S12M2;−1 (Ax) = S12M2;−1 c.

Then we subtracted 4 times the first equation from the third. This is equivalent to the composition
of four elementary operations: multiply the third equation by −1, then the first by 4, then add the first
equation to the third, and finally multiply the first equation by 1/4. In terms of elementary matrices
we multiplied both sides of the vector equation with M1;1/4 S13M1;4M3;−1 to get

M1;1/4 S13M1;4M3;−1 S12M2;−1 (Ax) =M1;1/4 S13M1;4M3;−1 S12M2;−1 c.

Continuing in this fashion we see that overall we multiplied the vector equation by the matrix

B ∶=M2;−1M3;−1 S21M2;1/2 S31M3;1/3 S2;3M3;−1M1;1/4 S13M1;4M3;−1 S12M2;−1.

In other words, the whole process of Gauss-Jordan elimination can be summarized as

Ax = c ⇐⇒ BAx = B c.

But since the echelon form of A turned out to be the identity matrix we have that BA = I , which
means that B = A−1.

The Gauss-Jordan eliminationmethod is an efficient way of multiplying both
sides of Equation (37) by A−1.

The above discussion also gives an algebraic interpretation of the method of finding the inverse of
a matrix exposed in Example 8.6. Namely, we see that the inverse of an invertible matrix is a product
of elementary matrices. Since any invertible matrix is the inverse of its inverse we see that every
invertible matrix is a product of elementary matrices.

Conversely, since elementary matrices are invertible, a matrix that is a product of elementary ma-
trices is invertible. We thus have the following Theorem.

Theorem 11.7 (Elementary matrices generate GL(n)). A square matrix is invertible if and only it
can be written as a product of elementary matrices.

Example 11.8. The 3 × 3 matrix

A =
⎛⎜⎝
1 1 1

0 1 −1
2 −1 0

⎞⎟⎠
is invertible. To express A as a product of elementary matrices we need to find a sequence of row

operations that reduces it to the identity matrix.
We start by multiplying the adding −2 times the first row to the third row. This corresponds to the

product M1;−1/2 S13M1;−2. Then we add 3 times the second row to the third. This corresponds to the
product M2;1/3 S23M2;3. Then we divide the third row by −5. This is accomplished by M3;−1/5. This
turns A into an upper triangular matrix.

A =
⎛⎜⎝
1 1 1

0 1 −1
2 −1 0

⎞⎟⎠ ∼
⎛⎜⎝
1 1 1

0 1 −1
0 −3 −2

⎞⎟⎠ ∼
⎛⎜⎝
1 1 1

0 1 −1
0 0 −5

⎞⎟⎠ ∼
⎛⎜⎝
1 1 1

0 1 −1
0 0 1

⎞⎟⎠ .
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The last matrix is equal to the product

M3;−1/5M2;1/3 S23M2;3M1;−1/2 S13M1;−2A.

Next we add the third row to the second. This is accomplished by S32 . We then multiply the first
row by −1 (corresponding to M1;−1), add the third and then the second row to the first (S31 S21), and
finally we multiply the first row by −1 (M1;−1).

∼
⎛⎜⎝
1 1 1

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
−1 −1 −1
0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
−1 −1 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
−1 0 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ .
So we have

M1;−1 S21 S31M1,−1 S32M3;−1/5M2;1/3 S23M2;3M1;−1/2 S13M1;−2A = I.n

Therefore

A = (M1;−1 S21 S31M1,−1 S32M3;−1/5M2;1/3 S23M2;3M1;−1/2 S13M1;−2)−1
=M1;−1/2M1;−1 S13M1;−1M1,−2M2;1/3M2;−1 S23M2;−1M23M3;−5M3;−1 S32M3;−1M2;−1 S21M2;−1M1,−1.

Notice that even for a relatively small matrix we get a rather complicated expression. We could
simplify the expression a bit by noticing that, for example

M1;−1/2M1;−1 =M1;1/2

because multiplying the same row two consecutive times can be done with one step. We get a simpler,
but still complicated expression:

A =M1;1/2 S13M1;2M2;−1/3 S23M2;3M3;5 S32M3;−1M2;−1 S21M2;−1M1,−1.

Remark 11.9. As the previous example demonstrates using elementary matrices to compute inverses
is not really that practical. Computing with row operations, as we have been doing so far is more
efficient. This doesn’t mean that elementary matrices are useless though, looking at the same topic
from different points of view increases our understanding and leads to new insights that could be
much harder to reach otherwise.

Recall (see Definition 1.18) that two matrices A and B are called row equivalent if there is a finite
sequence of elementary row operations that turn A on to be. By our discussion so far we have the
following theorem.

Theorem 11.10. Two m × n matrices A, B are row equivalent if and only if there an invertiblem ×m
matrix C such that

B = C A.

11.1. Column operations. We introduced row operations in Section 1 as operations on the equa-
tions of a linear system. When we later introduced the vector form of a system, equations corre-
sponded to rows of the matrix and so these operations ended up to act on the rows of the matrix. We
represented the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 +⋯ + a1nxn = c1
a21x1 + a22x2 +⋯ + a2nxn = c2
⋮ ⋮ ⋮

am1x1 + am2x2 +⋯+ amnxn = cm
as
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⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋯ ⋮

am1 am2 ⋯ amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

c1
c2
⋮
cm

⎞⎟⎟⎟⎠
.

But that was a choice. We could also have represent it as

(x1 x2 ⋯ xn)
⎛⎜⎜⎜⎝

a11 a21 ⋯ am1

a12 a22 ⋯ am2

⋮ ⋮ ⋯ ⋮
a1n a2n ⋯ amn

⎞⎟⎟⎟⎠
= (c1 c2 ⋯ cm) .

In other words, we represented a vector x ∈ Rn as a column but we could have represented it as
row instead. Had we done that, the matrix of the system would have been the transpose A∗ instead
of A. After all,

Ax = c ⇐⇒ x∗A∗ = c∗.

Perhaps we made that choice in a parallel universe. In that universe, the equations of the system
would correspond to the columns of its matrix and the variables would correspond to its rows, and
we would talk about elementary column operations and (reduced) column echelon form.

Of course, such a choice doesn’t really change the system, or its solution set, a vector doesn’t care
whether we write it as a column or as a row, it’s the same vector either way. So in that hypothetical
universe44 there would be a theory of linear systems that would get the same results by using ele-
mentary column operations. The elementary matrices that would represent their column operations
would be the same as our elementary matrices though, just applied on the right of a matrix not on
the left.

Column operations and column equivalence are completely analogous to row operations and row
equivalence. Rather than copying the definitions changing “row” to column we develop them from
an algebraic point of view starting with the analog of Theorem 11.10.

Definition 11.11 (Column Equivalence). We say that A,B ∈Mm×n are column equivalent if

B = AC

for some invertible n × n matrix C .

For the remaining of this section, let’s use the notation

A ≅ B

to mean that A is column equivalent to B.

Theorem 11.12. Column equivalence is an equivalence relation. In other words if X,Y,Z are m × n
matrices, we have:

(1) X ≅X .
(2) X ≅ Y Ô⇒ Y ≅ Z .
(3) X ≅ Y and Y ≅ Z Ô⇒ X ≅ Z .

Proof. (1) holds becauseX = X I .
(2) follows from the implication Y =X C Ô⇒ X = Y C−1.
To prove (3), notice that if Y = XC and Z = Y D then Z = X (CD). Furthermore, if C,D are

invertible then so is CD (see Theorem 9.36). �

44This is not pure science fiction. There are books where this choice is made.
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Theorem 11.13. Two matrices are column equivalent if and only if their transposes are row equivalent.
In other words,

A ≅ B ⇐⇒ A∗ ∼ B∗.

Proof. We have (see Theorem 10.4)

B = AC ⇐⇒ B∗ = C∗A∗.

and C is invertible if and only if C∗ is invertible (see Theorem 10.6). Thus, if A ≅ B then (by Theo-
rem 11.10) A∗ ∼ B∗.

Conversely, if A∗ ∼ B∗ then, again by Theorem 11.10 we have that B∗ = C A∗ for some invertible
matrix C . But then B = AC∗ and therefore A,B are row equivalent. �

As a corollary we have the following Theorem.

Theorem 11.14. Let A and B bem ×n matrices. Then A ≅ B if and only if B can be obtained from A

by applying a finite sequence of elementary column operations:

● Interchanging two columns.
● Multiplying a column by a non-zero scalar.
● Adding a column to an other column.

The elementary matrices Pij andMk;λ are symmetric. This is obvious forMk;λ since it’s a diagonal
matrix. On the other if the ij and ji as well as the kk entries, for k ≠ i, j, of Pij are 1 and all other
entries are 0, and so Pij is symmetric.

On the other hand, the diagonal entries as well as the ℓk entry of Skℓ are 1 and all other entries are
0. Thus the transpose of Skℓ has the diagonal entries and the kℓ entry 1, and all other entries 0. So
the transpose of Skℓ is Sℓk.

Thus the following theorem holds.

Theorem 11.15. We have

(1) P ∗kℓ = Pkℓ.
(2) M∗

k;λ =Mk;λ.

(3) S∗kℓ = Sℓk.

Theorem 11.16. Let A be an m × n matrix. Then

(1) APkℓ has the same columns as A with the k and ℓ columns interchanged.
(2) AMk;λ has the same columns as A except the k-th that is equal to λ times the k-th column of A.
(3) ASkℓ has the same columns as A except the k-th that is the sum of the k-th and ℓ-th columns of

A.

Proof. We have (APkℓ)∗ = PkℓA
∗.

Thus the columns of APkℓ are the rows of PkℓA∗, that is the rows of A∗ with the k-th and ℓ-th rows
interchanged. In other words the columns of A with the k-th and ℓ-th columns interchanged. This
proves (1).

Similarly, (AMk;λ)∗ =Mk;λA
∗.

Thus the columns of AMk;λ are the rows of Mk;λA∗, that is the rows of A∗ with the k-th row multi-
plied by λ. In other words the columns of A with the k-th column multiplied by λ. This proves (2).

Finally, (ASkℓ)∗ = SℓkA
∗.

Thus the columns of ASkℓ are the rows of SℓkA∗ that is the rows of A∗ with the ℓ-th row added to
the k-th. In other words the columns of A with the ℓ-th column added to the k-th. �
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Definition 11.17. We say that two m × n matrices A,B are equivalent, and write A ≈ B, if there is
an invertible m ×m matrix C and an invertible n × n matrix D such that

B = C AD.

Equivalently if B can be obtained by applying a finite sequence of elementary row or column
operations.

Exercise. Prove that ≈ is an equivalence relation.

Theorem 11.18. Any matrix A is equivalent to a block matrix of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0 0 ⋯ 0

0 1 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 0 ⋯ 0

0 0 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The number of non-zero rows (and columns) is rankA.

Proof. We use row operations to bring the matrix to its reduced row echelon form. Then we use
column operations to put all the free columns at the end. Finally we use the leading 1 of each row to
kill all non-zero entries on that row.

The number of non-zero columns is the number of basic columns in the reduced row echelon form
of A and therefore equal to rankA. �

Example 11.19. Consider the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 −1 4 0 −1 −2 0

2 −4 −5 11 0 −4 −16 −1
−2 4 5 −11 1 4 16 1

4 −8 −9 21 −2 −7 −27 −2
−1 2 5 −8 1 3 16 1

1 −2 −2 5 −1 0 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Its reduced row echelon form is

A ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 0 3 0 0 3 0

0 0 1 −1 0 0 2 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 3 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We use column interchanges to move the free columns to the end:

A ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −2 3 3

0 1 0 0 0 0 −1 2

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 3

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, we add 2 (respectively −3, −3) times the first column to the fifth (respectively sixth, seventh),
add the second column to the sixth, add −2 times the second column to the seventh, and finally −3



108 NIKOS APOSTOLAKIS

times the fourth column to the seventh to get

A ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We conclude that rankA = 5.

Exercise. Prove Theorem 10.13 using Theorem 11.18.
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