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CHAPTER 1

Linear systems

We say that two equations are equivalent if they have the same solution set, and we use the
symbol ⇐⇒ to denote equivalency of equations. For example

3x = 9 ⇐⇒ x = 3,
since both equations have the same solution set, namely {3}. We use the symbol Ô⇒ to
indicate that every solution of the equation on the left side is also a solution of the equation
at the right side. For example

x = 3 Ô⇒ x2 = 9.
Notice that it is not true that

x2 = 9 Ô⇒ x = 3,
because −3 is a solution of the left equation but not of the right.

For an equation with more than one variables a solution is an assignment of a value to
each of the variables that make the equation true. For example assigning x = 3 and y = 4 is a
solution of the equation

10x + 3 y = 42.
Usually there is an implicit order among the variables and we use ordered tuples to denote
solutions. If our variables are x, y, and z then we write (1,−2,4) to denote the assignment
x = 1, y = −2 and z = 4.

REMARK 1. Notice that whether two equations are equivalent depends on the domain of
definition, in other words where the variables are supposed to vary. For example if x is a real
variable (i.e. x ∈ R) then

x3 = 1 ⇐⇒ x = 1.
But if x is a complex variable (i.e. x ∈ C) then these equations are not equivalent because there
are three cubic roots of unity.

1.1. Linear systems

DEFINITION 1. A linear equation with n variables x1, x2, . . . , xn is an equation that is an
equation of the form

a1x1 + a2x2 + . . . + anxn = c,
where a1, . . . , an and c are real numbers1.

The numbers a1,⋯, an are called the coefficients and c is called the constant.
If the constant is 0 we say that the equation is homogeneous.

In this part of the class we’ll study systems of linear equations, namely we’ll address the
questions:

● How can we solve a linear system?● What sets appear as solution sets of linear systems?

Let’s wet our appetite by looking at a single linear equation.

1In this equation the symbols a1, . . . , an and c are parameters while x1, . . . , xn are variables. Unlike variables,
parameters are considered to have constant (but unspecified) values.

1



2 1. LINEAR SYSTEMS

1.1.1. One variable. A linear equation of one variable has the form

(1.1) ax = c.
We have two cases:

(a) Non-zero coefficient. If a ≠ 0 then we can divide both sides by a (or equivalently
multiply by a−1):

ax = c ⇐⇒ x = c

a
.

So in this case we have a unique solution.
(b) Zero coefficient. If a = 0 we have two subcases:

(a) Non-zero constant. If c ≠ 0 then there are no solutions, in other words the solu-
tion set is the empty set ∅.

(b) Zero constant. If c = 0 then all numbers are solutions, in other words the solution
set is the set of real numbers R.

In summary we have:

The solution set of ax = c
The solution set of a linear equation with one variables is

● a point, or● the empty set ∅, or● the whole line R.

The case of non-zero coefficient is the generic case, most linear equations have a unique
solution. “Wait a minute”, I here you say, “what do you mean most?”. Here is what I mean:
we can represent the linear equation ax = c by the point (a, c) ∈ R2, and conversely we can
think of any point of R as representing a linear equation. So the point (3,4) represents the
equation 3x = 4 and the point (0,3) represents the equation 0x = 3.

So we identified the set of linear equations with the Cartesian planeR2, the coefficient a
in horizontal axis and the constant c in the vertical. The equations with zero coefficient are
then represented by the vertical axis, a one-dimensional2 subspace of the two-dimensional
space. The equation 0x = 0 is represented by a single point (0,0) a zero-dimensional sub-
space. “Most” points are outside the vertical axis, so most equations have a unique solution.
Furthermore, the generic equation that doesn’t have a unique solution has no solutions at all.

1.1.2. Two variables. A linear equation with two variables, say x, y has the form

(1.2) ax + b y = c,
with a, b, c ∈ R.

Let’s first look at a particular equation, for example

(1.3) 2x − 3 y = 0.
If we divide by the coefficient of y and move the x-term to the right side we get the equivalent
equation

y = 2

3
x.

2Later in the class we will define what this means.
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FIGURE 1. The space of linear equations with one variable.

The solution set of this equation, obviously, consists of all pairs where the second coordinate
is two-thirds of the first coordinate. So the solution set is

S = {(x, 2
3
x) ∶ x ∈ R} .

We can write the solution set in parametric form as follows

(1.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = t
y = 2

3
t

t ∈ R.
This form makes it clear that the solution set is one-dimensional, in the sense that a solution
is completely determined once we choose a value for t.

Using vector notation we can express the solution set as

(1.5) (x
y
) = t (12

3

) .
We will explain this in more detail later, but for the moment here is a quick explanation.

We write coordinates vertically as columns: instead of (x, y) we write (x
y
) and instead of

(1,2/3) we write ( 1

2/3). Later in the class we will say that these are column vectors. In the

right hand side of (1.5) we have scalar multiplication: we multiply a number and a vector by
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multiplying each coordinate of the vector with the number. So,

t (12
3

) = ( t2
3
t
) .

Finally two vectors are equal if their corresponding coordinates are equal. Equation (1.5) is
therefore just a rewriting of the system of equations (1.4).

The operation of vector addition for column vectors is also defined coordinate-wise:

(a
b
) + (c

d
) = (a + c

b + d) .
The solution set S is a special subset of R2. It has two special properties, namely, it is closed

under scalar multiplication and vector addition. This means that if we multiply a solution by
a number the result is a solution, and if we add two solutions we get another solution. Indeed,
if s is a real number we have

s ( t2
3
t
) = ( st2

3
st
) = st(12

3

) ,
so a scalar times a solution is a solution. And,

( t12
3
t1
) + ( t22

3
t2
) = ( t1 + t2

2
3
t1 + 2

3
t2
) = ( t1 + t2

2
3
(t1 + t2)) ,

so adding two solutions gives a solution. These two properties can be summarized by saying:

S is a Vector Space.

Actually the solution set of any homogeneous linear equation is closed under scalar mul-
tiplication and vector addition.

THEOREM 1.1.1. The solution set of any homogeneous linear equation is closed under scalar
multiplication and vector addition.

PROOF. Let

(1.6) a1x1 + . . . + anxn = 0
be a homogeneous equation and (v1, . . . , vn), (w1, . . . ,wn) be two solutions. This means that

a1v1 + . . . + anvn = 0, and a1w1 + . . . + anwn = 0.
Adding these two equations we get

a1v1 + . . . + anvn + a1w1 + . . . + anwn = 0.
Now taking common factors gives

a1 (v1 +w1) + . . . + an (vn +wn) = 0.
Therefore (v1 +w1, . . . , vn +wn) is a solution of (1.6).

Now let t be any number, then

a1tv1 + . . . + antvn = t (a1v1 + . . . + anvn) = 0,
therefore s (v1, . . . , vn) is a solution of (1.6). �
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Consider now the equation

(1.7) 2x − 3 y = 6.
Notice that this equation has the same coefficients as Equation (1.3). Entirely similarly as
before we have that the solution set is

S′ = {(x, 2
3
x) + 6 ∶ x ∈ R} .

In parametric form the solution is

(1.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x = t
y = 2

3
t + 2 t ∈ R,

and in vector notation:

(1.9) (x
y
) = t (12

3

) + (0
2
) .

Equations (1.5) and (1.9) are very similar, they differ by the vector (0
2
). Where did that

come from?
The answer will be revealed if we graph the equations, see Figure 2.

x

y

FIGURE 2. The solution sets of Equations (1.3) and (1.7).

We see then that (0,2) is the y–intercept of the line with equation (1.7). That’s where (0
2
)

came from. Geometrically, Equation (1.9) says that the graph the green line is obtained from
the blue line by a vertical translation of two units.
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There is nothing special about the y-intercept: take any other point of the blue line, for
example the point with coordinates (3,4). If we translate the blue line using the vector with
components (3,4) we will again get the green line. This connection is explored further in
Section 1.2.3.

In general if at least one of the coefficients in non-zero the equation (1.2) has a one-
dimensional solution set. Indeed, if a ≠ 0, we can divide by a and move the y-term to the
right side to get

x = − b
a
y + c

a
.

Similarly as above, we get that the general solution is

(1.10) (x
y
) = t ( b

a

1
) + ( c

a

0
) .

1.1.3. The case of zero coefficients. In the trivial case a = b = 0, we have the equation

0x + 0 y = c.
Clearly if c ≠ 0 there are no solutions, and if c = 0 all points (x, y) ∈ R2 are solutions.

The solution set of ax + b y = c
The solution set of a linear equation with two variables is

● a line, or● the empty set ∅, or● the whole plane R2.

Three or more variables. Let’s again look at a generic example first. Consider the equation

2x + 3 y − z = 1.
Solving for z we get

z = 2x + 3 y − 1.
The solution set

S = {(x, y,2x + 3 y − 1) ∶ (x, y) ∈ R2}
has now two free parameters

Using vector notation we have

(1.11)
⎛⎜⎝
x

y

z

⎞⎟⎠ = s
⎛⎜⎝
1

0

2

⎞⎟⎠ + t
⎛⎜⎝
0

1

3

⎞⎟⎠ +
⎛⎜⎝
0

0−1
⎞⎟⎠ .

As in the one variable and two variable cases, if all the coefficients are zero we either have
no solutions (when the constant is non-zero), or the solution set is R3 (when the constant is
zero).

Clearly this pattern continues in all dimensions. The solution set of a generic3 linear equa-
tion with n unknowns has n − 1 independent parameters. If all coefficients are 0 then if the
constant is non-zero the solution set is empty, and if the constant is 0 the solution set is Rn.

3i.e. with at least one non-zero coefficient.
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The solution set of a1 x1 +⋯+ anxn = c
The solution set of a linear equation with n variables is

● an (n − 1)-dimensional subspace, or● the empty set ∅, or● the whole space Rn.

1.1.4. Systems of linear equations. An m×n linear system is a collection of m linear equa-
tions with n variables. So,

{2x − 3y + 4z = 0
x + y − z = −6

is a 2 × 3 system, while ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = 5
−3x + 2y = 2
9x + πy = −2

is a 3 × 2 system. A solution of a system is a common solution of all the equations, and we say
that two systems are equivalent if they have the same solution sets.

Elementary row operations

● Interchange two equations.● Multiply one equation by a non-zero scalar.● Replace Ek by Ek +Eℓ.

THEOREM 1.1.2. Application of an elementary row operation gives an equivalent system.

PROOF. The first two operations don’t change the solution set of any equation, so the
resulting system is equivalent to the original.

Let S be the original system and S′ the system that we get by replacing Ek with Ek + Eℓ.
It’s easy to see that S Ô⇒ S′. Indeed, a common solution of Ek and Eℓ is also a solution of
Ek +Eℓ.

Now notice that we can go from S′ to S by multiplying Eℓ with −1 and adding it to Ek+Eℓ.
Therefore S′ Ô⇒ S as well. �

REMARK 2 (An often used combination). In practice we often perform the following com-
bination of the second and third operation:

(a) multiply Ek by a non-zero scalar λk,
(b) multiply Eℓ by a non-zero scalar λℓ,
(c) replace Ek with E′k +E′ℓ,
(d) change E′ℓ back to Eℓ by multiplying it with λ−1ℓ .

The combined effect of these row operations is to replace Ek by λkEk + λℓEℓ.
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EXAMPLE 1. Consider the following 2 × 2 system

{2x + 3y = 5
7x − 3y = 4 .

Multiply the first equation by −7:

{14x + 21y = 35
7x − 3y = 4 .

Multiply the second equation by −2:

{ 14x + 21y = 35
−14x + 6y = −8 .

Replace the second equation by the sum of the first and the second:

{14x + 21y = 35
27y = 27 .

Divide the first equation by 7:

{2x + 3y = 5
27y = 27 .

Now divide the second equation by 27:

{2x + 3y = 5
y = 1 .

Now let’s multiply the second equation by −3 and add it to the first in one step:

{2x = 2
y = 1 .

Finally we divide the first equation by 2:

{x = 1
y = 1 .

We arrived at a system whose solution set is obvious: S = {(1,1)}.
It turns out that every linear system can be solved by applying a finite number of elemen-

tary row operations. Example 1 contains all the ingredients for an algorithm that solves all
linear systems.

EXAMPLE 2. Let’s solve the system

{ 2x − y + 3z = 1
−4x + 7y + 5z = 13 .

We first add 7 times the first equation to the second:

{ 2x − y + 3z = 1
10x + 26z = 30 .

Now add the second equation to −5 times the first, and then divide the second equation
by 10:

{ − y + 11z = 25
x + 13

10
z = 3 .
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Now we multiply the first equation with −1 and (for aesthetic reasons) we interchange the
equations:

{x + 13
10
z = 3

y − 11z = −25 .
The final step is to move the z-terms to the right side:

{x = −13
10
z + 3

y = 11z − 25 .

So we have a one-dimensional solution set. In vector form:

⎛⎜⎝
x

y

z

⎞⎟⎠ = t
⎛⎜⎝
−13

10

11

1

⎞⎟⎠ +
⎛⎜⎝

3−25
0

⎞⎟⎠ .
Let’s also see what can happen when we have more equations than unknowns.

EXAMPLE 3. Consider the 3 × 2 system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = 5
−3x + 2y = 2
9x + 7y = −2

.

We use the first equation to eliminate x from the second and third. To do this we add 3

times the first equation to the second, and −9 times the first equation to the third.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = 5
− y = 17
16y = −47

.

Solving the second and third equations for y we get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y = 5
y = −17
y = 47

16

.

The second and third equations are in contradiction, they cannot both be true. Therefore
the system has no solutions.

Problems in many areas of mathematics (and other sciences) reduce to solving linear sys-
tems.

EXAMPLE 4 (Finding the equation of a line). Find the line that passes through (3,7) and(−4,2).
SOLUTION. Let

ax + b y + c = 0
be the equation of the line, where a, b, and c are real numbers and at least one of the a, b is
non-zero. Substituting the coordinates of the given points we get the system

{ 3a + 7b + c = 0
−4a + 2b + c = 0 .

Multiplying the first equation by 4 and the second by 3 gives



10 1. LINEAR SYSTEMS

{ 12a + 28b + 4c = 0
−12a + 6b + 3c = 0 .

We then replace the second equation with the sum of the two equations, and multiply the
first by 1/4 and we get

{3a + 7b + c = 0
34b + 7c = 0 .

We’ve eliminated a from the second equation, and now we’ll eliminate b from the first.
Now replace the first equation by 34 times the first equation plus −7 times the first:

{102a − 15c = 0
34b + 7c = 0 .

Now divide the first equation by 102 and the second by 34 coefficients to get

{a − 5c/34 = 0
b + 7c/34 = 0 .

This means that a one-dimensional solution set:

S = {( 5
34

c,− 7

34
c, c) ∶ c ∈ R} .

When c = 0 we get the solution (0,0,0) that doesn’t satisfy the requirement that at least
one of a, b is non-zero. So any equation of the form

5c

34
x − 7c

34
y + c = 0, c ≠ 0

is an equation of the line that passes through this two points. The simplest of all these equa-
tions is, arguably, obtained for c = 34:

5x − 7y + 34 = 0.
�

EXAMPLE 5 (Determining a quadratic polynomial by three values). For the polynomial
p(x) = ax2 + bx + c we have that p(1) = 3, p(−1) = 1, and p(2) = 10. Find the coefficients of p.

SOLUTION. We have the system,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a + b + c = 3
a − b + c = 1
4a + 2b + c = 10

.

Rather than working with the system itself we will work with its augmented matrix:

⎛⎜⎝
1 1 1

1 −1 1

4 2 1

RRRRRRRRRRRRR
3

1

10

⎞⎟⎠
Think of it like this: we pretend that the variables a, b, and c as well as the additions

symbols are invisible and that the equal signs “=” have been replaced by vertical bars.
We use the following strategy: First we get an upper triangular matrix: we use a11 to kill all

the other entries in the first column. Then we use a22 to kill everything bellow it, and so on
until we get all entries below the diagonal to be 0.



1.1. LINEAR SYSTEMS 11

⎛⎜⎝
1 1 1

1 −1 1

4 2 1

RRRRRRRRRRRRR
3

1

10

⎞⎟⎠ ∼
⎛⎜⎝
1 1 1

0 −2 0

0 −2 −3
RRRRRRRRRRRRR

3

= 2−2
⎞⎟⎠ ∼

⎛⎜⎝
1 1 1

0 −2 0

0 0 −3
RRRRRRRRRRRRR

3

= 2

0

⎞⎟⎠
The next step is then to go back and kill all the entries above the diagonal until we are are

left with a diagonal matrix. We will start with the lowest diagonal entry a33 and we use it to
kill a23 and a13.

In our case, a23 is already 0, so we go to a13: we multiply the third row by 1/3 and add it to
the first. Next we go to a22 and use it to kill a12: we multiply the second row by 1/2 and add
it to the first.

⎛⎜⎝
1 1 0

0 −2 0

0 0 −3
RRRRRRRRRRRRR

3−2
0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 −2 0

0 0 −3
RRRRRRRRRRRRR

2−2
0

⎞⎟⎠
Now that we have a diagonal matrix we can easily solve, just divide each row by its first

non-zero entry:

⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
2

1

0

⎞⎟⎠
So the solution of the system is a = 2, b = 1, and c = 0. So our polynomial is

p(x) = 2x2 + x.
We can verify that indeed, p(1) = 3, p(−1) = 1, and p(2) = 10. �

EXAMPLE 6. Let’s again consider a quadratic binomial p(x) = ax2 + bx + c, and suppose
that we now are given that p(1) = 2, p(−1) = −2, and p(2) = 4. What is the polynomial now?

SOLUTION. Entirely similarly as before we get the system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a + b + c = 2
a − b + c = −2
4a + 2b + c = 4

.

with /augmented/ matrix

⎛⎜⎝
1 1 1

1 −1 1

4 2 1

RRRRRRRRRRRRR
2−2
4

⎞⎟⎠
As before we want to first obtain a triangular matrix.

⎛⎜⎝
1 1 1

0 −2 0

0 −2 −3
RRRRRRRRRRRRR

2−4−4
⎞⎟⎠ ∼

⎛⎜⎝
1 1 1

0 −2 0

0 0 −3
RRRRRRRRRRRRR

2−2
0

⎞⎟⎠ ∼
⎛⎜⎝
1 1 0

0 −2 0

0 0 −3
RRRRRRRRRRRRR

2−4
0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 −2 0

0 0 −3
RRRRRRRRRRRRR

3−4
0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
0

2

0

⎞⎟⎠
So we get the solution a = 0, b = 2, and c = 0. Even though the system has a solution the

polynomial we obtain p(x) = 2x is not really quadratic. �

REMARK 3. Notice that the two systems in the previous two examples have the same
coefficients and that the procedure we used to solve them was identical: we performed the
exact same row operations. So even though the solutions are different the solution sets have
the same nature: they both consist of a single solution.
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EXAMPLE 7. Consider the 3 × 3 system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − 3y + 2z = 4
2x + 5y − z = −3
3x + 2y + z = 1

Let’s again do our thing.

⎛⎜⎝
1 −3 2

2 5 −1
3 2 1

RRRRRRRRRRRRR
4−3
1

⎞⎟⎠ ∼
⎛⎜⎝
1 −3 2

0 11 −5
0 11 −5

RRRRRRRRRRRRR
4−11−11
⎞⎟⎠ ∼

⎛⎜⎝
1 −3 2

0 11 −5
0 0 0

RRRRRRRRRRRRR
4−11
0

⎞⎟⎠
Now let’s divide the second row by 11.

⎛⎜⎝
1 −3 2

0 1 −5/11
0 0 0

RRRRRRRRRRRRR
4−1
0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 7/11
0 1 −5/11
0 0 0

RRRRRRRRRRRRR
1−1
0

⎞⎟⎠
Notice that the last row is all zeros. What does this mean? If we make the variables visible

again the last equation is now the trivial equation

0x + 0 y + 0 z = 0.
This is a tautology4, and its presence does not really affect the solution set. So we might as
well delete the third row to get the system

{x + 7
11
z = 1

y − 5
11
z = −1 .

So we have a one-parameter family of solutions. That is, the solution set is 1-dimensional:

S = {(1 − 7

11
z,−1 + 5

11
z, z) ∶ z ∈ R} .

We can write this in “vector form” as follows:

⎛⎜⎝
x

y

z

⎞⎟⎠ = t
⎛⎜⎝
−7/11
5/11
1

⎞⎟⎠ +
⎛⎜⎝
1−1
0

⎞⎟⎠ .
EXAMPLE 8. Let’s solve to solve the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2x1 + 3x2 − 3x3 + 5x4 = 2

−4x1 + 7x2 + x3 = −7
3x2 + 2x4 = 1

−2x1 + 13x2 − 2x3 + 7x4 = 10

.

We have the augmented matrix

⎛⎜⎜⎜⎝

2 3 −3 5−4 7 1 0

0 3 0 2−2 13 −2 7

RRRRRRRRRRRRRRRRRR

2−7
1

10

⎞⎟⎟⎟⎠
.

We use a11 = 2 to kill all other entries in the column and get

4This means that the equation is true for all values of the variables
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⎛⎜⎜⎜⎝

2 3 −3 5

9 13 −5 −10
0 3 0 2

0 0 0 0

RRRRRRRRRRRRRRRRRR

2−11
1

12

⎞⎟⎟⎟⎠
.

Look at the last row (0 0 0 0 ∣ 12)
all the coefficients are 0 but the constant is non-zero. If we make the variables visible again
we see that the last equation is:

0x1 + 0x2 + 0x3 + 0x4 = 12.

This equation has no solutions, and so the system has no solutions either. The solution set is
thus the empty set ∅.

The last two examples show that rows with all but, possibly, the last entries 0 are impor-
tant.

The importance of zeros

If in the process of solving a linear system we arrive at an augmented
matrix with a row of the form

(0 0 . . . 0 ∣ c)
then

● If c ≠ 0 the system is inconsistent.● If c = 0 we can delete that row from the matrix.

Before continuing with the theory (and practice) of linear systems we take a detour to
properly introduce matrices. In our first encounter, matrices appeared to be just a convenient
book-keeping device, but appearances are deceptive sometimes. Matrices play a fundamental
role in linear algebra.

1.2. Matrices of linear systems

The matrix form of an m × n linear system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 +⋯ + a1nxn = c1
a21x1 + a22x2 +⋯ + a2nxn = c2⋮ ⋮ ⋮
am1x1 + am2x2 +⋯+ amnxn = cm

is ⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n⋮ ⋮ ⋯ ⋮
am1 am2 ⋯ amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2⋮
xn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

c1
c2⋮
cm

⎞⎟⎟⎟⎠
,

or in more compact form
Ax = c.
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A is called the matrix of the system, x the vector of unknowns, and c the vector of constants.
The augmented matrix of the system is the matrix A with an extra column that contains the
constants. ⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n⋮ ⋮ ⋯ ⋮
am1 am2 ⋯ amn

RRRRRRRRRRRRRRRRRR

c1
c2⋮
cm

⎞⎟⎟⎟⎠
.

The algorithm for solving a linear system consists of using elementary row operations to
transform the augmented matrix of the system into a special form, the so-called row-echelon
form. Roughly speaking, a matrix in row-echelon form exhibits a staircase pattern5.

(1 0

0 1
) , ⎛⎜⎝

11 3 −6
0 −9 3

0 0 4

⎞⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎝

−8 −11 32 5

0 0 1 −9
0 0 0 33

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

0 3 −7 0 1 0

0 0 2 −42 6 11

0 0 0 5 −3 −69
0 0 0 0 0 0

⎞⎟⎟⎟⎠
.

DEFINITION 2. A zero row is a row with all entries 0. The leading entry of a non-zero row is
the first non-zero entry in that row.

(Reduced) Echelon form

We say that the matrix A = (aij) is in echelon form if it satisfies the fol-
lowing two conditions:

(a) The zero rows are at the bottom of the matrix.
(b) All the entries below the leading entry of a non-zero row are 0.
(c) The leading entry of a non-zero row is in a column to the right of

any leading entry above it.

We say that a matrix is in reduced echelon form if it is in echelon form, and
it satisfies the following two additional properties:

(c) All leading entries are equal to 1.
(d) If a column contains a leading 1, all other entries in that column

are 0.

If the augmented matrix of a system is in echelon form then the system is easy to solve, by
using back-substitution.

EXAMPLE 9. Consider the system with augmented matrix

⎛⎜⎝
1 2 3

0 1 1

0 0 2

RRRRRRRRRRRRR
0

2−2
⎞⎟⎠ .

The corresponding system is

5The term echelon comes from the French word “échelle” that means “ladder”.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 2y + 3z = 0
y + z = 2

2z = −2
.

The last equation is practically solved: dividing by 2 gives z = −1. We now substitute the
value of z back to the first and second equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 2y − 3 = 0
y − 1 = 2

z = −1
.

We then solve the second equation and we find y = 3. Substituting back into the first
equation gives

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 3 = 0
y = 3

z = −1
.

We finally solve the first equation to get

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = −3
y = 3

z = −1
.

On the other hand, a system whose augmented matrix is in reduced echelon form is super-
easy to solve, in fact it’s solved already!

EXAMPLE 10. Consider the system with augmented matrix

⎛⎜⎝
1 0 0 3

0 1 0 −7
0 0 1 0

RRRRRRRRRRRRR
6

0−3
⎞⎟⎠ .

The system is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 + 3x4 = 6

x2 − 7x4 = 0

x3 = −3
,

and all we need to do to solve it is to move the terms containing the free variable x4 to the
right hand side:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = −3x4 + 6
x2 = 7x4

x3 = −3
.

From these two examples it is clear that if we are able to put the augmented matrix of a
system into echelon form (reduced or not) then we can solve it. We will shortly see that we can
put any matrix in (reduced) echelon form, and that the procedure for doing so is algorithmic,
we have actually being applying this procedure already. So we have two slightly different
methods for solving linear systems: either we stop once we get any echelon form, and use
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back substitution, or we go all the way to reduced echelon form. The first method is called
Gauss Elimination and the second Gauss-Jordan Elimination.

DEFINITION 3. We say that two matrices A and B are row equivalent, and write A ∼ B, if B
is obtained from A after the application of finitely many elementary row operations.

THEOREM 1.2.1. Row equivalence is an equivalence relation. In other words, it enjoys the follow-
ing properties:

(a) It is reflexive. This means that every matrix is row equivalent to itself:
(b) It is symmetric. This means that if A is equivalent to b then B is also equivalent to A:

∀A,B A ∼ B Ô⇒ B ∼ A.

(c) It is transitive. This means that if A is equivalent to B and B is equivalent to C then A is
also equivalent to C:

∀A,B,C A ∼ B and B ∼ C Ô⇒ A ∼ C.

PROOF. Reflexivity holds because we can get A by applying zero elementary row opera-
tions to A.

Symmetry holds because all elementary row operations are reversible.
Transitivity holds because if we can go from A from B and from B to C then we can clearly

go from A to C: start from A and perform the row operators needed to go to B but don’t stop,
perform the operations needed to go from B to C. �

We already have seen the procedure for getting the reduced echelon form of a matrix in
our example. Let’s prove that it always work.

THEOREM 1.2.2 (Kill below first, then kill above).

(a) Every matrix is row equivalent to a matrix in echelon form.
(b) Every matrix in row echelon form is row equivalent to a matrix in reduced row echelon form.

Therefore, every matrix is equivalent to a matrix in reduced echelon form.

PROOF. We will prove that every matrix has an echelon form and then we will show that
any echelon matrix is row equivalent to a reduced echelon matrix.

(a) Starting with a11 we scan the first row for non-zero entries. If there isn’t any then we
proceed to the second row, and scan it starting with its leftmost entry. We continue
until we either find a row that has a non-zero entry or we have scanned the whole
matrix without succeeding. In the later case, all the rows of our matrix are zero rows
and so the matrix is already in reduced echelon form.

If we are successful then the entry we find, say aij , is the leading entry of its row.
We then scan all the entries below and to the left, that is all the entries akℓ with k < i

and ℓ > j, searching for non-zero entries. If we find such a non-zero akℓ we restrict
our search to the entries below and to the left of akℓ. Since every time we find such
an akℓ we move below end to the left, we keep decreasing the number of entries we
are searching. Since there are finitely many entries in our matrix, this cannot go on
forever, eventually we’ll find a non-zero entry only zero columns to the left of it. Call
that entry the pivot and denote it by p. Since p ≠ 0 we can use row operations to kill all
the entries bellow it in its column. Since p is the topmost and leftmost non-zero entry
all the other entries in its column and all the entries of the column left of p are now
zero. Make the row of p the first row using row operations.

We repeat the process restricting attention to the entries below and to the right of
the first row. This process eventually will terminate because every time we find a new
pivot we decrease the size of the matrix we concentrate on.
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The matrix we get at the end of this procedure is in echelon form. Indeed, there
cannot be a zero row above a non-zero row because our procedure picks all non-zero
rows and moves them to the top just below the first non-zero row. All the entries
below a leading entry p are zero because we have either killed them when we first
found p, or they were 0 already. Finally, p is to the left of the leading entries of the
rows above it, because otherwise it would have been killed.

(b) Let A be an echelon matrix. We start by dividing each non-zero row by its leading
entry, to obtain an echelon matrix with all leading entries 1. Because all the entries to
the left of the leading 1s are zero, we can kill all entries above the rightmost leading
1 (that is the leading 1 of the last non-zero row) without changing anything in the
columns to the left of it, and in particular without changing the leading entries of the
rows above the last non-zero row.

We then restrict attention to the entries above and to the left, and keep going.
Again at every step we reduce the size of the matrix we are concentrating on, and
therefore the procedure will terminate. The final matrix is obviously in reduced ech-
elon form.

�

Gauss and Gauss-Jordan Elimination

When we solve a system, using either Gauss, or Gauss-Jordan, Elimina-
tion we modify the algorithm described above in two ways.

(a) If we scan a row and find no non-zero entries, we just discard that
row.

(b) If the leading entry is in the last column we stop the procedure
and declare that the solution set is ∅.

REMARK 4. I’ve made some choices in the description of the procedure above because I
wanted to present it as an algorithm, a procedure that can be performed without any thought.
Other choices are possible.

For example, dividing each of the rows of an echelon matrix by the leading entry could be
done at any point of the procedure. If the algorithm is to be performed by an infallible entity
it seems efficient to divide at the beginning of the procedure.

However doing so may introduce unwieldy fractions, that could cause more errors when
the algorithm is executed by not-so-infallible beings. In such cases it may actually be more
efficient to not divide until the end so as to minimize the probability of error.

In general, just because a procedure can be executed without any thought, it doesn’t mean

that we have to do it without thinking. We are thinking beings after all6. When we try to solve
a problem we can use any method that seems suitable at the moment.

6Or at least we think so
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EXAMPLE 11. Consider the matrix

A =

⎛⎜⎜⎜⎝

0 3 −6 6 4 −5

3 −7 8 −5 8 9

6 −16 20 −14 14 24

3 −9 12 −9 6 15

⎞⎟⎟⎟⎠
The pivot is a21 = 3. We use it to kill the first entries of the two rows below the row that

contains the pivot (notice that the entries above the pivot, a11, is already 0).

A ∼

⎛⎜⎜⎜⎝

0 3 −6 6 4 −5

3 −7 8 −5 8 9

0 2 4 −4 −2 6

0 2 4 −4 −2 6

⎞⎟⎟⎟⎠
We then interchange the first and second row:

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5

0 −2 4 −4 −2 6

0 −2 4 −4 −2 6

⎞⎟⎟⎟⎠
Now we concentrate on the submatrix (aij) with i, j ≥ 2. The new pivot is 3 and we use it

to kill the entries below it, that happen to be identical. This is done by adding −2/3 times the
second row, to the third and fourth rows.

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5

0 0 0 0 2/3 8/3
0 0 0 0 2/3 8/3

⎞⎟⎟⎟⎠
Next we get

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5

0 0 0 0 1 4

0 0 0 0 0 0

⎞⎟⎟⎟⎠
This an echelon matrix. To get the row equivalent reduced echelon matrix we start killing

upwards.

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 0 −23

0 3 −6 6 0 −21

0 0 0 0 1 4

0 0 0 0 0 0

⎞⎟⎟⎟⎠
and

A ∼

⎛⎜⎜⎜⎝

3 0 −6 9 0 −72

0 3 −6 6 0 −21

0 0 0 0 1 4

0 0 0 0 0 0

⎞⎟⎟⎟⎠
.

Finally, we divide first and second row by 3 and we get the reduced echelon form:
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A ∼

⎛⎜⎜⎜⎝

1 0 −2 3 0 −24

0 1 −2 2 0 −7

0 0 0 0 1 4

0 0 0 0 0 0

⎞⎟⎟⎟⎠
.

There are two kind of columns in a reduced echelon form, those that contain a leading
entry and those that don’t. Columns of the first kind are called basic and those of the second
type are called free. When we solve systems that have coefficient matrix A, the free columns
correspond to free variables.

So any system that has coefficient matrix A will, as long as it is consistent of course, have
a solution set with three free parameters, i.e. the solution set will be 3-dimensional.

But wait a minute, what do I mean by “the solution set is three-dimensional”? Using this
particular set of row operations we got a reduced echelon matrix with three free columns and
this indeed will give a parametrization with three parameters. But maybe if we use an other
sequence of row operations we will get a parametrization with two, or four, parameters.

That’s a valid objection but it turns out that this can never happen. In fact every matrix is
row equivalent to a unique matrix in reduced row echelon form. Therefore, the “dimension”
of the solution set is well defined. We will prove that in the next section where we turn
our attention to the special case of homogeneous systems, that is systems where all constants
c1, c2, . . . , cn = 0.

1.2.1. Homogeneous systems. Consider then the general m × n homogeneous system

(1.12)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 +⋯+ a1nxn = 0

a21x1 + a22x2 +⋯+ a2nxn = 0

⋮ ⋮ ⋮

am1x1 + am2x2 +⋯+ amnxn = 0

Notice that x1 = x2 = ⋅ ⋅ ⋅ = xn = 0 is a solution of (1.12). Therefore homogeneous systems are
always consistent, the interesting question then is whether there are other solution besides
that obvious one.

DEFINITION 4 (Trivial solution of a homogeneous system.). The solution

x1 = 0, . . . , xn = 0

is called the trivial solution7. A solution with at least one of the variables assigned a non-zero
value is called a non-trivial solution.

REMARK 5. For a homogeneous system the last column of the augmented matrix is re-
dundant, it will always be the zero-column. So for homogeneous systems we work with the
coefficient matrix, not the augmented matrix.

EXAMPLE 12. Consider the homogeneous system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 + x2 + x3 − 2x4 = 0

2x1 − 2x3 = 0

x2 + x3 + 4x4 = 0

.

To solve the system we bring its matrix to reduced echelon form. We first get an echelon
form:

7The term zero solution is also occasionally used.
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⎛⎜⎝
1 1 2 −2
2 0 −2 0

0 1 1 4

⎞⎟⎠ ∼
⎛⎜⎝
1 1 2 −2
0 −2 −6 4

0 1 1 4

⎞⎟⎠ ∼
⎛⎜⎝
1 1 2 −2
0 1 1 4

0 −2 −6 4

⎞⎟⎠ ∼
⎛⎜⎝
1 1 2 −2
0 1 1 4

0 0 −4 12

⎞⎟⎠ ∼
⎛⎜⎝
1 1 2 −2
0 1 1 4

0 0 1 3

⎞⎟⎠ .
And the reduced echelon form:

⎛⎜⎝
1 1 2 −2
0 1 1 4

0 0 1 3

⎞⎟⎠ ∼
⎛⎜⎝
1 1 0 −8
0 1 0 1

0 0 1 3

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0 −9
0 1 0 1

0 0 1 3

⎞⎟⎠ .
We have one free column, and so the corresponding variable x4 is free. So we have a one

parameter solution set:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 = 9t

x2 = −t
x3 = −3t
x4 = t

t ∈ R.

And using “column vectors”:

⎛⎜⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎟⎠
= t

⎛⎜⎜⎜⎝

9

−1
−3
−1

⎞⎟⎟⎟⎠
.

We have two notions of equivalence for m × n systems:

● Semantic Equivalence: Two linear systems are considered equivalent if they have
the same solution sets8.
● Syntactic Equivalence: Two systems are considered equivalent if their (augmented)

matrices are row equivalent9.

As is usual the case, syntactic equivalence implies semantic equivalence, and the proof is
rather easy. The converse is also true, that is, if two systems have the same solution set then
their augmented matrices are row equivalent.

We will first prove this implication for homogeneous systems.
Let’s start with the rather trivial case of a homogeneous system with one variable. The

matrix of such a system is an m × 1 matrix, i.e. a column vector. An echelon form of such a
matrix is either the zero column of has all rows after the first 0 and the first non-zero. All
matrices that have non-zero first row are row equivalent to the column vector that has first
row 1 and all other rows 0.

Now the only possible solution sets of a homogeneous system with one variable are R

and {0}. This follows because, as we observed in the first section, if x is a solution of a
homogeneous equation so is then λx for all numbers λ. If the solution set is {0} then at least
one coefficient is non-zero and therefore the echelon form will be a column with first row
non-zero and all such column vectors are row equivalent. If the solution set is R then all
coefficients are 0 and so the column vector is the zero column.

Now, using induction, we can prove the following theorem.

8The term semantic is used for concepts related to meaning. Two systems with the same solutions have the
same meaning in the sense that they describe the same set.

9The term syntactic is used for concepts related to syntax, that is the formal properties of a language, in con-
trast with the meaning. Row equivalence relates to the form of the system, we defined it without any reference
to the solution sets of the system.
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THEOREM 1.2.3. Two reduced echelon m×n matrices whose homogeneous systems have the same
solution set are equal.

PROOF. We have seen that this is the case for systems with one variable. Assuming that
the theorem is true for systems with n variables we will prove that it is also true for systems
with n + 1 variables.

Let then A and B be two m × (n + 1) reduced echelon matrices with the same solution set
S, and let A0 and B0 be the matrices obtained from A and B, respectively, by removing the
last column. Consider the subset S0 of those solutions that have the last coordinate 0, that is

S0 = {(x1, . . . , xn, xn+1) ∈ S ∶ xn+1 = 0} .
Then S0 is the solution set of A0 and B0, and by the inductive step it follows that A0 = B0.

Therefore A and B can differ only on the last column.
The last columns have also to be the same though. To see this let k be the first row that

the last columns of A and B differ, and let ak ≠ bk be the corresponding entries. Consider
now the system A −B obtained by subtracting the corresponding equations of A and B. This
is a homogeneous system with only the last column non-zero and all elements of S are also
solutions of A − B. For any such solution the k-th equation of A − B is (ak − bk)xn+1 = 0. By
our choice of k this means that xn+1 = 0. Therefore S = S0, and so the last columns of A and
B are both the zero column otherwise there would be solutions of A (respectively B) that are
not solutions of A0 (respectively B0).

So if the last columns of A and B differ, they are both the zero-column, a contradiction.
Therefore the last columns of A and B are the same. �

Since row equivalent systems have the same solution set, we have the following immedi-
ate corollaries of Theorem 1.2.3.

COROLLARY 1. We have:

(a) Two reduced echelon matrices are row equivalent if and only if they are equal.
(b) The reduced echelon form of any matrix is unique.
(c) Two homogeneous systems with the same solution set are row equivalent.

Let’s now consider the question of uniqueness. When does a homogeneous system have a
unique solution? The unique solution will be of course the trivial one. Let’s consider systems
with 3 variables for example. What homogeneous systems with three variables, say x, y, z,
admit only the trivial solution x = y = z = 0?

Let A be the reduced echelon form of the matrix of the system. If A has free columns, then
the system has non-trivial solutions: for example we can just give a non-zero value to one of
the free parameters, and set the remaining free variables (if any) to zero. Therefore in order to
have only the trivial solution all the columns have of A need to be basic, i.e., all the columns
have to contain a leading 1. Since the leading 1s appear in different rows A needs to have at
least three rows, i.e. the system needs to have at least three equations. This means that the
first three rows of the system have to be10

⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ,
and the remaining rows (if any) have to be zero rows.

10This 3 × 3 matrix is very special, it will play an important role in the following lectures.
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More generally, the number of basic variables, is always equal to the number of non-zero
rows of A. In Example 12 we have three non-zero rows and the solution has three basic
variables. You should go back through all the examples we have seen so far and verify that
this is always the case.

The columns that are not basic are free and so we have the following theorem, a first
version of the Rank Theorem.

THEOREM 1.2.4 (The Rank Theorem). The number of non-zero rows plus the number of free
columns in the reduced echelon form of A equals the numbers of variables of the system.

1.2.2. Vector subspaces. What kind of subsets of Rn arise as solutions of homogeneous
linear systems? Well, vector subspaces of course! That means that the sum of two solutions
is again a solution, and a scalar multiple of a solution is again a solution. Vector subspaces of
Rn are examples of vector spaces, one of the main objects of study of Linear Algebra.

DEFINITION 5 (Column Vectors, vector addition, scalar multiplication). An n-dimensional
column vector is an n × 1 matrix. We identify the n-tuple x = (x1, . . . , xn) ∈ Rn with the column
vector with entries x1, . . . , xn, that is we set

x =

⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠
.

If x,y are two column vectors and λ is a scalar (i.e. a real number) then we define the sum
x + y and the product λx component-wise: if

x =

⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠
, y =

⎛⎜⎜⎜⎝

y1
y2
⋮
yn

⎞⎟⎟⎟⎠
.

then

x + y =
⎛⎜⎜⎜⎝

x1 + y1
x2 + y2
⋮

xn + yn

⎞⎟⎟⎟⎠
, and λx =

⎛⎜⎜⎜⎝

λx1

λx2

⋮
λxn

⎞⎟⎟⎟⎠
.

We also define x − y = x + (−1)y, so that

x − y =
⎛⎜⎜⎜⎝

x1 − y1
x2 − y2
⋮

xn − yn

⎞⎟⎟⎟⎠
.

There are several equivalent ways to define what a vector subspace is. The one we chose
below is convenient for the purposes of this section. For the rest of this section, vector means
column vector.

DEFINITION 6 (Vector subspace). A subset V ⊆ Rn is called a vector subspace if the following
three conditions hold:

(a) V contains the zero vector, that is 0 ∈ V .
(b) V is closed under vector addition, that is

x,y ∈ V Ô⇒ x + y ∈ V.
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(c) V is closed under scalar multiplication, that is

λ ∈ R,x ∈ V Ô⇒ λx ∈ V.

On route to proving that the solution set of a homogeneous is a vector subspace we prove
the following important result.

THEOREM 1.2.5 (Matrix multiplication is linear). Let A be an m×n matrix, x,y two n-vectors,
and λ a real number. Then

(a) A (x + y) = Ax +Ay.
(b) A (λx) = λ (Ax).

PROOF. The k-th entry of A (x + y) is

ak1(x1 + y1) + ⋅ ⋅ ⋅ + akn(xn + yn) = ak1x1 + ak1y1 + ⋅ ⋅ ⋅ + aknxn + aknyn
= (ak1x1 + ⋅ ⋅ ⋅ + aknxn) + (ak1y1 + ⋅ ⋅ ⋅ + aknyn) .

The sum in the first parenthesis is the k-th row of Ax and the sum in the second parenthesis
is the k-th row of Ay. Since this is true for all k the first item has been proved.

Similarly, the k-th row of A (λx) is

ak1(λx1) + ⋅ ⋅ ⋅ + akn(λxn) = λ (ak1x1) + ⋅ ⋅ ⋅ + λ (aknxn)
= λ (ak1x1 + ⋅ ⋅ ⋅ + aknxn) .

Now the last expression is the k-th row of λ (Ax) and so the second item has also been proven.
�

Now let x,y be two solutions a homogeneous system with matrix A. Then Ax = Ay = 0.
Then,

A (x + y) = Ax +Ay = 0 + 0 = 0.
Thus, x + y is also a solution.

The proof that any scalar multiple of x is also a solution is entirely similar and we leave as
an exercise11.

We have then, as promised, the following theorem.

THEOREM 1.2.6. The solution set of a linear homogeneous system with n variables is a vector
subspace of Rn.

REMARK 6. We will see later in the course that every vector subspace of R is the solution
set of some homogeneous linear system.

1.2.3. Solution sets of non-homogeneous systems. If we think of the solution set of a
homogeneous systems as a space of vectors, then we should think of the solution set of a non-
homogeneous system as a space of points. This is more than an analogy, the solution set of
a non-homogeneous system is an affine subspace of Rn. We are not going to define what that
means precisely, we give some examples instead. A one dimensional affine subspace is the
set of points in a line, a two dimensional affine subspace is the set of points in a plane, and so
on.

Two points P,Q in Rn determine a vector v =
Ð→
PQ, that we can think geometrically as the

directed segment from P to Q. Of course the same vector is defined by many different pairs of

points, in fact given any point P ′ there is a unique point Q′ such that v =
ÐÐ→

P ′Q′. See Figure 3
for examples,

11Do this.
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FIGURE 3. Points and vectors in R2.

If the coordinates of P are (p1, p2) and those of Q are (q1, q2) then the components of the
vector v are (q1 − p1, q2 − p2), in particular if we chose the starting point of v to be the origin
O(0,0) then the coordinates of the endpoint of v are exactly the components of v.

We could write then Q − P = v and P + v = Q, and say that “the difference of two points is
a vector and the sum of a point and a vector is an other point”.

Returning to the solution sets of non-homogeneous systems (refer also to Figure 2 and
recall the surrounding discussion) we have the following theorem.

THEOREM 1.2.7 (Solution sets of non-homogeneous systems). Let A be any matrix, S the
solution set of a non-homogeneous system Ax = c and V the solution set of the homogeneous system
Ax = 0. Then

● The difference of two solutions of the non-homogeneous system is a solution of the homoge-
neous system. That is

a,b ∈ S Ô⇒ b − a ∈ V.
● The sum of a solution of the non-homogeneous system and a solution of the homogeneous

system is again a solution of the non-homogeneous system.
● For any solution a0 of the non-homogeneous system we can express any other solution of the

homogeneous system as the sum of a0 and a unique solution of the homogeneous system. That
is

S = {a0 + v ∶ v ∈ V } .
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REMARK 7. The third item is sometimes expressed as “The general solution of a non-
homogeneous system is the sum of the general solution of the homogeneous system and a
particular solution (of the non-homogeneous system)”.

SKETCH. 12 The first item follows from Theorem 1.2.5. The second is just a reformulation
of the first. To prove the third item use the first item and the equation a = a0 + (a − a0). �

EXAMPLE 13. Consider the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x + 2y − 3z + 2s − 4t = 2

2x + 4y − 5z + s − 6t = 1

5x + 10y − 13z + 4s − 16t = 4
.

We work with the coefficient matrix. The reduced echelon form is:

A =
⎛⎜⎝
1 2 −3 2 −4
2 4 −5 1 −6
5 10 −13 4 −16

⎞⎟⎠ ∼
⎛⎜⎝
1 2 −3 2 −4
0 0 1 −3 2

0 0 2 −6 4

⎞⎟⎠ ∼
⎛⎜⎝
1 2 −3 2 −4
0 0 1 −3 2

0 0 0 0 0

⎞⎟⎠ ∼ (
1 2 0 11 −10
0 0 1 −3 2

)
So we have two basic variables x, z and three free variables y, s, t. This means that the

solution of the homogeneous system, in vector form is

⎛⎜⎜⎜⎜⎜⎝

x

y

z

s

t

⎞⎟⎟⎟⎟⎟⎠
= a

⎛⎜⎜⎜⎜⎜⎝

2

1

0

0

0

⎞⎟⎟⎟⎟⎟⎠
+ b
⎛⎜⎜⎜⎜⎜⎝

11

0

−3
1

0

⎞⎟⎟⎟⎟⎟⎠
+ c
⎛⎜⎜⎜⎜⎜⎝

−10
0

2

0

1

⎞⎟⎟⎟⎟⎟⎠
.

To solve the original non-homogeneous system then, we need to find only one particular
solution. This is rather easy to do just by substituting values. For example, for x = y = z = z = 0
we find t = 1. So the solution of the non homogeneous system is

⎛⎜⎜⎜⎜⎜⎝

x

y

z

s

t

⎞⎟⎟⎟⎟⎟⎠
= a

⎛⎜⎜⎜⎜⎜⎝

2

1

0

0

0

⎞⎟⎟⎟⎟⎟⎠
+ b
⎛⎜⎜⎜⎜⎜⎝

11

0

−3
1

0

⎞⎟⎟⎟⎟⎟⎠
+ c
⎛⎜⎜⎜⎜⎜⎝

−10
0

2

0

1

⎞⎟⎟⎟⎟⎟⎠
+
⎛⎜⎜⎜⎜⎜⎝

0

0

0

1

0

⎞⎟⎟⎟⎟⎟⎠
.

We can interpret the solutions geometrically as follows: the solution set V of the homo-
geneous system is a 3-dimensional vector subspace of the standard 5-dimensional real vector
space R5. A basis of V consists of v = 2e1 + e2, u = 11e1 − 3e3 + e4, and w = −10e1 + 2e3 + e5.
The solution S of the non-homogeneous system is the translation of V by the vector e4

13.

The following theorem summarizes our results.

THEOREM 1.2.8 (General solution of linear systems). We have:

● A linear system is consistent if and only if the echelon form of its augmented matrix contains
no rows of the form

(0 0 . . . 0 c)
with c ≠ 0.

12Fill the details.
13By the end of the class all of the above will be making sense.
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● The solution set of a consisted system has as many parameters as the number of free columns
in its reduced echelon form. In particular a consisted system has a unique solution if and only
the reduced echelon form of its matrix14 has ones along the diagonal and zeros everywhere else.
For example a, consistent 4×4 system has a unique solution if and only if the reduced echelon
form of its matrix is

⎛⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
.

● Two consistent m × n systems are equivalent (i.e. have the same solution set) if and only if
their augmented matrices are row equivalent.
● Two consistent m × n systems are equivalent (i.e. have the same solution set) if and only if

their augmented matrices have the same reduced row echelon form.
● If the homogeneous system Ax = 0 has only the trivial solution then if the system Ax = c is

consistent it has a unique solution.

PROOF. The proof is left as an exercise. All the ingredients are already present in these
notes. �

1.3. The 2 × 2 case

Let’s analyze the case of a 2 × 2 linear system. Consider the system

{ a1x + b1y = c1
a2x + b2y = c2

The augmented matrix is

(a1 b1
a2 b2

∣ c1
c2
) .

The case where all the coefficients are zero is rather trivial: in that case if both constants
are also zero the solution set is R2, if at least one constant is non-zero the solution set is ∅.

Let’s assume then that one of the coefficients is non-zero. Without loss of generality we
can assume that a1 ≠ 0. For, if a1 = 0 and a2 ≠ 0 then we can interchange the equations and get
an equivalent system with the coefficient of x in the first equation non-zero. If both a1 and a2
are zero then we can interchange the variables, get a system of two equations where at least
one of the coefficients of x is non-zero, solve that system, and then interchange the variables,
again.

Since we assumed a1 ≠ 0 we can multiply the first equation with −a2/a1 and add it to the
second:

⎛⎜⎜⎝
a1 b1

0 b2 − a2b1

a1

RRRRRRRRRRRRRRR
c1

c2 − a2c1
a1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
a1 b1

0
a1b2 − a2b1

a1

RRRRRRRRRRRRRRRR

c1

a1c2 − a2c1
a1

⎞⎟⎟⎠ ∼
⎛⎜⎝
1

b1

a1

0 a1b2 − a2b1

RRRRRRRRRRRRRR
c1

a1
a1c2 − a2c1

⎞⎟⎠ .

We now look at the second row. Set D = a1b2 − a2b115, and consider two cases: whether D
is zero or not.

14The matrix of coefficients not its augmented matrix.
15Later in the class we will see that this is the determinant of the coefficient matrix.
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Non-zero Determinant. If D ≠ 0 then we can divide the second row by D to get

⎛⎜⎜⎝
1

b1

a1

0 1

RRRRRRRRRRRRRRR

c1

a1
a1c2 − a2c1

D

⎞⎟⎟⎠ ∼
⎛⎜⎜⎝
1 0

0 1

RRRRRRRRRRRRRRRR

c1b2 − c2b1
D

a1c2 − a2c1
D

⎞⎟⎟⎠ .

The expression of the third entry of the first column is the result of simplifying the follow-
ing

c1

a1
− b1

a1
⋅ a1c2 − a2c1

D
=
c1 (a1b2 − a2b1) − b1 (a1c2 − a2c1)

a1D
.

If we set Dx = c1b2 − c2b1 and Dy = a1c2 − a2c1 we have formulas that give the solution of a
linear 2 × 2 system. These formulas are a special case of Crammer’s rule, that we’ll prove later.

2 × 2 Crammer’s rule

When a1b2 − a2b1 ≠ 0, the system

{ a1x + b1y = c1
a2x + b2y = c2

has a unique solution given by

x =
Dx

D
, y =

Dy

D
,

where D = a1b2 − a2b1, Dx = c1b2 − c2b1 and Dy = a1c2 − a2c1.

Zero Determinant. If D = 0 we have two cases: if Dy ≠ 0 the system is inconsistent. If
Dy = 0 then the system reduces in a single equation with, as we saw at the beginning of the
previous section, a one parameter solution set.

1.3.1. Geometric interpretation. The condition D = 0 (or D ≠ 0) has a nice geometric
interpretation in terms of the graphs of the equations that make up our system. We only
consider the nontrivial case where each equation has at least one non-zero coefficient, and
therefore its graph is a line.

THEOREM 1.3.1. The lines with equations

a1x + b1y = c1, a2x + b2y = c2
are parallel if and only if D = 0.

PROOF. The condition D = 0 is equivalent to

(1.13) a1b2 = a2b1.

● Case I: a1 = 0. Then the first line is horizontal and the two lines are parallel if and only
if a2 = 0. On the other hand, since b1 has to be non-zero Equation (1.3.1) also holds if
and only if a2 = 0.
● Case II: a1 ≠ 0. We have two cases:

– Case IIa: b1 = 0. Then the first line is vertical and the RHS of Equation (1.3.1) is
0. Since a1 ≠ 0 Equation (1.3.1) holds if and only if b2 = 0, i.e. if and only if the
second line is also vertical.
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– Case IIb: b1 ≠ 0. Then if a2 = 0, since our equations are non-trivial, b2 ≠ 0 and
so Equation (1.3.1) cannot hold. The lines are not parallel either since the second
line is horizontal and the first isn’t.
Finally if a2 ≠ 0 then Equation (1.3.1) is equivalent to

b2

a2
=
b1

a1

which holds if and only if the lines are parallel.

�

This explains our results geometrically, if D ≠ 0 the two lines are not parallel and therefore
they intersect in a point. The coordinates of that point give us the unique solution of the
system. If on the other hand D = 0, the two lines are parallel so they don’t intersect and th
system has no solution.

But what about the case D = 0 and Dx = 0, where we have a one-parameter solution set?
Well, notice that, assuming a1 ≠ 0 we have

D = 0 ⇐⇒ b2 =
a2

a1
b1

and

Dx = 0 ⇐⇒ c2 =
a2

a1
c1.

So in that case we can write the second equation as

a2x + a2

a1
b1y =

a2

a1
c1.

which is the first equation multiplied by a2/a1. So the two equations are equivalent, and the
system has as many solutions as the first equation.

Consider as an example the following three systems:

{x − y = 0
x − y = −2 , { x − y = −2

2x − 2y = −4 , { x − y = 0

2x + 3y = 5 .

The first system is inconsistent, while in the second system the second equation equation is
twice the first. The third system has the unique solution x = y = 1. The graphs of the equations
x− y = 0, x− y = −2 and 2x+ 3y = 5 are shown in Figure 4. The lines of the equations in the first
system don’t intersect, both equations in the second system represent the same line, while the
graphs of the equations in the third system intersect at the point with coordinates (1,1).

1.3.2. Another Geometric interpretation. Systems of linear equations arise also when we
want to express a vector as a linear combination of a given set of basic vectors. In R2 we have the
standard basis consisting of the vectors (written as columns)

Every other vector can be uniquely expressed as a sum of multiples of these two basic
vectors. Indeed the components of the vector are the coefficients of such an expression since

(a
b
) = a (1

0
) + b (0

1
) .

Let’s give a few definitions. In the following vector means an element of some Rn.
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x

y

FIGURE 4. Parallel and intersecting lines.

Linear combinations, span, basis

A linear combination of m not necessarily distinct vectors v1, . . . ,vm is a vector of the
form

λ1 v1 + ⋅ ⋅ ⋅ + λn vm

where λ1, . . . , λm are some scalars, called the coefficients of the combination.

The set of all linear combinations is called the linear span of v1, . . . ,vm and is denoted by⟨v1, . . . ,vm⟩,
⟨v1, . . . ,vm⟩ = {λ1 v1 +⋯+ λm vm ∶ λ1, . . . , λm ∈ R} .

If V = ⟨v1, . . . ,vm⟩ then we say that V is spanned by the vectors v1, . . . ,vm. That means
that every element of V is a linear combination of v1, . . . ,vm, if that linear combination
is unique we say that v1, . . . ,vm form a basis of V .

The above discussion can then summarized by saying that e1,e2 form a basis of R2. The
term standard basis suggests that there are other non-standard bases as well. And indeed there
are tons of them!.

EXAMPLE 14 (An other basis of R2). The vectors v = 3e1 − 2e2 and w = −2e1 + 3e2 also
form a basis of R2.

The phrase above claims two things.
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(a) It claims that v,w span R2, i.e. that any vector c ∈ R2 is a linear combination of v,w.
Unpacking this further the claim is that given c ∈ R2 we can find x, y ∈ R so that

(1.14) xv + yw = c.
(b) Furthermore it claims that only one such pair of real numbers exist.

In other words, to say “v,w is a basis of R2” is equivalent to saying “Equation (1.14) has a
unique solution for all c ∈ R2”.

Let’s then proceed and prove the claim. Let c = c1 1+c2 e2 be an arbitrary vector, then using
column vector notation Equation (1.14) becomes

x ( 3−2) + y (−23 ) = (c1c2) .
Performing the operations in LHS we get equivalently

( 3x−2x) + (−2y3y
) = (c1

c2
) ⇐⇒ ( 3x − 2y−2x + 3y) = (c1c2) .

Two vectors are equal if and only if their corresponding components are equal, so the last
equation is equivalent to the system

{ 3x − 2y = c1
−2x + 3y = c2 .

Using Crammer’s rule, we get

x =
3c1 + 2c2

5
, y =

2c1 + 3c2
5

.

Thus, as claimed we have a unique solution, and v,w form a basis of R2.

This example demonstrates the general procedure that we’ll use to find whether a vector
is in the linear span of a given list of vectors. That question reduces to solving a linear system.

Vector equations as systems

The vector equation

x1 v1 + ⋅ ⋅ ⋅ + xn vm = c

is equivalent to the system

Ax = c

where A is the matrix with columns v1, . . . ,vm.

Consider now two arbitrary vectors a = a1 e1 + a2 e2 and b = b1 e1 + b2 e2. The question of
whether c = c1 1 + c2 e2 is in the linear span ⟨a,b⟩ reduces to whether the system

{ a1x + b1y = c1
a2x + b2y = c2

has solutions, and we have a complete answer to that question.
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(a) If the determinant D = a1b2 − a2b1 is non-zero then a,b form a basis. Every vector can
be written as a linear combination of a,b in exactly one way.

(b) If the determinant is 0, whether c is in linear span of a,b depends on the value of the
determinants Dx and Dy.

In the previous section we interpreted the condition D = 0 in terms of points. Let’s now
interpret it in terms of vectors. Lets start with the case where one of the vectors is the zero
vector 0.

One of the vectors is the zero vector. If a = 0 then D = 0 and the answer depends on
whether b is also zero or not.

Case I: Both vectors are zero. Then the system has solutions only if c = 0. Any x, y are actually
solutions.

⟨0⟩ = {0} .
Case II: If b ≠ 0 then we have solutions if and only if c is a scalar multiple of b, in other words
if and only if c ∈ ⟨b⟩. Since we can give arbitrary values to x the solution is not unique. So we
have

⟨0,b⟩ = ⟨b⟩ .
Even though 0,b is not a basis of the linear span, b by itself constitute a basis.

Both vectors are non-zero. In this case each vector has at least one non-zero component.
Let’s assume that a1 ≠ 0. Then

D = 0 ⇐⇒ b2 =
a2

a1
b1 ⇐⇒ (b1b2) =

b1

a1
(a1
a2
) .

Therefore the condition D = 0 holds if and only if b is a multiple of a. If that is the case
then any linear combination of a and b can be written in terms of only a or only b.

To see this assume that b = λa then

λ1 a + λ2 b = λ1 a + λ2 (λa) = (λ1 + λ2 λ)a.
We have assumed that both a and b are non-zero, so λ ≠ 0 and we can write a = λ−1b so

the roles of a and b can be reversed, and we can write any linear combination in terms of b
alone.

In summary, if D = 0 the two vectors are multiples of each other and we have

⟨a,b⟩ = ⟨a⟩ = ⟨b⟩ .
a,b does not constitute a basis of ⟨a,b⟩16. However, by a (or ) by itself forms a basis17.
If D ≠ 0 then the system has unique solution for all c ∈ R2. In that case

⟨a,b⟩ = R2

and a,b form a basis.
The geometric reason that any two vectors of the plane form a basis, as long as they are

not multiples of each other, is the same reason that our familiar Cartesian coordinates work.

16Why?
17Why?
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Let v ∈ R2 be an arbitrary vector. Take the starting point of v to be the origin O(0,0) and
let its endpoint be P (x, y), where we are using the familiar Cartesian coordinate system (see
the left side of Figure 5). Then if we draw a line from P , parallel to the y-axis, it will intersect
the x-axis at a point Px with coordinates (x,0). Then

ÐÐ→

OPx = xe1.

Similarly, a line from P parallel to the x-axis intersects the y-axis at a point with coordinates(0, y), and
ÐÐ→

OPy = y e2.

Now OPxP Py is a rectangle and therefore we have

ÐÐ→

OPy =
ÐÐ→

Px P.

Then we have,

v =
ÐÐ→

OP

=
ÐÐ→

OPx +ÐÐ→PxP

=
ÐÐ→

OPx +ÐÐ→OPy

= xe1 + y e2.
Thus every vector is a linear combination of e1 and e2. Furtermore the coefficients x and y

are unique, since Px and Py are uniquely determined by P .

e2

e1

P

Px

Py

O

O
a

b

Py

P

Px

ℓ1

ℓ2

FIGURE 5. Why coordinates work.

The same idea works for any two vectors a, , as long as they are not multiples of each
other. Indedd let, a, b be two vectors in R2. Chose an arbitrary point O in the plane, and let ℓ1
be the line through O in the direction of a, and ℓ2 the line through O in the direction of b. If ℓ1
and ℓ2 are not the same line, then for any point P we can find points Px in ℓ1 and Py ∈ ℓ2 such
that

ÐÐ→

OP =
ÐÐ→

OPx +ÐÐ→OPy.

Indeed Px (respectively Py) is the intersection of a line that passes through P and is parallel to
ℓ2 (respectively ℓ1), with ℓ1 (respectively ℓ2), as shown in the right side of Figure 5. Now, for
some x, y ∈ R we have

ÐÐ→

OPx = xa,
ÐÐ→

OPy = yb
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and since for any v ∈ R2 we can find a P such that v =
ÐÐ→

OP we conclude that,

∀v ∈ R2, ∃x, y ∈ R, v = xa + yb.
1.4. Exercises

(a) Solve each of the following systems:
(a) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 2y + 3z = 0
3x + y + 2z = 0
2x + 3y + z = 0

.

(b) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − y + z = 0

−x + 3y + z = 5

3x + y + 7z = 2
.

(c) ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1
5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

.

(b) Find the real number k so that the following system is consistent

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − 2y + 3z = 2
x + y + z = k

2x − y + 4z = k2

.

(c) Find conditions on the real numbers a, b, c, if any, so that the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x + y = 0

y + z = 0

x − z = 0

ax + by + cz = 0

(a) is inconsistent.
(b) Has a unique solution.
(c) Has more than one solution.

(d) Consider the 2 × 2 matrix

A = (a b

c d
)

where a, b, c, d ∈ R.
(a) Prove that if ad − bc ≠ 0 then the reduced row echelon form of A is

(1 0

0 1
)

(b) Prove that if ad − bc ≠ 0 then the system

{ ax + by = k
cx + dy = l

has a unique solution, for all real numbers k, l.
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(e) Prove that there is a unique line passing through any two distinct points of the plane.

Hint 1. Work as in Example 4. Show that the system we obtain has non-trivial
solutions and all the non-trivial equations differ by a multiplicative constant.

(f) Find the cubic polynomial

p(x) = ax3 + bx2 + cx + d
given that p(1) = 0, p(2) = 3, p(−1) = −6, and p(−2) = −21.

(g) Look at Examples 5 and 6, there is a geometric reason why in Example 6 the poly-
nomial we got was not quadratic. The graph of a quadratic polynomial is a parabola
so in these examples we were trying to find a parabola that passes through three dis-
tinct points. But the points in Example 6 are colinear18 and so there is no parabola that
passes through all three of them.
(a) Prove that given any three distinct real numbers x1, x2, x3 and any three real num-

bers y1, y2, y3 we can always find a polynomial p(x) = ax2 + bx + c such that
p(x1) = y1, p(x2) = y2, and p(x3) = y3.

(b) The polynomial in part (a) is quadratic (i.e. a ≠ 0) if and only if the points (x1, y1),(x2, y2), and (x3, y3) are not colinear.

The following is more of an invitation to think than an exercise. A puzzle if you
will. See whether you can figure it out, but don’t feel bad if you

(h) What’s going on with “free” and “basic” variables? In a reduced echelon matrix
the free variables are determined, they are those that correspond to the free columns.
Since the reduced echelon form of a matrix is unique this means that which variables
are free and which are basic are determined in advance for any system.

But how can this be true? Can’t we just choose which variables to solve for?
Haven’t we done that already?

18This means that they lie in a line.



CHAPTER 2

Standard Real vector spaces

In this chapter we officially introduce the n-dimensional vector spaces Rn, for all natural
numbers n. We have already encounter them as the spaces where solutions of linear systems
live: a solution of an m×n system is an n-tuple of real numbers, i.e. an element of Rn. We call
Rn the standard n-dimensional real vector space and its elements standard n-dimensional real vector
s.

The theory we develop in this chapter will be abstracted into two directions later on.
We will consider vector spaces that are not necessarily real, for example Cn is a complex n-
dimensional vector space, and we will consider vector spaces whose elements are not standard
vectors, for example we will encounter vector spaces whose elements are matrices, polyno-
mials, functions, and so on.

However, as we will see, in the finite dimension case at least, every vector space “looks
exactly like” a standard vector space. This means that the concepts we develop in this chapter
apply to all (finite dimensional) vector spaces.

2.1. The standard real vector spaces and their subspaces

The standard (real) n-dimensional vector space is the set Rn endowed with the operations
of vector addition and scalar multiplication that we will formally introduce below1. We call
element of Rn, n-vectors or simply vectors when n is understood or irrelevant. Thus an n-
vector is an ordered tuples of real numbers a = (a1, a2, . . . , an). We often identify n-vectors
with n×1 matrices and call them column vectors, and sometimes we identify vectors with 1×n
matrices and call them row vectors. So we have three notations for the same vector:

a = (a1, a2, . . . , an), a =

⎛⎜⎜⎜⎝

a1
a2
⋮
an

⎞⎟⎟⎟⎠
, a = (a1 a2 . . . an) .

When n = 1 we identify R1 with R and write for example 3 instead of (3). The case n = 0

is also included, R0 has a single element, the empty tuple ()which we denote by 0, and call it
the (0-dimensional) zero vector. Thus, R = {0}.

For n ≥ 1 we call the n-tuple with all components 0 the (n-dimensional) zero vector and
denote it also by 0. So

0 = (0,0, . . . ,0).
This abuse of notation doesn’t cause confusion because the context makes it clear what 0

stands for if we write “Consider a ∈ R4 with a ≠ 0” then we clearly mean (0,0,0,0), while in
“Two non zero vectors of R2” we refer to (0,0).

For n ≥ 1 we say that the n-vectors e1, . . . ,en, where ek has 1 at the k-th slot and 0 every-
where else, form the standard basis of Rn. For example the standard basis of R4 consists of the
four vectors

1We have already see these operations, but in this section we make it official.

35
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e1 = (1,0,0,0)
e2 = (0,1,0,0)
e3 = (0,0,1,0)
e4 = (0,0,0,1).

Again the use of the same symbol for different things doesn’t usually cause confusion.

DEFINITION 7 (Vector addition and scalar multiplication). Let a = (a1, . . . , an) and b =(b1, . . . , bn) be two n-vectors and λ a real number. We define

λa = (λa1, . . . , λan)
and

a + b = (a1 + b1, . . . , an + bn).
The opposite of a, denoted by −a, is the vector

−a = (−a1, . . . ,−an),
and we denote a + (−b) by a − b. So,

a − b = (a1 − b1, . . . , an − bn).
EXAMPLE 15 (Two dimensional vectors). Let’s see some examples of two dimensional

vectors. If a = (2,−1) and b = (3,2).
5a = (5 ⋅ 2,5 (−1)) = (10,−5),
a + b = (2 + 3,−1 + 2) = (5,1),

a − b = (2 − 3,−1 − 2) = (−1,−3),
−2a + 7b = (−2 ⋅ 2,−2 (−1)) + (7 ⋅ 3,7 ⋅ 2) = (−4,2) + (21,14) = (17,16).

Now, let x, y ∈ R and consider the linear combination

xe1 + y e2 = x (1,0) + y (0,1) = (x,0) + (0, y) = (x, y).
So any vector in R2 can be written as a linear combination of the vectors of the standard

basis, and actually the components of the vector are the coefficients.

In general, if a = (a1, . . . , an) then we have,

(2.1) a = a1e1 +⋯+ anen.
THEOREM 2.1.1 (Vector Space Axioms). The operations of vector addition and scalar multipli-

cation enjoy the following properties:

(a) Vector addition is commutative. This means that for any two vectors a, b we have

a +b = b + a.
(b) Vector addition is associative. This means that for any three vectors a, b, and c we have

(a + b) + c = a + (b + c) .
(c) 0 is neutral for addition. This means that for any vector a we have

0 + a = a.
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(d) For every vector a we have

a + (−a) = 0.
(e) The number 1 is neutral for scalar multiplication. This means that for every vector a we have

1a = a.

(f) Scalar multiplication distributes over vector addition. This means that if λ is a scalar and a,
b are vectors we have

λ (a + b) = λa + λb.
(g) Addition of scalars distributes over scalar multiplication. This means that

(λ + µ)a = λa + µa.
(h) Multiplication of scalars and scalar multiplication are compatible in the following sense: if λ,

µ are scalars and a is a vector, we have

λ (µa) = (λµ) a.
The proofs of all of these properties are straightforward, they follow from the analogous

properties of real numbers. For example for (6), we have

λ (a + b) = λ ((a1, . . . , an) + (b1, . . . , bn))
= λ (a1 + b1, . . . , an + bn))
= (λ (a1 + b1), . . . , λ (an + bn))
= (λa1 + λb1, . . . , λ an + λbn)
= (λa1, . . . λ an) + (λb1, . . . , λ bn)
= λ (a1, . . . an) + λ (b1, . . . , bn)
= λa + λb.

There are many other properties that we could have listed. The importance of these par-
ticular eight is that they are sufficient to prove any algebraic property of vectors that we’ll
ever need. If we knew nothing else about vectors except that there are two operations that
satisfy these eight properties we still would be able to prove anything we need to develop our
theory.

We list now some useful properties that follow from these “axioms”.

THEOREM 2.1.2 (Some consequences of the axioms). We have:

● For all vectors a, b the equation

a + x = b
has a unique solution.
● For any vector a

−1a = −a
● For any scalar λ we have

λ0 = 0.

● For any vector a

0a = 0.

● For scalar λ and vector a

λa = 0 ⇐⇒ λ = 0 or a = 0.
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All of these properties are straightforward to prove directly from the definitions of vector
addition and scalar multiplication and we will be using them freely. We will see proofs from
the axioms when we introduce abstract vector spaces.

Recall the definitions of vector subspace (Definition 6 in Section 1.2.2), linear combination,
linear span, and basis (Section 1.3.2).

The following gives an alternative characterization of vector subspaces. It could be used
as the definition instead. For brevity from now on we will simply say subspace instead of vector
subspace.

THEOREM 2.1.3 (Alternative definition of Vector subspace). A subset V ⊆ Rn is a subspace
if and only if the following two properties hold:

● V ≠ ∅.
● For all λ,µ ∈ R and a,b ∈ Rn

a,b ∈ V Ô⇒ λa + µb ∈ V.
PROOF. A subspace V satisfies (1) since 0 ∈ V .
Also, if λ,µ ∈ R and a,b ∈ V then by the third property listed in Definition 6 we have

λa ∈ V and µb ∈ V and therefore by the second property in Definition 6 we have λa+µb ∈ V .
Thus V satisfies (2) as well and the only if part has been proved.

Conversely, if V satisfies the two conditions listed in the theorem then it contains the zero
vector. Indeed take any a ∈ V 2, then by the second property we have

1a + (−1)a ∈ V Ô⇒ 0 ∈ V.

Condition (2) of Definition 6 follows from the second property if we take λ = µ = 1 and
Condition (3) if we take λ = 1 and µ = 0. Thus V is a subspace and the if part is also proved. �

By induction we can generalize the second property as follows.

PROPOSITION 1. If V is a subspace then all linear combinations of elements of V are elements of
V . That is,

λ1, . . . , λm ∈ R,v1, . . . ,vm ∈ V Ô⇒ λ1 v1 + ⋅ ⋅ ⋅ + λm vm ∈ V.

Before proceeding let’s observe that there are are two “trivial” subspaces. The whole Rn

and the set {0} that contains only the zero vector, and every subspace is between those two
subspaces, in the sense that {0} ⊆ V ⊆ Rn.

Let’s also prove the following important fact.

THEOREM 2.1.4 (Intersection of subspaces is a subspace). If V and W are subspaces of Rn

then their intersection V ∩W is also a subspace of Rn.

PROOF. We will prove that V ∩W has the two properties described in Theorem 2.1.3.
For the first, notice that the zero vector is in the intersection because it is in both V and W .

The intersection therefore is not empty.
For the second, if a,b ∈ V ∩W then a,b ∈ V and therefore λ,a + µb ∈ V . But we also have

a,b ∈W and therefore λ,a + µb ∈W as well. It follows that λa + µb ∈ V ∩W . �

A linear combination of one vector a is just a multiple of that vector. By convention we set

that a linear combination of zero n-vectors to be the zero vector of R̃n.

THEOREM 2.1.5 (Linear Spans are subspaces). For any S ⊆ Rn the linear span ⟨S⟩ is a sub-
space of Rn.

2We can do this because V is not empty.
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PROOF. Sketch3 For the trivial case S = ∅we have ⟨S⟩ = {0}which is a subspace.
For non-empty S the three conditions of Definition 6 are satisfied because:

(a) 0 = 0a for any a ∈ S.
(b) The sum of two sums of multiples of elements S is obviously also a sum of multiples

of elements of S.
(c) We have

λ (λ1 v1 + ⋅ ⋅ ⋅ + λnvn) = (λλ1)v1 + ⋅ ⋅ ⋅ + (λλn)vn.

�

DEFINITION 8 (Basis of a subspace). We say that a set of vectors B ⊆ Rn is a basis of the
subspace V if any v ∈ V can be expressed as a linear combination of vectors of B in a unique
way.

We should clarify what we mean by unique in the definition above. For example we don’t
consider

2v1 + 3v1 − v2, 5v1 − v2

different ways of expressing the the same vector as a linear combination of v1 and v2. We
also don’t consider

−3v1 + 2v2 + 0v3, −3v1 + 2v2 + 0v4

to be different.
Two linear combinations are considered different if after we rewrite them so that every

vector appears only once (i.e. after we combine “like terms”) then there is at least one vector
that appears with different coefficients.

EXAMPLE 16. The fundamental example of a basis is the standard basis of Rn. To see that
it is indeed a basis notice that if c = (c1, . . . , cn) then

c = c1 e1 + ⋅ ⋅ ⋅ + cn en
so the components of c are the coefficients of an expression of c as a linear combination of
elements of {e1, . . . ,en}. This is the only way to get c as a linear combination, because

λ1 e1 + ⋅ ⋅ ⋅ + λn en = (λ, . . . , λn)
and therefore

c = λ1 e1 + ⋅ ⋅ ⋅ + λn en Ô⇒ (c1, . . . , cn) = (λ, . . . , λn).
In general to prove that a set of vectors v1, . . . ,vm forms a basis of a subspace V we have

to prove that the vector equation

x1 v1 +⋯xm vm = c

has a unique solution for all c ∈ V . As we have seen this vector equation is equivalent to
the system

Ax = c

where A is the matrix with columns v1, . . . ,vm.
In the case of the standard basis we have the n × n matrix

⎛⎜⎜⎜⎝

1 0 . . . 0

0 1 . . . 0

⋮ ⋮ ⋱ ⋮
0 0 . . . 1

⎞⎟⎟⎟⎠
3Fill the details.
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and by Theorem 1.2.8 we conclude that the system has a unique solution for all c.

EXAMPLE 17. The vectors

v1 = (1,0,2,3),
v2 = (−1,2,3,1),
v3 = (1,4,−5,0),
v4 = (0,1,−2,1).

form a basis of R4. Indeed the matrix with columns these vectors is

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

2 3 −5 −2
3 1 0 1

⎞⎟⎟⎟⎠
We now obtain an echelon form. We first add −2 times the first row to the third, and −3

the first row to the fourth. Then we add 5 times the second row to −2 times the second, and 2

times the second row to the fourth. Then we add 3 times the fourth row to the third.

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

0 5 −7 −2
0 4 −3 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

0 0 34 1

0 0 −11 −1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

0 0 1 −2
0 0 −11 −1

⎞⎟⎟⎟⎠
We finally add 11 times the third row to the fourth.

⎛⎜⎜⎜⎝

1 −1 1 0

0 2 4 1

0 0 1 −2
0 0 0 −23

⎞⎟⎟⎟⎠
Since there is no zero rows we know that the system and no free columns we conclude

that the system has a unique solution for all c. Therefore {v1,v2,v3,v4} is a basis of R4.

All the bases of Rn we have encountered so far have exactly n vectors. The systems we
obtain when we try to express an n-vector as a linear combination of a set with m elements
have n equations and m variables. Thus if we have a set with more than n vectors the system
will have free variables so it’s impossible to have unique solution. If on the other hand, there
are less than n vectors the echelon form of the matrix will have zero rows and therefore it
won’t be consistent for all c.

In other words if we have more than n vectors we can’t have uniqueness of solutions, and
if we have less than n vectors we can’t always have existence of solutions.

So we proved the following theorem, that as we will see, says that the dimension of Rn is
n.

THEOREM 2.1.6. All bases of Rn have exactly n elements.

Of course, not all sets with n elements are bases of Rn. In Section 1.3.2 we show that if two
vectors are colinear then they don’t form a basis.

Question 1. How about subspaces though? How can we find a basis of a subspace? Does
any subspace of Rn have a basis? If so do all bases of a subspace have the same cardinality?

We’ll answer these questions in the next class. As a preparation work through the follow-
ing example.
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EXAMPLE 18. Consider the vectors v = (1,0,−1), u = (2,1,0), and w = (−1,1,3). When is a
vector c = (c1, c2, c3) in the linear span of these three vectors?

The question again reduces to solving the vector equation

xv + yu + zw = c,
or equivalently, the system with augmented matrix

⎛⎜⎝
1 2 −1
0 1 1

−1 0 3

RRRRRRRRRRRRR
c1
c2
c3

⎞⎟⎠
Adding the first row to the third, and then subtracting twice the second row from the third

we get the following echelon form:

⎛⎜⎝
1 2 −1
0 1 1

0 0 0

RRRRRRRRRRRRR
c1
c2

c1 − 2 c2 + c3
⎞⎟⎠ .

So in order for the system to have solutions it is necessary to have

(2.2) c1 − 2 c2 + c3 = 0 ⇐⇒ c3 = −c1 + 2 c2.
When that condition is satisfied we can discard the third row, and then subtract twice the

second row from the first we get:

(1 0 −3
0 1 1

∣ −c1 + 2 c2
c2

) .
So the condition (2.2) is also sufficient.
We conclude then that

⟨v,u,w⟩ = {(c1, c2,−c1 + 2 c2) ∶ c1, c2 ∈ R} .
Observe now that,

(c1, c2,−c1 + 2c2) = c1(1,0,−1) + c2(0,1,2) = c1 v + c2 a.
So

⟨v,u,w⟩ = ⟨v,a⟩ .
Let’s express a as a linear combination of v,u,w. The reduced echelon form tells us how

to do so.

a = (3 z − 2)v + (−z + 1)u + zw
where z is any real number. Taking z = 0 we get

a = −2v +u
while taking z = 1 we get

a = v +w.
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2.2. Linear dependence, Dimension

Let’s take a closer look at Example 18. Let

V = ⟨v,u,w⟩
be the linear span of the vectors defined there. We’ll look for a basis of V .

Before proceeding we introduce the term spanning subset.

DEFINITION 9. Let V ⊆ Rn be a vector subspace. We say that a subset S ⊆ V is a spanning
subset of V (or simply, when V is understood, spanning) if

V = ⟨S⟩ ,
i.e. every vector in V is a linear combination of vectors from S.

A spanning subset B of V is said to be a basis of V if every vector of V can be written as a
linear combination of vectors from B in a unique way.

So if S = {v,u,w} then S is a spanning subset of V . However S is not a basis, because as
we saw in Example 18 the vector a = (0,1,2) is equal to two different linear combinations of
vectors of S, namely

(2.3) a = −2v + u and a = v +w.

An other spanning set of V is B = {v,a} so let’s check if this set is a basis. We want to
check whether the vector equation

xv + y a = c
has a unique solution for all c ∈ V . Equivalently, we want to check whether the linear system

⎛⎜⎝
1 0

0 1

−1 2

⎞⎟⎠ (
x

y
) = ⎛⎜⎝

c1
c2
c3

⎞⎟⎠ ,
has a unique solution for all c ∈ V . By Theorem 1.2.8 this happens when the homogeneous
system

⎛⎜⎝
1 0

0 1

−1 2

⎞⎟⎠ (
x

y
) = ⎛⎜⎝

0

0

0

⎞⎟⎠ ,
has a unique solution. The reduced echelon form of the matrix is

⎛⎜⎝
1 0

0 1

0 0

⎞⎟⎠ ,
and therefore the homogeneous system indeed has only the trivial solution. We conclude then
that the set B = {v,a} is a basis of V .

Once we find a basis we can find many more. For example, the set B′ = {v,w} is also a
basis. This follows from the fact that B is a basis and the second equation in (2.3).

CLAIM 1. B′ is a basis of V .

PROOF. The proof consists of two steps.

Step 1: B′ is a spanning subset of V . Let c ∈ V then since B is a basis there are x, y ∈ R such
that

c = xv + y a.
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But since a = v +w we have

c = xv + y a
= xv + y (v +w)
= xv + y v + yw
= (x + y)v + yw.

So c can be expressed as a linear combination of vectors from B′.

Step 2: We now need to prove that any c ∈ V can be expressed as a linear combination of
elements of B′ in a unique way. So we have to prove that if two linear combinations of v,w
are equal then they are the same linear combination. In other words, we need to prove that if

(2.4) x1 v + y1w = x2 v + y2w
then

x1 = x2 and y1 = y2.

We will again use the fact that the uniqueness property holds for B. Now since w = a − v
we have

x1 v + y1w = x1 v + y1 (a − v)
= (x1 − y1)v + y1 a.

and similarly

x2 v + y2w = (x2 − y2)v + y2 a.
So if Equation (2.4) holds we have

(x1 − y1)v + y1 a = (x2 − y2)v + y2 a.
So we have two linear combinations of v,a that represent the same vector. Since B is a basis
this implies that the coefficients of these two linear combinations have to be equal. So we
have

x1 − y1 = x2 − y2 and y1 = y2 Ô⇒ x1 = x2 and y1 = y2.

�

Notice that the above will work for any v,a,w. If {v,a} is a basis of a subspace V and
a = v +w then {v,w} is also a basis of V .

Exercise 1. Let v,u,w,a ∈ Rn and V a vector subspace of Rn such that the following hold:

(a) {v,a} is a basis of V .
(b) a = v +w.
(c) a = −2v + u.

Prove that any two of those four vectors form a basis. That is, prove that each one of

{v,w} , {v,u} , {u,w} , {a,w} , {a,u}
is also a basis.

Consider again a general vector subspace of V ⊆ Rn, and let B be a spanning set of V .
In order for B to be a basis every vector of V has to have a unique expression as a linear
combination of elements of B. In particular, the zero vector which is an element of V , has to
have only one representation as a linear combination of elements of B. But we can easily find
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a linear combination that represents 0, namely the one where all coefficients are 0. Therefore
if there is a non-trivial linear combination

λ1 v1 +⋯+ λm vm = 0,

with v1, . . . ,vm ∈ B and coefficients λ1, λ2, . . . , λm not all 0, then B is not a basis.
It turns out that that’s the only way to prevent a spanning set from being a basis. If the

zero vector can be expressed as a linear combination of vectors from B in only one way, then
every other vector of V has also a unique expression. To see this let’s assume that for some
v ∈ V we have two different expressions

v = λ1v1 + . . . + λk vk

and
v = µ1u1 + . . . + µmum,

where λi ∈ R, vi ∈ B for i = 1, . . . , k and µj ∈ R, uj ∈ B for j = 1, . . . ,m. Then, by adding terms
of the form 0 ⋅ uj to the first expression and terms of the form 0vi to the second if necessary,
we can get two linear combinations where exactly the same vectors from B occur. Let’s then
assume that we have two linear combinations

v = λ1w1 + . . . + λℓwℓ,

and
v = µ1w1 + . . . + µℓuℓ,

where for some k, λk ≠ µk. But then subtracting we have

0 =
ℓ

∑
i=1

(λi − µi)wi

and the k-th term λk −µk ≠ 0. So we got a non-trivial linear combination representing the zero
vector.

We have thus proved the following Lemma.

LEMMA 1. Let S ⊆ Rn be any set. If there are two linear combinations of elements from S with
different coefficients represent the same vector then the zero vector is represented by a non-trivial linear
combination of elements from S.

DEFINITION 10 (Linearly dependent and linearly independent sets). A non-trivial linear
combination that represents the zero vector, that is an equation of the form

m

∑
i=1

λi vi = 0

with λi ≠ 0 for some i ∈ {1, . . . ,m}, is called a linear dependency condition among v1, . . . ,vm.
If there is a linear dependency condition among some elements of a subset S ⊆ Rn we say

that S is linearly dependent.
If S is not linearly dependent we say that it is linearly independent.

With this terminology in place we can summarize the results of our discussion so far in
the following theorem.

THEOREM 2.2.1. Let V be a vector subspace of Rn and B ⊆ V . Then B is a basis of V if and only
if it is spanning and linearly independent.

THEOREM 2.2.2. The following hold.

(a) If 0 ∈ S then S is linearly dependent.
(b) If S = {v} then S is linearly independent if and only if v ≠ 0.
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(c) If S = {v,w} then if and only if v = λw or w = λv for some scalar λ.
(d) If S is linearly independent and v1, . . . ,vm are distinct elements of S then v1 cannot be ex-

pressed as a linear combination of v2, . . . ,vm.
(e) If S ⊆ S′ and S is linearly dependent then S′ is linearly dependent as well.
(f) If S ⊆ S′ and S′ is linearly independent then S is linearly independent as well.

PROOF. (a) We have 42 ⋅ 0 = 0 an expression of the zero vector as a non-trivial linear
combination of vectors from S.

(b) By Item 1 {0} is linearly dependent. Conversely, if v ≠ 0 then

λv = 0 ⇐⇒ λ = 0.

Thus if v ≠ 0 only the trivial linear combination is equal to the zero vector.
(c) Since v1 = 1v1 expresses v1 as a linear combinations of elements of S, there is no other

linear combination.
(d) A linear dependency among elements of S is also a linear dependency among ele-

ments of S′ because all elements of S are also elements of S′.
(e) This is the contra-positive of the previous item.

�

THEOREM 2.2.3. If V has a basis B with cardinality d then any linearly independent subset of V
with d elements is also a basis of V .

The idea of the proof is contained in the proof of Claim 1. If B′ is linearly independent
subset of V with d elements we will construct a sequence of sets B0,B1,B2, . . . ,Bd, where
B0 = B and Bd = B′, and prove that all of them are bases. B1 is obtained from B by replacing
one element, say v1 with an element from B′. B2 is obtained by B1 by replacing one more
element of B by an element of B′. At every step we get a basis Bi that has i elements from B′

and the remaining d − i from B. At the next step to get Bi+1 we replace one of those elements
of Bi that are in B with a new element of B′. Eventually all the elements of B have been
replaced by the elements of B′ and since at every step we still get a basis, we conclude that B′

is a basis.
We first prove the following Lemma.

LEMMA 2. If B = {v1, . . . ,vd} is a basis of V and w1 ∈ V is such that

w1 = λ1 v1 + λ2 v2 + ⋅ ⋅ ⋅ + vd

with λ1 ≠ 0 then B′ = {w1,v2 . . . ,vd} is also a basis.

PROOF. Since λ1 ≠ 0 we can express v1 as a linear combination of w,v2, . . . ,vn:

(2.5) v1 =
1

λ1

w1 − λ2

λ1

v2 −⋯ − λd

λ1

vd.

Let be an arbitrary element of V . Then we can write c as a linear combination

c = µ1 v1 + µ2 v2 +⋯+ µd vd.

Substituting the RHS of Equation (2.5) for v1 and collecting terms gives

c =
µ1

λ1

w1 + (µ2 − λ2

λ1

) v2 +⋯ + (µd − λd

λ1

) vd.
Therefore B′ is spanning.

To prove that B′ is also linearly independent, consider a linear dependency

µ1w1 + µ2 v2 +⋯+ µd vd = 0.
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Substituting w1 with its expression in terms of B we have

µ1 λ1 v1 + (µ1 λ2 + µ2)v2 +⋯+ (µ1 λd + µd)vd = 0.

Since B is a basis all the coefficients in this linear dependency have to be 0. Since λ1 ≠ 0 we
get from the coefficient of v1 that µ1 = 0. Substituting in the other coefficients then gives µi = 0

for i = 2, . . . , d as well. �

REMARK 8. Lemma 2 says that we can replace any element v ∈ B by w as long as v appears
with non-zero combination in the expression of w as linear combination of elements of B. For,
we can order the elements of B so that v comes first.

PROOF OF THEOREM 2.2.3. Let B′ be a linear independent subset of V with d elements.
Chose an arbitrary order of B′, say B′ = {w1,w2, . . . ,wd}.

Now express w1 as a linear combination of elements of B. Since B′ is linearly independent,
w1 ≠ 0, and so at least one element of B will appear with non-zero coefficient in that linear
combination, call that element v1. By Lemma 2 the set

B1 = (B ∖ {v1}) ∪ {w1} ,
i.e. the set obtained from B by replacing v1 with w1, is a basis.

Next express w2 as a linear combination of the elements of B1. In that linear combination
at least one element of B appears with non-zero coefficient, because otherwise w2 would be a
multiple of w1, impossible since B′ is linearly independent. Choose one such element, say v2,
and let B2 be the set obtained by B1 by replacing v2 with w2, i.e.

B2 = (B1 ∖ {v2}) ∪ {w2} = (B ∖ {v1,v2}) ∪ {w1,w2} .
Again by Lemma 2, B2 is a basis.

Next, assuming d > 2, we express w3 as a linear combination of elements of B2. In that
linear combination at least one element of B appears with non-zero coefficient, otherwise w3

is a linear combination of w1 and w2, impossible since B′ is linearly independent. Then, again
by Lemma 2,

B3 = (B2 ∖ {v3}) ∪ {w3}
is a basis.

We continue this procedure until all the elements of B have been replaced. At the k-
th step we choose one of the remaining elements of B, say vk, that appears with non-zero
coefficient in the expression of wk as a linear combination of elements of Bk−1. Since B′ is
linearly independent, such vk must exist. We then define Bk via

Bk = (Bk−1 ∖ {vk}) ∪ {wk} .
By Lemma 2, Bk is a basis.

After d steps we will get Bd = B′ and therefore B′ is a basis. �

As a corollary we have the following fundamental theorem.

THEOREM 2.2.4 (Subspaces have well-defined dimension). All bases of a vector subspace
have the same cardinality.

PROOF. Let B and B′ be two bases of V . We first remark that both B and B′ are finite sets.
Indeed a subset of Rn with more than n elements is linearly dependent4.

If the cardinality of B is smaller than the cardinality of B′, say B has d elements while B′

has d + k elements with k > 0, by Theorem 2.2.3, any subset S of B′ with d elements would be

4Why?
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a basis of V , and thus each of the remaining k elements of B′ would be a linear combination
of elements of B′, contradicting Item (4) of Theorem 2.2.2.

Similarly the cardinality of B′ cannot be smaller than the cardinality of B. Therefore B

and B′ have the same cardinality. �

One final question remains though: Does any subspace have a basis? The answer is yes.
To see why let’s prove the following theorem.

THEOREM 2.2.5 (A maximal independent subset is a basis). A linearly independent subset
B of V is a basis if and only if every subset of V that is a proper superset of B is linearly dependent. In
other words, a linearly independent subset of V is a basis of V if and only if, for any S we have

(2.6) B ⊊ S ⊆ V Ô⇒ S is linearly dependent.

PROOF. Let B = {b1, . . . ,bd} be a basis of V , and v ∈ V ∖B, i.e. an element of V not in B.
Then B ∪ {v} is linearly dependent. Indeed there are scalars λ1, . . . , λd such that

v = λ1 b1 +⋯+ λdbd.

But then
−1v + λ1 b1 +⋯+ λdbd = 0.

So 0 can be expressed as a non-trivial linear combination of B∪{v}, and thus B∪{v} is linearly
dependent. Now if

B ⊊ S ⊆ V

then there is an element v ∈ S ∖B and for such a v

B ∪ {v} ⊆ S
and thus S has a linearly dependent subset. By Item (5) of Theorem 2.2.2 we conclude that S
is linearly dependent.

Conversely, assume that (2.6) holds. To prove that B is a basis we need to prove that it is
spanning. Consider then v ∈ V , if v ∈ B then clearly v is a linear combination of elements of
B. Assume then that v ∉ B, in which case B ∪ {v} is linearly independent. Therefore there are
λ,λ1, . . . , λd ∈ R such that

λv + λ1 b1 +⋯+ λdbd = 0

with λ,λ1, . . . , λd not all 0. Then λ ≠ 0 because otherwise we would have a linear dependency
among the elements of B, and therefore

v = −λ1

λ
b1 −⋯− λd

λ
bd,

and we expressed v as a linear combination of the elements of B. Thus, all elements of V can
be expressed as linear combinations of the elements of B. �

We now can prove that every vector subspace has a basis.

THEOREM 2.2.6 (Every subspace has a basis). We first consider V = {0}. Then B = ∅, the
empty set, is a basis of V . Indeed ∅ is linearly independent, vacuously. The only set S that satisfies the
hypothesis of (2.6) is V itself, and is linearly dependent.

If V ≠ {0}we can find a basis as follows. Chose any v1 ∈ V with v1 ≠ 0. Then S1 ∶= {v1} is linearly
independent. If ⟨S1⟩ = V then S1 is a basis. If not chose a second vector v2 ∈ V not in ⟨S⟩ and consider
the set S2 ∶= {v1, v2}. Then S2 is linearly independent otherwise v2 would be in ⟨S1⟩. If ⟨S2⟩ = V then
S2 is a basis of V .

We continue this way until we get a linearly independent set Sd with ⟨Sd⟩ = V . This process cannot
continue for ever because we know that we can’t choose more than n linearly independent vectors, so
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we can continue for at most n steps. This means that after a finite number of steps, say d, we won’t be
able to find any vectors in V that are not in the linear span of Sd. The set Sd then will be a basis of V .

We end this section with the definition of the very important concept of dimension.

DEFINITION 11. Let V be a subspace of Rn. The common cardinality of all the bases of V
is called the dimension of V and is denoted by dimV . If the dimension of V is d we also say
that V is a d-dimensional subspace of of Rn.

A one-dimensional subspace is sometimes called a line and a two dimensional subspace a
plane.

2.2.1. How to find a basis. We give a few examples that illustrate the concepts we’ve
described so far, and develop a method for finding a basis of a subspace if we have a finite
spanning set.

EXAMPLE 19. Which of the following subsets of R4 are vector subspaces?

(a) V = {(a,0, b,0) ∶ a, b ∈ R}.
(b) V = {(a,1, b,0) ∶ a, b ∈ R}.
(c) V = {(a − 2b,3c, b − a, d) ∶ a, b, c, d ∈ R}.
(d) V = {(a, b, c, d) ∶ a, b, c, d ∈ R with d > 0}.

ANSWER. (a) This set is a subspace. To prove this we will prove that the two condi-
tions in Theorem 2.1.3 are satisfied.
(a) V ≠ ∅ because by setting, for example a = 0, b = 0 we have that (0,0,0,0) ∈ V .
(b) Let v,w ∈ V and λ,µ ∈ R. Then for some a1, b1, a2, b2 ∈ R we have

v = (a1,0, b1,0), w = (a2,0, b2,0).
Then

λv + µw = λ (a1,0, b1,0) + µ (a2,0, b2,0)
= (λa1,0, λ b1,0) + (µa2,0, µ b2,0)
= (λa1 + µa2,0, λ b1 + µb2,0) .

Therefore λv + µw = (a,0, b,0) where a = λa1 + µa2, and b = λb1 + µb2 are real
numbers. It follows that

λv + µw ∈ V.
(b) V is not a vector subspace since 0 ∉ V .
(c) V is a vector subspace. We can proceed as in Item (1) and show that the two properties

of Theorem 2.1.3 are satisfied5. An other method is to show that V is the linear span
of a subset of R4. Then by Theorem 2.1.5 V is a subspace6.

For all real numbers a, b, c, d we have

(a − 2b,3c, b − a, d) = (a,0,−a,0) + (−2b,0, b,0) + (0,3c,0,0) + (0,0,0, d)
= a (1,0,−1,0) + b (−2,0,1,0) + c (0,3,0,0) + d (0,0,0,1).

Thus V consists of all linear combinations of the vectors

(1,0,−1,0), (−2,0,1,0), (0,3,0,0), (0,0,0,1)
and is therefore the linear span of these vectors.

It follows by Theorem 2.1.5 that V is a subspace of R4.

5Do this
6Use this method for Item (1). That is prove that the set in Item 1 is the linear span of a certain set of vectors.
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(d) V is not a vector subspace because it is not closed under scalar multiplication. For
example (0,0,0,1) ∈ V but −1 (0,0,0,1) = (0,0,0,−1) ∉ V .

�

EXAMPLE 20. Find a basis for each of the sets in Example 19 that is a subspace.

SOLUTION. I will do Item (3), and leave Item (1) as an exercise.
Let v1 = (1,0,−1,0), v2 = (−2,0,1,0), v2 = (0,3,0,0), and v4 = (0,0,0,1). Since S ={v1,v2,v3,v4} is a spanning set we check if S is linearly independent. If it is then it forms

a basis.
S is linearly independent if and only if the homogeneous system Ax = 0, where A is the

matrix with columns v1,v2,v3, and v4, has a unique solution. We therefore have to find an
echelon form of A.

A =

⎛⎜⎜⎜⎝

1 −2 0 0

0 0 3 0

−1 1 0 0

0 0 0 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 −2 0 0

−1 1 0 0

0 0 3 0

0 0 0 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 −2 0 0

0 −1 0 0

0 0 3 0

0 0 0 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 3 0

0 0 0 1

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
.

Since there are no free columns it follows that the homogeneous system has only the trivial
solution and therefore S is linearly independent. Thus S is a basis of V . �

EXAMPLE 21. Let S = {v1,v2,v3,v4} ⊆ R5, where

v1 = (1,1,1,2,3),
v2 = (1,2,−1,−2,1)
v3 = (3,5,−1,−2,5)
v4 = (1,2,1,−1,4).

Find a basis for V = ⟨S⟩. What is dimV ?

SOLUTION. We again consider the matrix with columns the vectors of S.

A =

⎛⎜⎜⎜⎜⎜⎝

1 1 3 1

1 2 5 2

1 −1 −1 1

2 −2 −2 −1
3 1 5 4

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 1 3 1

0 1 2 1

0 −2 −4 0

0 −4 −8 −3
0 −2 −4 1

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 1 3 1

0 1 2 1

0 0 0 2

0 0 0 1

0 0 0 3

⎞⎟⎟⎟⎟⎟⎠
∼
⎛⎜⎝
1 1 3 1

0 1 2 1

0 0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 1 0

0 1 2 0

0 0 0 1

⎞⎟⎠ .

Since the reduced echelon form has free columns the homogeneous system Ax = 0 has non-
trivial solutions. Each non trivial solution gives a non-trivial linear combination of S that is
equal to 0.

The solution set is {(−t,−2t, t,0) ∶ t ∈ R} so by setting t = −1 we get x1 = 1, x2 = 2, x3 =

−1, x4 = 0. Thus we have the following non-trivial linear dependency

v1 + 2v2 − v3 = 0,

and it follows that

v3 = v1 + 2v2.

We can then throw away v3 and still have a spanning set. That is,

V = ⟨v1,v2,v4⟩ .
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Now, B ∶= {v1,v2,v4} is linearly independent. Indeed the the first,second, and fourth columns,
of the reduced echelon form of A give the matrix

⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ .
This matrix is therefore the reduced echelon form of the matrix with columns the elements

of B. Since there are no free columns only the trivial linear combination of B gives the zero
vector.

Since B is a basis of V , and B has three elements we have dimV = 3. �

Notice that in the previous example it turned out that the vectors that correspond to the
basic columns actually form a basis of the linear span. This is always the case, and the reason
that we call non-free columns basic.

Let’s see one more example.

EXAMPLE 22. Find a basis and the dimension of the linear span of the vectors

v1 = (3,0,6,3), v2 = (−7,3,−16,−9),
v3 = (8,−6,20,12), v4 = (−5,6,−14,−9),
v5 = (8,4,14,6), v6 = (9,−5,24,15).

SOLUTION. The matrix with columns these vectors is:

A =

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5
6 −16 20 −14 14 24

3 −9 12 −9 6 15

⎞⎟⎟⎟⎠
.

To get an echelon form of A we start by adding −2 times the first row to the third, sub-
tracting the first row from the fourth. Then we subtract the third row from the fourth and that
turns the fourth row in to a zero row and we discard it. Then we add 2 times the second row
to 3 times the third, and divide the last row by 2

A ∼

⎛⎜⎜⎜⎝

3 −7 8 −5 8 9

0 3 −6 6 4 −5
0 −2 4 −4 −2 6

0 −2 4 −4 −2 6

⎞⎟⎟⎟⎠
∼
⎛⎜⎝
3 −7 8 −5 8 9

0 3 −6 6 4 −5
0 −2 4 −4 −2 6

⎞⎟⎠ ∼
⎛⎜⎝
3 −7 8 −5 8 9

0 3 −6 6 4 −5
0 0 0 0 1 4

⎞⎟⎠ .

From the echelon form we see that the basic columns are the first, second and fifth. From
the discussion above it follows that a basis of the linear span is B = {v1,v2,v5}. Since there
are three vectors in the basis we have that the dimension of the linear span is 3. �

EXAMPLE 23. We use the same notation as in Example 22.

(a) Express each of the “free” vectors v3,v4,v6 as a linear combination of the elements of
B.

(b) Find a fourth vector w to complete B to a basis of R4. In other words, the set {w,v1,v2,v5}
should be a basis of R4.

SOLUTION. (a) We need to solve the systems

B x = v3, B x = v4, B x = v6,
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where B is the matrix with columns the basic vectors v1,v2,v5, that is

B =

⎛⎜⎜⎜⎝

3 −7 8

0 3 4

6 −16 14

3 −9 6

⎞⎟⎟⎟⎠
.

Since all these systems have the same coefficients to solve the we will apply the
same row operations to A. Instead of considering three different augmented matrices,
we augment A with three columns and operate at all of them at once. So we’ll get the
reduced echelon of the following matrix:

⎛⎜⎜⎜⎝

3 −7 8

0 3 4

6 −16 14

3 −9 6

RRRRRRRRRRRRRRRRRR

8 −5 9

−6 6 −5
20 −14 24

12 −9 15

⎞⎟⎟⎟⎠
.

Notice that this matrix has the same columns as A of Example 22, but permuted
namely the fifth column has been moved to the third place, and the third and fourth
to the fourth and fifth place, respectively. So if we apply the row operations of Exam-
ple 22 we’ll get the reduced form of A with columns permuted the same way, that is
the following matrix

⎛⎜⎝
3 −7 8

0 3 4

0 0 1

RRRRRRRRRRRRR
8 −5 9

−6 6 −5
0 0 4

⎞⎟⎠ .
The reduced echelon form of the last matrix is7

⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
−2 3 −24
−2 2 −7
0 0 4

⎞⎟⎠ .
Therefore,

v3 = −2v1 − 2v2

v4 = 3v1 + 2v2

v6 = −24v1 − 7v2 + 4v5.

(b) Any linearly independent subset of R4 forms a basis. Therefore the set {w,v1,v2,v5}
will be a basis if (and only if) it is linearly independent, that is if and only if w ∉⟨v1,v2,v5⟩. So we need to find a vector w so that the system

B x = w

has no solutions. By Theorem 1.2.8 this happens if and only if the echelon form of its
augmented matrix contains a row of the form

(0 0 0 ∣ c)
with c ≠ 0. Now recall that in the process of obtaining the echelon form of A we

discarded a zero row. This happened after applying the following row operations:
(a) Add −2 times the first row to the third.
(b) Add the first row to the fourth.

7Do the calculations and verify this.
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(c) Subtract the third row from the fourth.
After those operations the matrix B becomes

⎛⎜⎜⎜⎝

3 −7 8

0 3 4

0 −2 −2
0 0 0

⎞⎟⎟⎟⎠
.

So we have to choose a vector w that the row operations listed above transform it
to a vector w′ with non zero fourth coordinate. The simplest choice for such a w′ is
e4. Assume then that w is such that after these three row operations the augmented
matrix of the system B x =w is

⎛⎜⎜⎜⎝

3 −7 8

0 3 4

0 −2 −2
0 0 0

RRRRRRRRRRRRRRRRRR

0

0

0

1

⎞⎟⎟⎟⎠
.

To recover w we have to reverse the effect of the rows operations. In other words,
we need to apply to e4 the following operations:
(a) Add the third row to the fourth.
(b) Add the first row the the fourth.
(c) Add 2 times the first row to the third.

None of these reverse operations change e4 though. Thus w = e4. So the set

{w,v1,v2,v5}
is a basis of R4.

�

Basis of linear span

To find a base of the linear span of k vectors v1,v2, . . . ,vk ∈ R
n

(a) Create an n × k matrix A that has the given vectors as columns

A = (v1 v2 . . .vk) .
(b) Find an echelon form for A.
(c) A basis consists of the columns of A that correspond to the basic columns of the

echelon form.



CHAPTER 3

Matrices and their algebra

3.1. Matrices as transformations

We have already introduced the notation Ax where A is an m × n matrix andx is an n-
vector. We were writing a system of m equations with n variables as

(3.1) Ax = c,

where A is the matrix with entries the coefficients of the equations, x is the column vector of
the variables, and c is the column vector of constants.

If we expand the LHS we get an equation of two m-vectors namely,

(3.2)

⎛⎜⎜⎜⎝

a11x1 + a12x2 +⋯+ a1nxn

a21x1 + a22x2 +⋯+ a2nxn

⋮
am1x1 + am2x2 +⋯ + amnxn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

c1
c2
⋮
cn

⎞⎟⎟⎟⎠
.

Before proceeding, let’s officially define the product of a matrix and a column vector.

DEFINITION 12. If A is an m × n matrix and x an n × 1 column vector the product Ax is
defined to be the LHS of Equation (3.2). The result is thus an m × 1 column vector whose k-th
row consists of the element

ak1x1 + ak2x2 + ⋅ ⋅ ⋅ + aknxn =
n

∑
i=1

akixi.

REMARK 9. Notice: in order for the product Ax to be defined the dimensions have to
match, the number of columns of A has to be equal to the number of rows of x.

When the dimensions match, every row of A has as many entries as x and the result has
as many rows as A. Furthermore each row of Ax is the product of the corresponding row of
A with x.

We can think of Ax as a generalization of dot product of two vectors as defined in Vector
Calculus.

EXAMPLE 24. If we compute the product of a 1 × 3 matrix (a 3-dimensional row vector)
and a 3 × 1 column vector, the result will be a 1 × 1 column matrix.

(2 5 −1) ⎛⎜⎝
−3
5

7

⎞⎟⎠ = (2 ⋅ (−3) + 5 ⋅ 5 + (−1) ⋅ 7) = (12) .
In calculus classes the standard basic vectors of R3 are often denoted by i, j,k. Now if

v = 2 i + 5 j − k and u = −3 i + 5 j + 7k then

v ⋅ u = 12.
So the matrix product of a row vector with a column vector of the same dimension is their

dot product considered as a 1 × 1 matrix.

53
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Ax via dot product

If r1, . . . , rm are the rows of the matrix A then Ax has rows r1 x, . . . , rm x. If we write A

as a column vector of row vectors then we have

⎛⎜⎜⎜⎝

r1
r2
⋮
rm

⎞⎟⎟⎟⎠
x =

⎛⎜⎜⎜⎝

r1 x

r2 x

⋮
rm x

⎞⎟⎟⎟⎠

EXAMPLE 25. Calculate the product Ax if defined.

(a) A =
⎛⎜⎝
1 2 0

−2 5 1

0 6 1

⎞⎟⎠ , x =
⎛⎜⎝
3

−1
2

⎞⎟⎠
ANSWER. A is a 3×3 matrix and x is a 3×1 column vector so the product is defined.

We calculate the result row by row:

Ax =
⎛⎜⎝
1 ⋅ 3 + 2 ⋅ (−1) + 0 ⋅ 2
−2 ⋅ 3 + 5 ⋅ (−1) + 1 ⋅ 2
0 ⋅ 3 + 6 ⋅ (−1) + 2 ⋅ 2

⎞⎟⎠ =
⎛⎜⎝
1

−9
−2
⎞⎟⎠

�

(b) A = (−2 5 0 −7
3 4 −1 0

) , x =
⎛⎜⎝
0

π

−2
⎞⎟⎠

ANSWER. The product is not defined because the number of columns of A is dif-
ferent than the number of rows of x: A is 2 × 4 and x is 3 × 1. �

(c) A = (−2 5 0 −7
3 4 −1 0

) , x =

⎛⎜⎜⎜⎝

0

π

−2√
3

⎞⎟⎟⎟⎠
ANSWER. The dimensions now match and we have

(−2 5 0 −7
3 4 −1 0

)
⎛⎜⎜⎜⎝

0

π

−2√
3

⎞⎟⎟⎟⎠
= ( −2 ⋅ 0 + 5π + 0 ⋅ (−2) − 7

√
3

3 ⋅ 0 + 4π + (−1) ⋅ (−2) + 0√3) = (5π − 7
√
3

2 + 4π ) .

�

The product Ax can be also calculated column by column. In Section 2.1, when we wanted
to find the linear span of a set of vectors we saw that the vector equation x1 a1+⋅ ⋅ ⋅+xnan = c is
equivalent to the system Ax = c, where the columns of the matrix A are the vectors a1, . . . ,an.
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Ax as linear combination of columns

If a1, . . . ,an are the columns of A, and x = (x1, . . . , xn) then

Ax = x1 a1 + ⋅ ⋅ ⋅ + xn an.

Or, if we write A as a row of column vectors

(a1 a2 . . . am)
⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠
= (x1 a1 + x2 a2 +⋯ + xnan) .

EXAMPLE 26. Here is an example of how to compute Ax column by column. To compute

⎛⎜⎜⎜⎝

1 3 −2 5 4

1 4 1 3 5

1 4 2 4 3

2 7 −3 6 12

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

−1
0

3

−2
5

⎞⎟⎟⎟⎟⎟⎠
we compute the linear combination of the columns of the matrix with coefficients the compo-
nents of the vector:

−1
⎛⎜⎜⎜⎝

1

1

1

2

⎞⎟⎟⎟⎠
+ 0
⎛⎜⎜⎜⎝

3

4

4

7

⎞⎟⎟⎟⎠
+ 3
⎛⎜⎜⎜⎝

−2
1

2

−3

⎞⎟⎟⎟⎠
− 2
⎛⎜⎜⎜⎝

5

3

4

6

⎞⎟⎟⎟⎠
+ 5
⎛⎜⎜⎜⎝

4

5

3

12

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

−1
−1
−1
−2

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝

0

0

0

0

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝

−6
3

6

−9

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝

−10
−6
−8
−12

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝

20

25

15

60

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

3

21

12

37

⎞⎟⎟⎟⎠
.

In this section, and for the remaining of the class, we view Equation (3.1) from a different
vantage point. We think of it as defining a function with domain Rn and codomain Rm. To
emphasize this new point of view let us rewrite it as

(3.3) y = Ax.

and consider y the dependent and x the independent variable.
If we expand Equation (3.3) as a vector equation we get

⎛⎜⎜⎜⎝

y1
y2
⋮
ym

⎞⎟⎟⎟⎠
= x1

⎛⎜⎜⎜⎝

a11
a21
⋮

am1

⎞⎟⎟⎟⎠
+ x2

⎛⎜⎜⎜⎝

a12
a22
⋮

am2

⎞⎟⎟⎟⎠
+⋯+ xn

⎛⎜⎜⎜⎝

a1n
a2n
⋮

amn

⎞⎟⎟⎟⎠
Finally, denoting the column vectors by a1,⋯,an we can rewrite Equation (3.3) as

(3.4) y = x1 a1 + ⋅ ⋅ ⋅ + xn an.

If f is a function we use the notation f(x) to denote the image of x under the application
of the function f . So for example if f is the function

f ∶ RÐ→ R, x z→ x2 + 3,
then f(2) = 7 because f maps 2 to 7.



56 3. MATRICES AND THEIR ALGEBRA

We can think of the notation Ax as a shorthand of A(x), it’s the image of x under the
function A, we just omit the parenthesis. This may seem strange at first, but this is what we
usually do with functions of several variables, for example we write

f(x, y, z) = x2 + y2 − 3xz
for a function from R3 to R. But elements of R3 are triples (x, y, z) so if we were really using
the functional notation f(⋅)we would have written

f ((x, y, z)) = x2 + y2 − 3xz.
Nobody does that!

DEFINITION 13 (Matrices as linear transformations). An m × n matrix with real numbers
as entries determines a function

A∶ Rn
Ð→ Rm, x z→ Ax,

that we call the linear function associated with A, or the linear function induced by A

We use the same symbol for the matrix and the associated linear function.

The concept of a function plays a central role in mathematics and there are several names
used to signify a function, for example function, map, mapping, correspondence, transformation,
operator, . . . . There are different connotations for each of these terms but we will consider
them as synonyms. In these notes besides the term “linear function” we will often use the
terms “linear transformation” and “linear map”.

EXAMPLE 27 (The zero matrix). The m×n matrix with all entries 0 is called the zero m×n
matrix and is denoted by Omn, or when no confusion is likely, O. It induces the zero linear
function, for all vectors x

Ox = 0.

EXAMPLE 28. Consider the 2 × 3 matrix

M = (1 −2 4

2 0 −1) .
Let’s find formulas for the the function M ∶ R3

Ð→ R2. We have:

(1 −2 4

2 0 −1)
⎛⎜⎝
x

y

z

⎞⎟⎠ = (
x − 2y + 4z
2x − 3z ) .

So we have
M(x, y, z) = (x − 2y + 4z,2x − 3z).

In Section 1.2.2 we proved (see Theorem 1.2.5) that the function associated with a matrix
has two important properties, it maps the sum of two vectors to the sum of their images and
the the product of a scalar λ and a vector to the product of λ and the image of the vector. We
call functions with those properties linear functions so Theorem 1.2.5 says that the functions
defined by matrices are linear.

DEFINITION 14 (Linear function). A function

T ∶ Rn
Ð→ Rm

is said to be linear if it enjoys the following two properties.

(a) It respects vector addition. This means that for any two vectors v,w ∈Rn we have

T (v +w) = T (v) + T (w).
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(b) It respects scalar multiplication. This means that for all λ ∈ R and v ∈ Rn we have

T (λv) = λT (v).
EXAMPLE 29 (The identity function is linear). The identity function of Rn is denoted by

In, or when no confusion is likely, simply by I . Thus

I x = x.

The two properties of Definition 14 are satisfied by In. Indeed,

(a) For v,w ∈ Rn we have

I (v +w) = v +w = I v + Iw.

(b) For λ ∈ R and v ∈Rn we have

I (λ ) = λv = λI v.
EXAMPLE 30 (Template for proving linearity or lack thereof). Let’s see a linear and a

non-linear function from R3 to R4. You should use this example as a template for proving that
a function is linear or not linear.

(a) The function T ∶ R3
Ð→ R4 given by the formula

T (x, y, z) = (3x − 2y, x − 2y + 3z, y + z,2x + 3y − z)
is linear.

PROOF. To prove that the function is linear we have to prove that it satisfies the
two properties in Definition 14. To prove the first property we proceed as follows:

Let v = (v1, v2, v3) and w = (w1,w2,w3) be two arbitrary vectors in R3. Then

v +w = (v1, v2, v3) + (w1,w2,w3)
= (v1 +w1, v2 +w2, v3 +w3).

We now will compute T (v +w). To make the calculations easier to read we use
column vectors. We have

T (v +w) =
⎛⎜⎜⎜⎝

3 (v1 +w1) − 2 (v2 +w2)(v1 +w1) − 2 (v2 +w2) + 3 (v2 +w2)(v2 +w2) + (v3 +w3)
2 (v1 +w1) + 3 (v2 +w2) − (v3 +w3)

⎞⎟⎟⎟⎠
On the other hand,

T (v) =
⎛⎜⎜⎜⎝

3v1 − 2v2
v1 − 2v2 + 3v3

v2 + v3
2v1 + 3v2 − v3

⎞⎟⎟⎟⎠
, T (w) =

⎛⎜⎜⎜⎝

3w1 − 2w2

w1 − 2w2 + 3w3

w2 +w3

2w1 + 3w2 −w3

⎞⎟⎟⎟⎠
.

and so

T (v) + T (w) =
⎛⎜⎜⎜⎝

(3v1 − 2v2) + (3w1 − 2w2)(v1 − 2v2 + 3v3) + (w1 − 2w2 + 3w3)(v2 + v3) + (w2 +w3)(2v1 + 3v2 − v3) + (2w1 + 3w2 −w3)

⎞⎟⎟⎟⎠
.

Rearranging the terms in each component we get
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T (v) + T (w) =
⎛⎜⎜⎜⎝

(3v1 + 3w1) + (−2v2 − 2w2)(v1 +w1) + (−2v2 − 2w2) + (3v3 + 3w3)(v2 + v3) + (w2 +w3)(2v1 + 2w1) + (3v2 + 3w2) + (−v3 −w3)

⎞⎟⎟⎟⎠
.

Finally taking common factors we have

T (v) + T (w) =
⎛⎜⎜⎜⎝

3 (v1 +w1) − 2 (v2 +w2)(v1 +w1) − 2 (v2 +w2) + 3 (v2 +w2)(v2 +w2) + (v3 +w3)
2 (v1 +w1) + 3 (v2 +w2) − (v3 +w3)

⎞⎟⎟⎟⎠
= T (v +w).

Thus T respects vector addition.
To prove that T also preserves scalar multiplication we proceed similarly. Let λ ∈ R

be an arbitrary scalar, and v and arbitrary vector as above. Then λv = (λv1, λ v2, λ v3)
and we have:

T (λv) =
⎛⎜⎜⎜⎝

3(λv1) − 2(λv2)(λv1) − 2 (λv2) + 3 (λv3)(λv2) + (λv3)
2 (λv1) + 3 (λv2) − (λv3)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

λ (3 v1 − 2 v2)
λ (v1 − 2 v2 + 3 v3)

λ (v2 + v3)
λ (2 v1 + 3 v2 − v3)

⎞⎟⎟⎟⎠
= λ

⎛⎜⎜⎜⎝

3 v1 − 2 v2
v1 − 2 v2 + 3 v3

v2 + v3
2 v1 + 3 v2 − v3

⎞⎟⎟⎟⎠
= λT (v).

Therefore T respects scalar multiplication as well. Thus, T is linear. �

(b) The function T ∶ R3
Ð→ R4 given by the formula

T (x, y, z) = (xy,x2 + 3y − 1, y, x3 + 3y − z2)
is not linear.

PROOF. To prove that a function is not linear we need to prove that (at least) one of
the conditions is not satisfied. To prove that a condition that is defined with universal
quantifiers (i.e. it starts with for all) we only need to find one counterexample. I will
prove that this function does not have property (2). If I choose λ = 2 and v = (0,0,1)
then

T (λv) = T (0,0,2) = (0,0,0,−4)
while

λT (v) = 2 (0,0,0,−1) = (0,0,0,−2).
Since for this particular λ ∈ R and v ∈ R3 we have T (λv) ≠ λT (v), the function is not
linear. �

In the example above we could have proved that T in the first item is linear by showing
that it is the linear function of a matrix. To do this we separate the terms in each row according
to their variable, putting 0 if a variable is missing:

T (v) =
⎛⎜⎜⎜⎝

3 v1 − 2 v2
v1 − 2 v2 + 3 v3

v2 + v3
2 v1 + 3 v2 − v3

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

3 v1
v1
0

2 v1

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝

−2 v2
−2 v2
v2
3 v2

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝

0

3 v3
v3
−v3

⎞⎟⎟⎟⎠
= v1

⎛⎜⎜⎜⎝

3

1

0

2

⎞⎟⎟⎟⎠
+ v2
⎛⎜⎜⎜⎝

−2
−2
1

3

⎞⎟⎟⎟⎠
+ v3
⎛⎜⎜⎜⎝

0

3

1

−1

⎞⎟⎟⎟⎠
.

Therefore the function is given by the matrix
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T =

⎛⎜⎜⎜⎝

3 −2 0

1 −2 3

0 1 1

2 3 −1

⎞⎟⎟⎟⎠
.

It turns out that all linear functions come from matrices. If T is a linear function there is
a matrix A such that for all x we have T (x) = Ax. We will prove this fundamental fact after
proving an important feature of linear functions: they are determined by the values they take
in a basis.

As we did with the definition of vector subspace we can combine the two properties that
define a linear function into one.

THEOREM 3.1.1 (Alternative definition of linear function). A function is linear if and only
if it respects linear combinations. In other words, a function T ∶ Rn

Ð→ Rm is linear if and only if for
any k scalars λ1, . . . , λk and any k vectors v1, . . . ,vk we have:

T (λ1 v1 + ⋅ ⋅ ⋅ + λk vk) = λ1T (v1) + ⋅ ⋅ ⋅ + λkT (vk).
PROOF. Exercise. See the proof of Theorem 2.1.3 and proceed similarly. �

When checking if a function is linear we only need to check that it respects linear combi-
nations of two vectors.

THEOREM 3.1.2 (Alternative statement of Alternative definition of linear function). A
function is linear if and only if it respects linear combinations of two vectors. In other words, a map
T ∶ Rn

Ð→ Rm is linear if and only if for every λ,µ ∈ R and v,w ∈ Rn we have:

T (λv + µw) = λT (v) + µT (w).
PROOF. Exercise. �

COROLLARY 2 (Linear maps send zero to zero). Let T ∶ Rn
→Rm be a linear map. Then

T 0 = 0.

Equivalently,

T 0 ≠ 0 Ô⇒ T is not linear.

PROOF. We have

T 0 = T (0 + 0) = T 0 + T 0.

Subtracting T 0 from both sides of this equation yields the result. �

EXAMPLE 31. None of the following functions is linear:

f ∶ RÐ→ R, xz→ 2x − 3
T ∶ R2

Ð→ R3, (x, y)z→ (x − y + 2,2x + 3 y,42x)
S∶ R3

Ð→ R2, (x, y, z) z→ (2x − 3 y + z,42).
A very useful consequence of Theorem 3.1.1 is that if we know the values of a linear func-

tion at a basis then we can compute its value at any vector. We illustrate this with an example.

EXAMPLE 32. For a linear function T ∶ R4
Ð→ R we have

T e1 = −5, T e2 = 3, T e3 = 1, T e4 = −2.
Find T (−2,1,3,4).
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SOLUTION. Let v = (−2,1,3,4) then v = −2e1 + e2 + 3e3 + 4e4. It follows that

T (v) = −2e1 + e2 + 3e3 + 4e4
= −2 (−5) + 3 + 3 ⋅ 1 + 4 (−2)
= −10 + 3 + 3 − 8
= −12.

�

So if two linear functions agree on a basis they agree everywhere and are therefore equal.

THEOREM 3.1.3. Let T,S∶ RÐ→ Rm be linear functions and let {v1, . . . ,vn} be a basis of Rn. If

T v1 = S v1, . . . , T vn = S vn

then we have

∀v ∈ Rn, T v = S v,

in other words

T = S.

PROOF. Let v ∈Rn then there are unique λ1, . . . , λn ∈ R so that

v = λ1v1 +⋯+ λnvn.

Then we have

T v = λ1 T v1 +⋯+ λn T vn

= λ1S v1 +⋯+ λn S vn

= S v.

�

Now, let’s remember that the linear function defined by a matrix A with columns a1, . . . ,an

is given by the formula

Ax = x1 a1 +⋯ + xn an

where x = x1 e1 +⋯ + xn en. In particular we have that the columns of A are the images of the
standard basis, in other words

ai = Aei, i = 1, . . . , n.

As a consequence we have that any linear function is equal to the linear function that has
columns the images of the standard basis under under that function. So we have the following
theorem.

THEOREM 3.1.4. Let T ∶ Rn
Ð→ Rm be a linear function. Then T is equal to the linear function

associated with the matrix with columns T e1, . . . , Ten.

EXAMPLE 33 (The identity matrix). For the identity function we have I en = en. Therefore
the identity function is induced by the n × n matrix with columns e1, . . . ,en. That is,

In =

⎛⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0 0

0 1 ⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0

0 0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎠
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EXAMPLE 34. Consider again the linear function T ∶ R3
Ð→ R4 given by

T (x, y, z) = (3x − 2y, x − 2y + 3z, y + z,2x + 3y − z)
from Example 30. We have

T (1,0,0) = (3,1,0,2)
T (0,1,0) = (−2,−2,1,3)
T (0,0,1) = (0,3,1,−1)

and we again get that T is given by the matrix

T =

⎛⎜⎜⎜⎝

3 −2 0

1 −2 3

0 1 1

2 3 −1

⎞⎟⎟⎟⎠
.

So if we know the values of a linear transformation in the standard basis of Rn it’s straight-
forward to find its matrix. What about other bases though? A linear transformation is
uniquely determined by its values in any basis, is there a method to find the matrix if the
basis is not the standard one?

Indeed there is! We illustrate with an example.

EXAMPLE 35. Consider the basis {v1,v2,v3} of R3 where

v1 = (1,−1,0), v2 = (0,2,−1), v3 = (1,0,2).
For a 3 × 4 matrix A we have that

Av1 = (2,3,0,1), Av2 = (1,1,1,1), Av4 = (0,4,2,0).
Determine the matrix A.

SOLUTION. The solution has two steps. We first express the standard basis in terms of the
new basis, and then we calculate the images of the standard basis i.e. the columns of A.

First Step: So we have to express each ei as a linear combination of v1,v2,v3. So we have to
solve three systems

B x = ei, i = 1,2,3

where

B =
⎛⎜⎝

1 0 1

−1 2 0

0 −1 2

⎞⎟⎠ .
Rather than doing essentially the same calculations with three different augmented ma-

trices we augment B with all three vectors at once. At the end of our calculations the first
column of the augmented part will be the coefficients to express e1, the second e2, and the
third e3 in terms of the basis {v1,v2,v3}.

⎛⎜⎝
1 0 1

−1 2 0

0 −1 2

RRRRRRRRRRRRR
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 1

0 2 1

0 −1 2

RRRRRRRRRRRRR
1 0 0

1 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 1

0 2 1

0 0 5

RRRRRRRRRRRRR
1 0 0

1 1 0

1 1 2

⎞⎟⎠ .
In the first step I added the first row to the second row. In the second step I added the sec-

ond row to twice the third row. Next I’ll add the third row to −5 times the second, and the first
to get a diagonal matrix. The final step is then to divide each row by the the corresponding
diagonal element.
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⎛⎜⎝
−5 0 0

0 −10 0

0 0 5

RRRRRRRRRRRRR
−4 1 2

−4 −4 2

1 1 2

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
4/5 −1/5 −2/5
2/5 2/5 −1/5
1/5 1/5 2/5

⎞⎟⎠ .
So all three systems have been solved and we have

e1 =
4

5
v1 + 2

5
v2 + 1

5
v3

e2 = −1
5
v1 + 2

5
v2 + 1

5
v3

e3 = −2
5
v1 − 1

5
v2 + 2

5
v3.

Second Step: By the linearity of A we have

Ae1 =
4

5
Av1 + 2

5
Av2 + 1

5
Av3.

Therefore,

Ae1 =
4

5

⎛⎜⎜⎜⎝

2

3

0

1

⎞⎟⎟⎟⎠
+ 2

5

⎛⎜⎜⎜⎝

1

1

1

1

⎞⎟⎟⎟⎠
+ 1

5

⎛⎜⎜⎜⎝

0

4

2

0

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

2

18/5
4/5
6/5

⎞⎟⎟⎟⎠
Entirely similar calculations1 give

Ae2 =

⎛⎜⎜⎜⎝

0

3/5
4/5
1/5

⎞⎟⎟⎟⎠
, Ae3 =

⎛⎜⎜⎜⎝

−1
1/5
3/5
−3/5

⎞⎟⎟⎟⎠
.

Therefore

A =

⎛⎜⎜⎜⎝

2 0 −1
18/5 3/5 1/5
4/5 4/5 3/5
6/5 1/5 −3/5

⎞⎟⎟⎟⎠
.

�

EXAMPLE 36 (3×3 Permutation matrices). There are 6 ways to order a set with 3 elements.
For example for the set {1,2,3} we have the following possibilities:

1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1.

Each of these orders is determines a permutation of {1,2,3}, i.e. a one-to-one and onto func-
tion σ∶ {1,2,3}Ð→ {1,2,3}, namely the function that maps i to the element that appears in the
i-th position. So the third ordering is determined the function with values σ(1) = 2, σ(2) = 1,
and σ(3) = 3. Conversely, a permutation σ gives the ordering σ(1) σ(2) σ(3). For example the
permutation with values σ(1) = 2, σ(2) = 3, and σ(3) = 1 determines the fourth ordering.

1Verify all calculations yourself.
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Now, given any such permutation we can define a linear transformation R3
Ð→ R3, by

permuting the standard basis accordingly. What I mean is the following: take for example the
last ordering 3 2 1, that corresponds to the permutation σ(1) = 3, σ(2) = 2, σ(3) = 1, and set

T e1 = e3, T e2 = e2, T e3 = e1.

There is one and only one linear transformation that satisfies these conditions, namely (see
Theorem 3.1.4), the linear transformation associated with the matrix that has columns (listed
in order) e3,e2,e1.

In other words, for any ordering of {1,2,3} we order the vectors of the standard basis the
same way and then take the matrix with those columns. We obtain the following 3×3 matrices

⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
1 0 0

0 0 1

0 1 0

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎠ ,
⎛⎜⎝
0 0 1

0 1 0

1 0 0

⎞⎟⎠ .
The first of these permutation matrices is I3 the 3 × 3 identity matrix, and is obtained by the

identity permutation. Let’s see what P132 does to a vector (x, y, z).
⎛⎜⎝
1 0 0

0 0 1

0 1 1

⎞⎟⎠
⎛⎜⎝
x

y

z

⎞⎟⎠ =
⎛⎜⎝
1 ⋅ x + 0 ⋅ y + 0 ⋅ z
0 ⋅ x + 0 ⋅ y + 1 ⋅ z
0 ⋅ x + 1 ⋅ y + 0 ⋅ z

⎞⎟⎠ =
⎛⎜⎝
x

z

y

⎞⎟⎠ .
So P132(x, yz) = (x, z, y). Let’s also find P312(x, y, z), where P312 is the permutation matrix

that corresponds to the ordering 3 1 2.

⎛⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎠
⎛⎜⎝
x

y

z

⎞⎟⎠ =
⎛⎜⎝
0 ⋅ x + 1 ⋅ y + 0 ⋅ z
0 ⋅ x + 0 ⋅ y + 1 ⋅ z
1 ⋅ x + 0 ⋅ y + 0 ⋅ z

⎞⎟⎠ =
⎛⎜⎝
y

z

x

⎞⎟⎠ .
So P312(x, y, z) = (y, z, x). Notice that we looked at three permutation matrices P123, P132,

and P312 and for all three, the image of (x, y, z) was a vector with coordinates some permuta-
tion of (x, y, z).

We will see later in the class that the rows of a permutation matrix are also given by a
permutation of the rows of the identity matrix. Furthermore, if P is a permutation matrix
and x a column vector, then the rows of P x are given from the columns of x by the same
permutation.

We can verify that this is the case for the three permutation matrices we checked. The
rows of I3 are given by the identity permutation and the rows of I3, and the coordinates of
I3(x, y, z) are also given by the identity permutation of the coordinates of (x, y, z).

The rows of P132 are obtained by interchanging the second and third row of I3, and in
P1(x, y, z) = (x, z, y) the second and third coordinate of (x, y, z) are interchanged.

Finally, the first row of P132 is the second row of I3 and the first coordinate of P132(x, y, z)
is y. The second row of P132 is the third row of I3 and the second coordinate of P132(x, y, z) is
z. The third row of P132 is the first row of I3 and the third coordinate of P132(x, y, z) is x.

Exercise 2. Compute P (x, y, z) for the remaining three permutation matrices and verify
that the coordinates are permuted the same way that the rows of P have been permuted.

3.1.1. New linear functions from old. Let A,B∶ Rn
Ð→ Rm be two functions, and λ ∈ R.

We define a new function A+B, called the sum of A and B, and a new function λA, called the
scalar product of λ and A, as follows

A +B∶ Rn
Ð→ Rm, (A +B) x = Ax +B x,
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and

λA∶ Rn
Ð→ Rm, (λA) x = λ (Ax) .

In other words, to find the image of x under A +B we add its images under A and B. To
find the image of x under λA we multiply its image under A by λ.

We also define the opposite of A to be the function

−A∶ Rn
Ð→ Rm, (A) x = − (Ax) .

Clearly −A = −1A.

THEOREM 3.1.5 (Function Spaces are Vector Spaces). Addition and scalar multiplication of
functions satisfy all the axioms listed in Theorem 2.1.1, where the role of the zero vector is played by
the zero function O. In other words we have the following properties:

(a) Function addition is commutative. This means that for any two functions A, B we have

A +B = B +A
(b) Function addition is associative. This means that for any three functions A, B, and C we

have (A +B) +C = A + (B +C) .
(c) O is neutral for addition. This means that for any function A we have

O +A = A.
(d) For every function A we have

A + (−A) = O.

(e) The number 1 is neutral for scalar multiplication. This means that for every function A we
have

1A = A.

(f) Scalar multiplication distributes over function addition. This means that if λ is a scalar and
A, B are functions we have

λ (A +B) = λA + λB.

(g) Addition of scalars distributes over scalar multiplication. This means that

(λ + µ)A = λA + µA.
(h) Multiplication of scalars and scalar multiplication are compatible in the following sense: if λ,

µ are scalars and A is a function, we have

λ (µA) = (λµ) A.
PROOF. To prove that two functions are equal we need to prove that they give the same

result when applied to the same argument. For example to prove that addition is commutative
we need to prove that for all x ∈ Rn we have

(A +B)x = (B +A)x.
Indeed,

(A +B)x = Ax +B x

= B x +Ax

= (B +A)x.
Let’s also prove that addition of scalars distributes over scalar multiplication.
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Let x ∈ Rn, and λ,µ ∈ R. Then

((λ + µ)A) x = λ + µ)Ax

= λ (Ax) + µ (Ax)
= (λA )x + (µA) x
= ((λ + µ) A) x.

The proofs of the remaining properties are similar and left as an exercise. �

We will visit these operations later in the class. At the moment we concentrate in the case
of linear functions. We have the following two theorems.

THEOREM 3.1.6 (The sum of two linear functions is a linear function). If A,B are linear
functions then A+B is also linear. Furthermore, if the matrix of A is (aij) and the matrix of B is (bij)
then the matrix of A +B is (aij + bij). In other words

⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝

b11 b12 ⋯ b1n
b21 b22 ⋯ b2n
⋮ ⋮ ⋱ ⋮

bm1 bm2 ⋯ bmn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

a11 + b11 a12 + b12 ⋯ a1n + b1n
a21 + b21 a22 + b22 ⋯ a2n + b2n
⋮ ⋮ ⋱ ⋮

am1 + bm1 am2 + bm2 ⋯ amn + bmn

⎞⎟⎟⎟⎠
PROOF. Let λ,µ ∈ R and x,y ∈ Rn. We have,

(A +B) (λx + µy) = A (λx + µy) +B (λx + µy)
= λAx + µAy + λB x + µB y

= λAx + λB x + µB y + µAy

= λ (Ax +B x) + µ (Ay +B y)
= λ ((A +B) x) + µ ((A +B) y)
= (λ (A +B)) x + (µ (A +B)) y.

Therefore A+B is linear. Now, recall that the j-th column of the matrix of A+B is (A+B)ej ,
but by the definition of A +B we have

(A +B)ej = Aej +B ej .

Therefore the j-th column of A +B is the sum of the j-th column of A and the j-th column of
B. �

THEOREM 3.1.7 (A multiple of a linear function is a linear function). If A is a linear func-
tion then λA is also linear for every λ ∈ R. Furthermore, if the matrix of A is (aij) then the matrix of
λA is (λaij). In other words,

λ

⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

λa11 λa12 ⋯ λa1n
λa21 λa22 ⋯ λa2n
⋮ ⋮ ⋱ ⋮

λam1 λam2 ⋯ λamn

⎞⎟⎟⎟⎠
.

The proof is similar to the proof of Theorem 3.1.6 and is left as an exercise.
We can combine Theorems 3.1.6 and 3.1.7 into a single theorem.

THEOREM 3.1.8 (Linear combinations of linear functions are linear). If A,B are linear
function and λ,µ are scalars then λA + µB is linear with matrix (λaij + µbij).
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EXAMPLE 37. We have

3 ( 2 1 0

−1 3 1
) − 4 (3 0 1

2 −1 0
) = ( −6 3 −4

−11 13 3
) .

We next look at the operation of composition. Recall that if g∶ X Ð→ Y and f ∶ Y Ð→ Z are
two functions then the composition f ○ g is defined as follows:

f ○ g∶ X Ð→ Z, (f ○ g) (x) = f (g(x)) .
Let A be an m × n and B an n × k matrix. Then

A∶ Rn
Ð→ Rm, B∶ Rk

Ð→ Rn

and so the composition
A ○B∶ Rk

→ Rm, xz→ A (B x),
is defined. We write AB instead of A ○B.

THEOREM 3.1.9 (Composition of linear maps is linear). If A,B are linear maps such that the
composition AB is defined, then AB is linear map.

PROOF. Let λ,µ ∈ R and x,y ∈ Rn. We have,

(AB) (λx + µy) = A (B (λx + µy))
= A (λB x + µB y)
= λA (B x) + µA (B y)
= λ ((AB) x) + µ ((AB) y) .

�

We want to find a formula for the matrix of AB. Let’s first do this for matrices of relatively
low dimensions. Let’s take A to be 3 × 2 and B to be 2 × 2. Then the composition AB is given
by a 3 × 2 matrix. We want to find

A (B x) = ⎛⎜⎝
a11 a12
a21 a22
a31 a32

⎞⎟⎠((
b11 b12
b21 b22

) (x1

x2
)) .

We know that the image of x is a linear combination of the column vectors of B with
coefficients given by the coordinates of x. We have then, using the linearity of A,

A(B x) = A(x1 (b12b21
) + x2 (b21b22

)) = x1A (b12b21
) + x2A (b21b22

) .
Using again the fact that the image of a vector under A is a linear combination of the

columns of A with coefficients the coordinates of the vector we have

A (b11
b21
) = b11 ⎛⎜⎝

a11
a21
a31

⎞⎟⎠ + b21
⎛⎜⎝
a11
a21
a31

⎞⎟⎠ =
⎛⎜⎝
a11b11
a21b11
a31b11

⎞⎟⎠ +
⎛⎜⎝
a12b21
a22b21
a32b21

⎞⎟⎠ =
⎛⎜⎝
a11b11 + a12b21
a21b11 + a22b21
a31b11 + a32b21

⎞⎟⎠ ,
and, by entirely similar calculations

A (b12
b22
) = ⎛⎜⎝

a11b12 + a12b22
a21b12 + a22b22
a31b12 + a32b22

⎞⎟⎠ .
So,
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(AB) x = x1

⎛⎜⎝
a11b11 + a12b21
a21b11 + a22b21
a31b11 + a32b21

⎞⎟⎠ + x2

⎛⎜⎝
a11b12 + a12b22
a21b12 + a22b22
a31b12 + a32b22

⎞⎟⎠ .
Keeping the LHS, the linear combination of columns in the RHS can be expressed as a

product of a 2 × 2 matrix and a x. Therefore we have,

(AB) x = ⎛⎜⎝
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22
a31b11 + a32b21 a31b12 + a32b22

⎞⎟⎠ (
x1

x2
) .

So we got that,

(3.5)
⎛⎜⎝
a11 a12
a21 a22
a31 a32

⎞⎟⎠ (
b11 b12
b21 b22

) = ⎛⎜⎝
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22
a31b11 + a32b21 a31b12 + a32b22

⎞⎟⎠ .
The same ideas can be used to get the formula for the matrix of AB in the general case

where A has dimensions m × k for m,k ≥ 1 and B has dimensions k × n2 for n ≥ 1.

Let a∗i be the i-th row and bj the j-th column of B. That is we consider A as a column of m
row vectors, each of dimension k, while B is considered as a row of n column vectors each of
dimension k. Let us also set C = AB, an m × n matrix.

The j-th column of C is C ej . But,

C ej = A (B ej) = Abj .

Therefore, by the boxed formula at the bottom of Page 50 the i-th element of the j-th
column of C is the “dot product” of the i-th row of A with the j-column of B.

We have thus proved the following theorem.

THEOREM 3.1.10. Let A be an m × k matrix and B a k × n matrix. Then the entries of C = AB

are given by

(3.6) cij = a
∗
i ⋅bj =

k

∑
ℓ=1

aiℓ aℓj.

Or, if we expand the sum in the RHS,

cij = ai1 b1j +⋯ + aik bkj.
We can express Equation (3.6) as follows:

⎛⎜⎝
a∗1⋮
a∗m

⎞⎟⎠ (b1 ⋯ bn) = ⎛⎜⎝
a∗1 ⋅ b1 ⋯ a∗1 ⋅ bn

⋮ ⋱ ⋮
a∗m ⋅ b1 ⋯ a∗m ⋅ bn

⎞⎟⎠ .
EXAMPLE 38. Let’s compute AB and BA where

A = ( 1 2 0

−1 0 3
) , B =

⎛⎜⎝
−1 1

2 0

4 3

⎞⎟⎠ .
2This is the same k. In order for the matrices to be composable the number of rows of B has to equal the

number of columns of A.



68 3. MATRICES AND THEIR ALGEBRA

We have

AB = ( 1 2 0

−1 0 3
) ⎛⎜⎝
−1 1

2 0

4 3

⎞⎟⎠ = (
−1 + 4 + 0 1 + 0 + 0
1 + 0 + 12 −1 + 0 + 9) = ( 3 1

13 8
) ,

while

BA =
⎛⎜⎝
−1 1

2 0

4 3

⎞⎟⎠ (
1 2 0

−1 0 3
) = ⎛⎜⎝

−1 − 1 −2 + 0 0 + 3
2 + 0 4 + 0 0 + 0
4 − 3 8 + 0 0 + 9

⎞⎟⎠ =
⎛⎜⎝
−2 −2 3

2 4 0

1 8 9

⎞⎟⎠ .
3.1.2. Some Exercises.

Exercise 3. Let P ∶ R4
Ð→ R4 be given by

P (x, y, z,w) = (y, z,w,x).
(a) Prove that P is linear using Theorem 3.1.2.
(b) Find the matrix of P .
(c) Verify that the rows of the matrix of P , listed in order, are e2,e3,e4,e1.

Exercise 4. An 1 × 1 matrix has only one entry (a). It’s natural to identify this matrix with
the real number a. We have also identified R1 with R. So the linear function defined by a 1× 1
matrix has domain and codomain R.

(a) What functions f ∶ RÐ→ R arise as the linear functions associated with 1×1 matrices?
(b) When is a linear function f ∶ RÐ→ R one-to-one?
(c) When is a linear function f ∶ RÐ→ R onto?
(d) When is a linear function f ∶ RÐ→ R invertible?
(e) Let f ∶ RÐ→ R be an invertible linear function. What is f−1?
(f) Let f, g be two linear functions R Ð→ R. Prove that f ○ g is also linear. Give the matrix

f ○ g in terms of the matrices of f and g.

Your answers to Questions (2) through (5) should be in terms of the matrices that define the
linear functions.

Exercise 5. For each of the following functions T

(a) Prove that it is linear.
(b) Find the matrix that gives T .

(a) The function T ∶ Rn
Ð→ Rn given by

T x = λx.

(b) The function T ∶ R3
Ð→ R2 given by

T (x1, x2, x3) = (x1, x2).
(c) The function T ∶ R2

Ð→ R3 given by

T (x1, x2) = (x1, x2,0).
(d) The function T ∶ R3

Ð→ R2 given by

T (x, y, z) = (x + z, x − z).
Exercise 6. Let

A =
⎛⎜⎝
1 2 3

0 2 −3
1 −2 3

⎞⎟⎠
(a) Prove that the columns of the matrix form a basis of R3.
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(b) Let T be the linear map that interchanges the columns and rows of A. In other words

T a1 = a
∗
1, , T a2 = a

∗
2, T a3 = a

∗
3 ,

where ai (respectively a∗i ) are the columns (respectively rows) of A. Explain why T is
well defined. Then find the matrix of T .

(c) Find T a∗i , for i = 1,2,3.
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3.2. Range and rank, Kernel and nullity

Let’s introduce some terminology and recall some concepts about functions. A function
f with domain X and codomain Y associates to every x ∈ X unique element y ∈ Y , denoted by
f(x). We also use the notation x↦ y to indicate that y = f(x). The notation,

f ∶ X Ð→ Y

means that f is a function with domain X and codomain Y .

DEFINITION 15 (Range, Image, Preimage). The set of all elements of Y that are images of
elements of X is called the range of f and denoted by R(f). Thus

R(f) = {f(x) ∶ x ∈X}
= {y ∈ Y ∶ ∃x ∈X, xz→ y} .

If S ⊆ X then the image of S under f , denoted f(S) is the set of the images of all elements
of S. Thus

f(S) = {f(s) ∶ s ∈ S} ⊆ Y.
Note that f(X) = R(f).

If T ⊆ Y then the preimage of T under f , denoted f−1(T ) is the set of all elements of X that
are mapped to an element of T . Thus

f−1(T ) = {x ∈X ∶ f(x) ∈ T} .
Consider now a linear function with matrix A

A∶ Rn
Ð→ Rm, xz→ Ax.

What is the range of A? The definition says that

R(A) = {y ∈ Rm ∶ ∃x ∈ Rn, Ax = y} ,
so y ∈ R(A) if and only if the system

Ax = y

has solutions. Now if x = (x1, . . . , xn) is such a solution then

x1 a1 +⋯+ xn an = y,

where a1, . . . ,an are the columns of A. Thus the range of A is the linear span of its columns.
So we have the following theorem.

THEOREM 3.2.1 (Range is the span of the columns). The range of the linear map with matrix
A is the linear span of the the columns of A. In other words, if a1, . . . ,an are the columns of A, then

R(A) = ⟨a1, . . . ,an⟩ .
DEFINITION 16 (Rank of a matrix). The rank of a linear map is the dimension of its range.

The rank of a linear map A is denoted by rankA. Thus

rankA = dimR(A).
We can summarize the discussion in Section 2.2.1 as follows.

THEOREM 3.2.2. The basic columns of an m×n matrix form a basis ofR(A). Therefore rankA is
the number of columns in the reduced echelon form of A that contain a leading 1.
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EXAMPLE 39. Find the rank of the following matrix

A =

⎛⎜⎜⎜⎝

1 3 −2 5 4

1 4 1 3 5

1 4 2 4 3

2 7 −3 6 13

⎞⎟⎟⎟⎠
SOLUTION. The reduced row echelon form of A is3

A ∼

⎛⎜⎜⎜⎝

1 0 0 22 −21
0 1 0 −5 7

0 0 1 1 −2
0 0 0 0 0

⎞⎟⎟⎟⎠
.

There are three basic columns and therefore rankA = 3. �

If c ∈ Rm then the solution set of the linear system Ax = c is the preimage of A−1 {{c}}.
In particular the preimage of the zero vector is the solution set of the homogeneous system
Ax = 0.

Recall (see Theorem 1.2.6 in Section 1.2.2) that the solution sets of homogeneous systems
are subspaces of Rm.

DEFINITION 17 (Kernel and nullity). The kernel (or null space) of A, denoted by kerA is the
preimage of the zero vector. Thus

kerA = {x ∈ Rn ∶ Ax = 0} .
The dimension of kerA is called the nullity of A and is denoted by nullA. Thus

nullA = dim (kerA).
Throughout Section 1.1 we were referring to the number of free parameters in the solution

of a system has as the “dimension” of the solution set. This suggests that the nullity of a
matrix is the number of free columns in its reduced echelon form. This is indeed the case.
Consider for example the homogeneous system with matrix the matrix A of Example 39. The
solution of Ax = 0 is

(3.7)

⎛⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

−22 s + 21 t
5 s − 7 t
−s + 2 t

s

t

⎞⎟⎟⎟⎟⎟⎠
= s

⎛⎜⎜⎜⎜⎜⎝

−22
5

−1
1

0

⎞⎟⎟⎟⎟⎟⎠
+ t
⎛⎜⎜⎜⎜⎜⎝

21

−7
2

0

1

⎞⎟⎟⎟⎟⎟⎠
, s, t ∈ R.

Thus,letting s = (−22,5,−1,1,0) and t = (21,−7,2,0,1) we have

kerA = ⟨s, t⟩ .
Now the set {s, t} is linearly independent. This follows immediately from the fact that the if
the second vector in (3.7) is 0 then s = t = 0. Therefore {s, t} is a basis of kerA, and so kerA is
two-dimensional.

Notice that the first three coordinates of s form the opposite of fourth column of the re-
duced echelon form, and the last two extra coordinates are the coordinates of e1. Similarly
the first three coordinates t are the opposites of the fifth column and its last two coordinates
those of e2.

3Do the calculations yourself!
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A similar pattern will arise always. In order not to get tangled in over complicated nota-
tions let’s consider the case that the free variables are the third, fourth, and seventh. Then the
parametric solution will be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = −s b13 − t b14 −w b17
x2 = −s b23 − t b24 −w b27
x3 = s

x4 = t

x5 = −s b53 − t b54 −w b57
x6 = −s b63 − t b64 −w b67
x7 = w

Then in vector form the solution is

x = sb′3 + tb′4 +wb′7,

where

b′3 = (−b13,−b23,1,0,−b53,−b63,0)
b′4 = (−b14,−b24,0,1,−b54,−b64,0)
b′7 = (−b17,−b27,0,0,−b57,−b67,1).

The set B = {b′3,b′4,b′7} is linearly independent. We can see this by looking only at the
free slots, namely the third, fourth and seventh: we have the coordinates of {e1,e2,e3}. Thus
a linear dependency on B would give a linear dependency on the standard basis of R3, and
that’s not possible.

So we have the following theorem, that we will see again in a more general and precisely
stated form later in the course.

THEOREM 3.2.3. Let A be an m × n matrix and with reduced row echelon form B. The nullity of
a A is the number of free columns B. Furthermore, a basis of kerA is obtained from the free columns
of B by “interpolating” the coordinates of the standard basic vectors at the “free slots”.

As a corollary of Theorems 3.2.2 and 3.2.3 we have the following theorem.

THEOREM 3.2.4 (Rank-nullity Theorem). If A in an m × n matrix then

rankA + nullA = n.

Bases of Range and Kernel

The basic columns in an echelon form of the matrix of a linear map give a basis for its
range, and the free columns give a basis for its kernel.

EXAMPLE 40. Consider the linear function T ∶ R4
Ð→ R2 with matrix

T = ( 1 2 3 4

−1 −2 −3 4
) .

The reduced echelon form of T is

B = (1 2 3 0

0 0 0 1
)
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The basic columns of B are the first and fourth. So the first and fourth column of T give a
basis for the range of T . So,

R(T ) = ⟨(1,−1), (4,4)⟩ .
The second and third columns of B will give a basis of kerT . We are missing two coor-

dinates to make the (opposites of the) second and third columns of B four dimensional and
we fill those with the coordinates of (1,0) and (0,1) interpolated at the second and third slot.
Thus the second column of B gives the vector (2,1,0,0) and the third the vector (3,0,1,0).
Thus

R(T ) = ⟨(−2,1,0,0), (−3,0,1,0)⟩ .
EXAMPLE 41. Consider the linear function A∶ R5

Ð→ R4 with matrix

A =

⎛⎜⎜⎜⎝

1 2 −4 −4 5

2 4 0 0 2

2 3 2 1 5

−1 1 3 6 5

⎞⎟⎟⎟⎠
.

The reduced echelon form of A is

A ∼

⎛⎜⎜⎜⎝

1 0 0 −2 0

0 1 0 1 0

0 0 1 1 0

0 0 0 0 1

⎞⎟⎟⎟⎠
.

We have four basic columns and one free. Thus the range is four-dimensional and the first,
second, third and fifth columns of A form a basis of R(A).

The kernel is one dimensional so a basis will have only one vector. We obtain that vector
from the the opposite of the fourth column, by inserting 1 in the fourth slot. Thus

kerA = ⟨(2,−1,−1,1,0)⟩ .



74 3. MATRICES AND THEIR ALGEBRA

3.3. Injective, Surjective, and Invertible linear maps

Recall that we say that a function is one-to-one or injective if it the images of two different
elements is different. Thus a function f ∶ X Ð→ Y is one-to-one if for all x1, x2 ∈X we have

x1 ≠ x2 Ô⇒ f(x1) ≠ f(x2).
The contra-positive of the above, namely

f(x1) = f(x2) Ô⇒ x1 = x2

is often useful in proving (or disproving) that a function is injective. So if f is injective and
y ∈ Y , then there can be at most one x ∈ X with f(x) = y. We can express this in terms of
preimages by saying that f is injective if and only if f−1 ({y}) contains at most one element.

f is called onto or surjective if every y ∈ Y is the image of some element in X , i.e. if the
range of f is Y .

Solutions of y = f(x)
Consider the equation

(3.8) y = f(x).
(a) A function f ∶ X Ð→ Y is injective if for all y ∈ Y Equation (3.8) has at most one

solution.
(b) A function f ∶ X Ð→ Y is surjective if for all y ∈ Y Equation (3.8) has at least one

solution.
(c) A function is a bijection, i.e. both injective and surjective, if and only if for all

y ∈ Y Equation (3.8) has a unique solution.
(d) If f is a bijection then f has inverse function f−1∶ Y Ð→ X defined so that

x = f−1(y) ⇐⇒ y = f(x).
in other words, f−1(y) is the unique solution of Equation (3.8).

Recall also that if f is invertible then f−1 is also invertible and (f−1)−1 = f . Finally recall
that a pair of inverse functions is characterized by the equations

f (f−1(y)) = y, f−1 (f(x)) = x
or equivalently,

f ○ f−1 = IY , f−1 ○ f = IX .
Let now

A∶ Rn
Ð→ Rm

be a linear map. Then the equation
y = Ax

is a system of m linear equations and n variables, and the nature of the solution set is deter-
mined by the reduced echelon form of A. The following theorem summarizes most of what
we have seen so far in this class.

THEOREM 3.3.1. Let A be an m × n and as usual denote the linear function it defines by the same
symbol

A∶ Rn
→ Rm, x↦ Ax.

Let B be the reduced echelon form of A. The following hold.
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(a) A is injective if and only if B has no free columns.
(b) A is injective if and only if its kernel contains only the zero vector, i.e.

kerA = {0}
.

(c) A is injective if and only if nullA = 0.
(d) If A is injective then n ≤m.
(e) A is surjective if and only if its columns span Rm.
(f) A is surjective if and only if rankA =m.
(g) A is surjective if and only if B has m basic columns.
(h) If A is surjective then n ≥m.
(i) A is invertible if and only if B = In, the n × n identity matrix.
(j) A is invertible if and only if the columns of A form a basis of Rn.
(k) If A is invertible then A−1 is linear.
(l) If A is invertible then n =m.

PROOF. Most of the statements are reformulations of things we have already proved. Try
to understand why this is the case for each of the statements. I provide some hints to guide
you.

(a) This just says that a consistent system has a unique solution if and only if there are no
free variables.

(b) This just says that a consistent system has unique solution if and only if the corre-
sponding homogeneous system has only the trivial solution.

(c) The nullity of A is the dimension of its kernel. A subspace has 0 dimension if and
only if it equals 0.

(d) If there are more unknowns than equations then B will contain free columns. Con-
versely if there are no free columns the solution has no free variables, thus if it exists
it is unique.

(e) The range of A is the linear span of the columns of A. A is surjective if and only if the
range of A is Rm.

(f) The rank of A is the dimension of its range. If a subspace of Rm has dimension m then
it is the whole Rm.

(g) The basic columns form a basis of the range of A, so if A is surjective then B has at
least m basic columns. The leading ones have to be in different columns and therefore
B cannot have more than m free columns.

(h) If there are less variables than equations there are not enough columns to form a basis
of Rm.

(i) A is invertible if an only if the system Ax = c has a unique solution, for all c ∈ Rm.
(j) If the system Ax = 0 has only the trivial solution then the columns of A are linearly

independent. If Ax = y is consistent for all y then the columns of A are spanning.
(k) We have

A (λA−1x + µA−1 y) = λA (A−1x) + µ (A−1 y)
= λx + µy.

So
A−1 (A (λA−1x + µA−1 y)) = A−1 (λx + µy) .

Therefore
λA−1x + µA−1 y = A−1 (λx + µy) .

(l) It follows from (4) and (8).
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�

As a consequence of the Rank-Nullity Theorem (see Theorem 3.2.4), we have the following
Theorem.

THEOREM 3.3.2. Let A∶ Rn
Ð→ Rn be a linear map. Then the following are equivalent.

(a) A is injective.
(b) A is surjective.
(c) A is invertible.

PROOF. We will prove that

(1) Ô⇒ (2) Ô⇒ (3) Ô⇒ (1).
If A is injective then nullA = 0 and therefore by Theorem 3.2.4 we have rankA = n. Thus A

is surjective.
If A is surjective then rankA = n and therefore, again by Theorem 3.2.4 we have nullA = 0,

thus A is also injective. A is therefore invertible.
If A is invertible then, by definition it is injective. �

REMARK 10. We remark that this property is not shared by general maps. If X is an infinite
set there are always functions X Ð→ X that are injective but not surjective, and functions that
are surjective but not injective. For example for the set of natural numbers N the function

f ∶ NÐ→ N, f(n) = 2n,
is injective but not surjective. On the other hand,

g∶ NÐ→ N, g(n) = {n/2 n even

n n odd,

is surjective but not injective.

THEOREM 3.3.3 (Solving matrix equations). If A be an invertible n×n matrix, and C an n×k
matrix for some positive integer k. Then the equation

AX = C

has a unique solution, namely the n × k matrix

X = A−1C.

Similarly, the equation
XA = C

has a unique solution, namely the n × k matrix

X = CA−1.

REMARK 11. Because composition of functions is generally not commutative, we need to
be careful to multiply in the right order.

PROOF. We have:

AX = C ⇐⇒ A−1 (AX) = A−1C
⇐⇒ (A−1A) X = A−1C
⇐⇒ I X = A−1C

⇐⇒ X = A−1C.

The proof for the other equation is entirely similar. Just multiply from the right with A−14. �

4You should do it!
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EXAMPLE 42 (How to find the inverse of a linear function). Let A be an invertible linear
function. Then the columns of (the matrix of) A−1 are the images of the vectors of the standard
basis. That is the j-th column cj of A−1 is given by

cj = A
−1 ej ,

or equivalently,
Acj = ej .

We solve all of these systems simultaneously by finding the reduced echelon form of the
augmented matrix (a1 . . . an ∣ e1 . . . en) .

So to find the inverse of

A =
⎛⎜⎝
1 0 2

2 −1 3

4 1 8

⎞⎟⎠
we proceed as follows.

⎛⎜⎝
1 0 2

2 −1 3

4 1 8

RRRRRRRRRRRRR
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 2

0 −1 −1
0 1 0

RRRRRRRRRRRRR
1 0 0

−2 1 0

−4 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 2

0 0 −1
0 1 0

RRRRRRRRRRRRR
1 0 0

−6 1 1

−4 0 1

⎞⎟⎠
∼
⎛⎜⎝
1 0 2

0 1 0

0 0 −1

RRRRRRRRRRRRR
1 0 0

−4 0 1

−6 1 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
−11 2 2

−4 0 1

6 −1 −1
⎞⎟⎠ .

Therefore

A−1 =
⎛⎜⎝
−11 2 2

−4 0 1

6 −1 −1
⎞⎟⎠ .

How to find the inverse a matrix

If A is an invertible n × n matrix then the reduced row echelon form of the block matrix

(A ∣ I) ∼ (I ∣ A−1) .

EXAMPLE 43 (2 × 2 revisited). Let’s consider again a 2 × 2 matrix

A = (a b

c d
) .

When is A invertible?
We start with the augmented matrix

(a b

c d
∣ 1 0

0 1
) .

If both a, c are 0 then the columns are not linearly independent and thus A is not invertible.
Assume then that a ≠ 0. We add to −c times the first row to a times the second and we get

(a b

0 ad − bc ∣ 1 0

−c a
) .
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If the determinant D ∶= ad−bc = 0 then A is not invertible because a ≠ 0 and thus the system
Ax = e2 has no solutions.

If D ≠ 0 we divide the second row by D,

(a b

0 1
∣ 1 0

−c/D a/D) ∼ (a 0

0 1
∣ 1 + bc/D −ab/D
−c/D a/D )

= (a 0

0 1
∣ ad/D −ab/D
−c/D a/D ) ∼ 1

ad − bc (
1 0

0 1
∣ d −b
−c a

) .
So when a ≠ 0 and D ≠ 0 we have

(3.9) (a b

c d
)
−1

=
1

ad − dc (
d −b
−c a

) .
If a = 0 and c ≠ 0 we interchange the rows, and divide the first row by c and the second by

b. and then add d times the second row to −b times the first.

(c d

0 b
∣ 0 1

1 0
) ∼ (1 d/c

0 1
∣ 0 1/c
1/b 0

) ∼ (1 0

0 1
∣ −d/bc 1/c

1/b 0
) = 1

−bc (
1 0

0 1
∣ d −b
−c 0

) .
Thus Equation (3.9) holds in all cases.

Inverse of a 2 × 2 matrix

Let A = (a11 a12
a21 a22

), and D = a11a22 − a12a21. A is invertible if and only if D ≠ 0. Then

(3.10) (a11 a12
a21 a22

)
−1

=
1

D
( a22 −a12
−a21 a11

) .

Consider now a 2 × 2 system of linear equations:

{ a11 x1 + a12x2 = c1
a12 x1 + a22x2 = c2.

.

If A is invertible then we have (see Theorem 3.3.3)

Ax = c ⇐⇒ A−1 (Ax) = A−1 c
⇐⇒ (A−1A) x = A−1 c
⇐⇒ I x = A−1 c

⇐⇒ x = A−1 c.

Thus, we can recover Crammer’s rule (see Section 1.3). Indeed, we have that the solution
of the system is

(x1

x2
) = 1

D
( a22 −a12
−a21 a11

) (c1
c2
) = 1

D
( c1a22 − c2a12−c1a21 + c2a11) .
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3.4. The algebra of matrices

In the previous couple of lectures we studied the linear functions induced by matrices. We
now are going to study matrices as algebraic objects of their own right.

If m,n are positive integers we denote by Mm×nthe set of all m×n matrices. The set of n×n
matrices is simply denoted by Mn and its elements are called square matrices of size n. As we
have already done, if a matrix is denoted by a capital letter, say X , then the entry at the i-th
row and j-th column will be denoted by xij , and we write X = (xij).

REMARK 12. Be careful to distinguish the notations (aij) and aij . The former denotes a
matrix while the latter denotes an entry of that matrix.

The operations of addition, scalar multiplication, and composition of linear functions de-
fine analogous operations on matrices, that we call matrix addition, scalar multiplication, and
product.

DEFINITION 18 (Matrix addition and scalar multiplication). For any positive integers
m,n we have the operations of addition

Mm × n ×Mm × nÐ→Mm × n, (aij) + (bij) = (aij + bij) ,
and scalar multiplication

R ×Mm × n Ð→Mm × n, λ (aij) = (λaij) .
Of course, these are the “same” operations we’ve seen in Section 3.1.1, the only difference

is the point of view. We now view these operations as defined on the set of matrices. In
particular all the vector space axioms, i.e. the properties listed in Theorem 3.1.5 hold.

Since we have proved5 we don’t really need to prove it again just because we changed
our point of view. It is instructive however to give “purely algebraic” proofs, i.e. proofs that
don’t rely on the fact that matrices induce linear functions, and these properties hold for the
corresponding operations of linear functions.

In fact, all these properties can be proved in exactly the same manner as the corresponding
properties of vector addition and scalar multiplication, see Theorem 2.1.1. All we need to do
is add an extra subscript in the calculations. Here is how to prove property (8) for example.

Let A = (aij) be a matrix and let λ,µ be scalars. Then using the definition of scalar multi-
plication we get

λ (µA) = λ ⎛⎜⎝µ
⎛⎜⎝
a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

⎞⎟⎠
⎞⎟⎠ = λ

⎛⎜⎝
µa11 ⋯ µa1n
⋮ ⋱ ⋮

µam1 ⋯ µamn

⎞⎟⎠ =
⎛⎜⎝
λ (µa11) ⋯ λ (µa1n)
⋮ ⋱ ⋮

λ (µam1) ⋯ λ (µamn)
⎞⎟⎠ .

Now we use the fact that multiplication of real numbers is associative, and again the defi-
nition of scalar multiplication we have that the last matrix is

=
⎛⎜⎝
(λµ) a11 ⋯ (λµ) a1n
⋮ ⋱ ⋮(λµ) am1 ⋯ (λµ) amn

⎞⎟⎠ = (λµ)
⎛⎜⎝
a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

⎞⎟⎠ = (λµ) A.
Exercise 7. Prove all the Vector Space Axioms (i.e. the properties listed in Theorem 3.1.5) for

matrices in this manner.

5We did do the proofs left as an exercise. Didn’t we?
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The above discussion suggests that we can think of matrices as vectors. In fact an m × n
matrix consists of mn numbers arranged in a rectangular manner, and if we read them starting
with the leftmost element of the top row we get the coordinates of a mn-vector, i.e. and
element of Rmn. For example,

M2×3 ∋ (1 2 −1
3 −2 0

) ≅ (1,2,−1,3,−2,0) ∈ R6.

If we then identify 2×3 matrices with 6-dimensional vectors this way, then we see that ma-
trix addition and scalar multiplication of matrices is just vector addition and scalar multipli-
cation of vectors. No surprise then that these two sets of operations have the same properties,
in some sense they are the same operations!

We will further pursue these ideas later in these class, we will say then that the identifica-
tion of M2×3 with R6 that we just described is an isomorphism of Vector Spaces.

With the above identification the standard basis of Rmn translates to matrices that have all
entries 0 except one 1.

DEFINITION 19 (Notation: The Kronecker delta). The Kronecker delta is defined via

δij = {1 i = j

0 i ≠ j
.

The two variables are usually natural numbers but in principle they could be any two math-
ematical objects.

EXAMPLE 44. The dot product of two n-vectors v = (vi) and w = (vi) is given by the formula

v ⋅w =
n

∑
j=1

vi δij wj.

The standard basis of Rn consists of the vectors

ei = (δij)nj=1 .
The identity matrix is

In = (δij)ni,j=1 .
DEFINITION 20 (The standard basis of Mm×n). For i = 1, . . . ,m, and j = 1, . . . , n the basic

matrix Ei,j has the i, j-th entry equal to 1 and all other entries equal to 0. In other words, if ekℓ
is the entry at the k-th row and ℓ-th column then

ekℓ = δikδjℓ.

For example here are the four basic 2 × 2 matrices:

E11 = (1 0

0 0
) , E12 = (0 1

0 0
) , E21 = (0 0

1 0
) , E22 = (0 0

0 1
) .

Now any 2 × 2 matrix can is a linear combination of these four basic matrices. Indeed we
have

(a11 a12
a21 a22

) = a11 (1 0

0 0
) + a12 (0 1

0 0
) + a21 (0 0

1 0
) + a22 (0 0

0 1
) .

PROPOSITION 2. An m ×n matrix can be written as a linear combination of the basic matrices in
a unique way. In fact the i, j-th entry is the coefficient of Eij .

PROOF. Exercise. The general case is very similar to the 2 × 2 case proved above. �
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If A is an m×k and B a k×n matrix then A and B define linear maps that can be composed
and the composition is a linear map. From an algebraic point of view, we call the matrix of
the composition AB the product of A and B. Let’s recall the definition.

Matrix Multiplication

If A = (aij) ∈Mm×k and B = (bij) ∈Mk×n then their product C ∶= AB ∈Mm×n is defined,
and if C = (cij) then,

cij =
k

∑
ℓ=1

aiℓbℓj .

Equivalently, if a∗1 , . . . , a
∗
m are the rows of A, and b1, . . . , bn are the columns of B we have

⎛⎜⎝
a∗1⋮
a∗m

⎞⎟⎠ (b1 ⋯ bn) = ⎛⎜⎝
a∗1 ⋅ b1 ⋯ a∗1 ⋅ bn⋮ ⋱ ⋮
a∗m ⋅ b1 ⋯ a∗m ⋅ bn

⎞⎟⎠

The following theorem states some fundamental algebraic properties of matrix multipli-
cation, and its interactions with matrix addition and matrix multiplication. If we think as
matrices as linear maps then these properties are straightforward to verify. Furthermore they
hold for all maps, not only linear maps. For example, composition of functions is associative.
To see this let h∶ X Ð→ Y , g∶ Y Ð→ Z, and f ∶ Z Ð→W be three functions. Then

(f ○ g) ○ h = f ○ (g ○ h) .
We first note that the compositions are defined and they have the same domain, namely

X , and the same codomain, namely W . To prove that they are equal we need to prove that for
all x ∈X we have

((f ○ g) ○ h) (x) = (f ○ (g ○ h) (x)) .
This is straightforward:

((f ○ g) ○ h) (x) = (f ○ g) (h(x))
= f (g (h(x)))
= f ((g ○ h) (x))
= (f ○ (g ○ h) (x)) .

However, this is an algebraic section. So we will be giving mostly algebraic proofs.

THEOREM 3.4.1 (Matrices form an algebra). The following properties hold for all matrices
A,B,C and all scalars λ,µ provided that the operations are defined6.

(a) Matrix multiplication is associative.

A (BC) = (AB)C.
(b) Matrix multiplication distributes over matrix addition on both sides.

(A +B)C = AC +AB, A (B +C) = AB +AC.

6When is that the case? For each property, find what conditions must hold for the dimensions of A, B, and
C for the operations in each side to be defined.
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(c) Scalar multiplication is compatible with matrix multiplication.

(λA)B = A (λB) = λ (AB) .
(d) Multiplication with the identity matrix

I A = A, AI = A.

PROOF. We prove (1) leaving the remaining as an exercise. Let AB = T , and BC = S. Then

tiℓ =
m

∑
j=1

aijbjℓ, sij =
n

∑
k=1

bjkckj.

Then the i, p entry of A (BC)S = AS is

ai1t1p + ai2t1p +⋯+ aintnp =
n

∑
k=1

m

∑
j=1

(aijbjk)ckp.
Similarly, the i, p entry of (AB)C = T S is

n

∑
k=1

m

∑
j=1

aij(bjkckp).
Multiplication of real numbers is associative and therefore for all k, p the k, p entries of

A (BC) and (AB)C are equal. Therefore the matrices are equal. �

Many other properties follow the from the properties listed in Theorem 3.4.1. A very
important is stated in the following proposition. This proposition if obvious if actually use
the definition of the matrix product, multiplying any number with zero gives zero and adding
a bunch of zeros also gives zero. However we provide a proof using only the four properties
listed in Theorem 3.4.1, the benefit of this being that the proposition will be true whenever
those properties (as well as the vector space axioms) hold.

PROPOSITION 3. If O is the m × n zero matrix then for any n × k matrix A we have

OA = O,

where O in the RHS stands for the m × k zero matrix.
Similarly, if B is an k ×m matrix then

BO = O,

where O in the RHS stands for the k × n zero matrix.

PROOF. We have
OA = (O +O)A = OA +OA.

Subtracting OA from both sides yields the result.
The proof of the second statement is entirely similar and is left as an exercise. �

Notice that a property we usually expect for multiplication, namely the commutative prop-
erty is not listed. The reason is, of course, that it is not true, that is it is not true that for all
A,B

(3.11) AB = BA.

First of all, if AB is defined, BA is not necessarily defined. In order for both products to
be defined we need to have that if A is an m × n matrix then B is n ×m. And even in that
case, AB and BA have different dimensions in general, the first is m×m and the second n×n.
So the only case that we could have that (3.11) has a chance of holding is when m = n. But
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even then it is not generally true. As an example consider that standard basis of M3×3. We can
easily verify that

E12E23 = E13, while E23E12 = O.

The last example exhibits an other surprising property of matrix multiplication. Some-
times the product of two non-zero matrices may be zero. In other words, for matrices A,B it
is not true that

AB = O Ô⇒ A = O or B = O.

3.4.1. The algebra of Square Matrices. We now concentrate on the set of square matrices
Mn. If A,B are two n × n square matrices, then AB is always defined, and is actually also
an n × n matrix. The set Mn endowed with matrix addition, scalar multiplication, and matrix
multiplication is often referred to, as the algebra of square matrices.

In general, Equation (3.11) does not hold. Actually most of the times it doesn’t hold. When
it does hold, it’s special and we give it a name.

DEFINITION 21 (Commuting matrices). If Equation (3.11) holds for A,B ∈Mn we say that
A and B commute.

Of course, A always commutes with itself, and the identity matrix I as well as the zero
matrix O commute with all matrices.

EXAMPLE 45. The matrices

A =
⎛⎜⎝
1 2 3

−2 0 1

−1 −3 2

⎞⎟⎠ , B =
⎛⎜⎝
−6 −7 11

−3 −7 −4
3 −8 −2

⎞⎟⎠ ,
commute. Indeed, by direct calculations7 we see that

AB =
⎛⎜⎝
−3 −45 −3
15 6 −24
21 12 −3

⎞⎟⎠ = BA.

EXAMPLE 46 (Finding the set of matrices that commutes with a given matrix). We often
want to know the set of matrices that commute with a given matrix or even all matrices in a
given set. If S ⊆Mn then the set of matrices that commute with all elements of S is called the
centralizer of S. Here is an example on how to find the centralizer of a single matrix.

Let A = (1 1

0 1
) . We want to find all matrices M = (x y

z t
) that commute with A. In other

words we want

AM =MA.

Now

AM = (1 1

0 1
) (x y

z t
) = (x + z y + t

z t
) ,

while

MA = (x y

z t
) (1 1

0 1
) = (x x + y

z z + t) .
7Do them!
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Therefore we need

(x x + y
z z + t) = (x + z y + t

z t
) .

This is equivalent to the linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = x

x + y = y + t
z = z

t + z = t
.

Solving this is rather straightforward. From the second equation we have x = t and from the
last z = 0. So we conclude that in order to commute with A, M has to have the form

M = (x y

0 x
) , x, y ∈ R.

DEFINITION 22 (Algebra of Matrices). We say that a nonempty subset A ⊆Mn is a subal-
gebra, or that it is an algebra of matrices, if A is closed under the operations of matrix addition,
scalar multiplication, and matrix multiplication. This means that if A,B ∈A and λ ∈ R then

(a) λA ∈A.
(b) A +B ∈A.
(c) AB ∈A.

If in addition any two elements of A commute, that is, if in addition

(d) AB = BA,

then we say that A is a commutative algebra of matrices.

THEOREM 3.4.2. If A is an algebra of matrices then:

(a) O ∈A.
(b) A ∈A Ô⇒ −A ∈A.
(c) If A ∈A and A is invertible then A−1 ∈A.
(d) If A contains invertible elements then I ∈A.

The first two properties follow from the fact that A is closed under scalar multiplication.
Just take λ = 0 for the first and λ = −1 for the second. The fourth property follows from the
third and the fact that A is closed under matrix multiplication.

The proof of the third property requires more ammunition than we have currently avail-
able. I will give a proof towards the end of this section but the proof will not be complete
because it depends on a celebrated theorem, the Cayley-Hamilton Theorem that we will see
later in the course.

EXAMPLE 47 (Trivialities). The subset {O} consisting only of the zero matrix is clearly a
subalgebra called the zero subalgebra. There are no invertible elements in this algebra.

EXAMPLE 48 (The algebra of scalar matrices). A slightly non trivial example is the algebra
of scalar matrices. Let

Rn = {λIn ∶ λ ∈ R} .
The elements of Rn are called scalar matrices because they behave like scalars. For example
for x ∈ Rn we have (λI)x = λx.
Thus multiplying with a scalar matrix λI gives the same result as multiplying with the scalar
λ. Similarly, adding two scalar matrices, results in the scalar matrix obtained by adding the
corresponding scalars:
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λI + µI = (λ + µ) I.
So Rn is a commutative algebra of matrices. The invertible elements are the scalar matrices

λI with λ ≠ 0, and of course

(λI)−1 = λ−1 I.
EXAMPLE 49 (The algebra of diagonal matrices). A diagonal n × n matrix is a matrix D

with dij = 0 for i ≠ j, i.e. non-zero entries can occur only along the main diagonal. If λ1, . . . , λn

are n scalars then we define diag(λ1, . . . , λn) to be the diagonal matrix with λ1, . . . , λn in the
main diagonal. For example

diag(1,−7,0,42) =
⎛⎜⎜⎜⎝

1 0 0 0

0 −7 0 0

0 0 0 0

0 0 0 42

⎞⎟⎟⎟⎠
.

The scalar matrix λI is thus diag(λ, . . . , λ).
Notice that the i-th row (as well as the i-th column) of diag(λ1, . . . , λn) is λi ei. This means

that when we multiply a diagonal matrix with another matrix only one of the products in the
sum that gives the i, j entry of the product matrix is (possibly) non-zero.

Let A be any matrix with n rows and let, as usual, a∗1 , . . . ,a
∗
n (respectively a1, . . . ,am) be its

row (respectively column ) vectors. Then,

diag(λ1, . . . , λn)A = ⎛⎜⎝
λ1 a

∗
1⋮

λn a
∗
n

⎞⎟⎠ , A diag(λ1, . . . , λm) = (λ1 a1 . . . λm am) .
So multiplying from a left by a diagonal matrix has the effect of multiplying the rows

of A with the scalars along the diagonal, while multiplying from the right has the effect of
multiplying the columns of A.

It follows that

diag(λ1, . . . , λn) diag(µ1, . . . , µn) = diag(λ1 µ1, . . . , λn µn).
So the product of two diagonal matrices is also diagonal, and furthermore any two di-

agonal matrices commute. In particular, since scalar matrices are special cases of diagonal
matrices we also see that the set of diagonal matrices is also closed under scalar multiplica-
tion.

We also have that

diag(λ1, . . . , λn) + diag(µ1, . . . , µn) = diag(λ1 + µ1, . . . , λn + µn),
and we established that the set of diagonal matrices is a commutative algebra.

It is rather straightforward8 to see that a diagonal matrix is invertible if and only if all
diagonal entries are non=zero. In that case,

diag(λ1, . . . , λn)−1 = diag(λ−11 , . . . , λ−1n ).
EXAMPLE 50 (The algebra of upper triangular matrices). A square matrix T is called

(upper) triangularif all the entries below the main diagonal are 0, in other words T = (tij) is
triangular if

i > j Ô⇒ aij = 0.

8Is it?
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For example here is an upper triangular 4 × 4 matrix:

⎛⎜⎜⎜⎝

1 11 0 0

0 −7 41 42

0 0 0 7

0 0 0 42

⎞⎟⎟⎟⎠
.

The set of n×n triangular matrices is denoted by ∆n. It is easy9 to see that ∆n is closed under
addition and scalar multiplication. To see that it is also closed under multiplication notice
that the i-th row of a triangular matrix has zero entries up to the (i − 1)-th column, while its
j-th column has all zero entries after the j-th row. So if A and B are triangular matrices and
i > j then the dot product a∗i ⋅ bj = 0, and therefore the i, j entry of AB is 0.

So we established that ∆n is an algebra of matrices. For future use we observe that the
diagonal entries of the product of two triangular matrices are just the products of the corre-
sponding diagonal entries.

The invertible elements of ∆n are exactly the triangular matrices with all diagonal entries
non-zero. For, if this the case then we have a matrix in echelon form with non-zero diagonals.
If on the other hand there a 0 in the diagonal then the corresponding column is a free column,
and therefore the matrix has non-zero nullity.

EXAMPLE 51 (Centralizers). Recall from Example 46 that if S ⊆Mn then the centralizer of
S is the set of all matrices that commute with all elements of S. Denoting the centralizer of S
by C we thus have

A ∈ C ⇐⇒ ∀X ∈ S, AX =XA.

I claim that C is an algebra. The claim follows from the following three facts:

● If A and X commute, so do λA and X .

PROOF. Assume A and X commute. Then we have

(λA) X = λ (AX) = λ (XA) =X (λA) .
�

● If A and X , and B and X commute, the A +B and X and commute.

PROOF. We have

(A +B)X = AX +BX =XA +XB =X (A +B).
�

● If A and X , and B and x commute, the AB and X and commute.

PROOF. We have

(AB)X = A (BX) = A (XB) = (AX)B = (X A)B =X (AB).
�

EXAMPLE 52 (A commutative algebra of matrices). Let

A = {(a b

b a
) ∶ a, b ∈ R} .

Then A is a commutative algebra of matrices. Indeed for λ ∈ R and A ∈ A we have

λA = (λa λb

λb λa
) .

We see then that λA ∈A. Thus A is closed under scalar multiplication.

9It is easy, right?
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Now let A be as above and let B = (x y

y x
) be a second element of A. Then

A +B = (a + x b + y
b + y a + x) .

Thus A +B ∈ A and we established closure under matrix addition.
For multiplication we have

AB = (ax + b y ay + bx
bx + ay by + ax) = (ax + b y ay + bx

ay + bx ax + b y) .
Hence, AB ∈A and A is closed under multiplication as well.

We have established then that A is an algebra of matrices. To prove that it is commutative
we compute BA to verify that it is equal to AB.

BA = (xa + y b xb + y a
y a + xb y b + xa) = (ax + b y ay + bx

ay + bx ax + b y) = AB.

So A is a commutative algebra of matrices.
Now let’s find the invertible elements of A. From Example 43 we know that A is invertible

when its determinant is non-zero. Thus an element A ∈A is invertible if and only if

a2 − b2 ≠ 0 ⇐⇒ a ≠ ±b.
In that case

A−1 =
1

a2 − b2 (
a −b
−b a

) .
DEFINITION 23 (Powers of a matrix). If A ∈Mn and k ∈ N the power Ak is defined recur-

sively as follows:

{ A0 = I

An+1 = AnA
.

So,

A1 = A0A

= A,

and

A2 = A1A

= AA,

and continuing,

A3 = A2A

= (AA)A,
and so on. In general, An is a product of n copies of A.
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REMARK 13. Because of the associative property of multiplication (the first property in
Theorem 3.4.1), we also have

An+1 = AAn.

This can be proven by induction. We just show it for the third power:

AA2 = A (AA)
= (AA)A
= A2A

= A3.

Powers of matrices enjoy some of the properties of powers that we are familiar with.

PROPOSITION 4. If A ∈Mn and k, ℓ ∈ N we have

(a) AkAℓ = Ak+ℓ.

(b) (Ak)l = Ak l.

(c) (λA)k = λkAk.
(d) Ik = I .
(e) Ok = O.

However it’s not true, that (AB)k = AkBk,

unless A and B commute. For example, by definition

(AB)2 = ABAB.

But we can’t swap the second and third factor, unless A and B commute.
In general, we need to be careful when we are doing algebraic manipulations with matri-

ces. For example if A,B are n × n square matrices, then we have

(A +B)2 = A2 +AB +BA +B2,

which, if A and B commute simplifies to the familiar

(A +B)2 = A2 + 2AB +B2.

Similarly,

(A +B)(A −B) = A2 −AB +BA −B2,

which, if A and B commute, simplifies to the familiar

(A +B)(A −B) = A2 −B2.

Since I commutes with all matrices, we have that

A2 − I = (A − I)(A + I)
and

(A ± I)2 = A2 ± 2A + I.
The following Theorem follows from the more general Theorem 3.4.5.

THEOREM 3.4.3. If A is invertible, then Ak is also invertible for all natural numbers k and

(Ak)−1 = (A−1)k .



3.4. THE ALGEBRA OF MATRICES 89

Since later in this section we will prove a more general Theorem about the interaction of
matrix multiplication and inverses let us just see why the theorem is true with an example.
Say k = 3. Then (eschewing parenthesis as associativity allows us to)

A3 = AAA, (A−1)3 = A−1A−1A−1.
Therefore:

A3 (A−1)3 = AAAA−1A−1A−1

= AAI A−1A−1

= AAA−1A−1

= AI A−1

= AA−1

= I.

Entirely similarly,

(A−1)3 A3 = I.

Thus indeed,

(A3)−1 = (A−1)3 .
So we can now define negative powers, at least for invertible matrices.

DEFINITION 24. If A is an invertible matrix, then for any negative integer k we define

Ak = (A−1)−k .
Let’s collect a few basic facts about powers of matrices. The proofs are either straightfor-

ward, already embedded in the discussion we’ve had so far, or are special cases of theorems
we’ll prove later in this section. Make sure that you can provide the proofs, if you can’t at first
reading come back after you finish this section.

PROPOSITION 5. The following hold. The powers could be positive or negative integers; in the
later case we assume that the involved matrices are invertible.

(a) Properties (1) through (3) in Proposition 4 hold for all integers, provided A is invertible.
Property (4) also holds for all integers. Property (5) of course doesn’t make sense for negative
k10.

(b) All powers of the same matrix commute.
(c) If A is an algebra of matrices, A ∈A and k ∈ Z then Ak ∈A if defined.
(d) If A is invertible then for all matrices B we have:

(A−1BA)k = A−1Bk A,

provided that Bk is defined.

EXAMPLE 53 (Powers of diagonal matrices). Refer to Example 49 for the notation used.
Let A = diag(a1, . . . , an) then for all k ≥ 0 we have

Ak = diag (ak1, . . . , akn) .
If all diagonal entries are non-zero this is true for negative k as well.

10Why?
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Let’s prove this by induction. It clearly it is true for k = 0. Now,

Ak+1 = AkA

= diag (ak1, . . . , akn) diag (a1, . . . , an)
= diag (ak1 a1, . . . , akn an)
= diag (ak+11 , . . . , ak+1n ) .

Now, if all diagonal entries are non-zero then (see Example 49) A is invertible and if k < 0
then −k > 0 and

Ak = (A−1)−k = diag (a−11 , . . . , a−1n )−k = diag (ak1, . . . , akn) .
EXAMPLE 54. Consider the matrix

A =
1

2
( 1 −√3√

3 1
) .

We have

A2 =
1

4
( 1 −√3√

3 1
) ( 1 −√3√

3 1
) = 1

4
( 1 − 3 −√3 −√3√

3 +√3 −3 + 1 ) =
1

2
(−1 −√3√

3 −1 ) .
Then

A3 = A2A =
1

4
( 1 −√3√

3 1
) (−1 −√3√

3 −1 ) =
1

4
(−4 0

0 −4) = −I.
Then,

A4 = A3A = −A, A5 = A4A = −A2, A6 = I.

From now on the powers will repeat in cycles of length 6. The next cycle is

A7 = A6A = I A = A,

and then

A8 = A2

A9 = A3

A10 = A4

A11 = A5

A12 = I.

We can express this periodic pattern using modular arithmetic. Any integer m can be
uniquely written as m = 6k + i where k ∈ Z and i ∈ {0,1, . . . ,5}, where k is the quotient and
i the remainder of the division m ÷ 6. Then

Am = A6k+i = A6k Ai = (A6)k Ai = IkAi = Ai.

For example, since 12435 leaves remainder 3 when divided by 6 we have

A12435 = A3 = −I.
Or, since 134 leaves remainder 2 we have

A134 = A2 =
1

2
(−1 −√3√

3 −1 ) .
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EXAMPLE 55. Consider the matrix

A = (0 1

0 0
) .

We have

A2 = (0 1

0 0
) (0 1

0 0
) = (0 + 0 0 + 0

0 + 0 0 + 0) = O.

Then,

A3 = A2O = O, A4 = A3O = O, . . .

Thus all power of A after the first are the zero matrix.

EXAMPLE 56. Let’s find the powers of

A =
⎛⎜⎝
1 0 1

0 0 0

1 0 1

⎞⎟⎠
Of course,

A0 = I, A1 = A.

Now,

A2 =
⎛⎜⎝
1 0 1

0 0 0

1 0 1

⎞⎟⎠
⎛⎜⎝
1 0 1

0 0 0

1 0 1

⎞⎟⎠ =
⎛⎜⎝
1 + 0 + 1 0 + 0 + 0 1 + 0 + 1
0 + 0 + 0 0 + 0 + 0 0 + 0 + 0
1 + 0 + 1 0 + 0 + 0 1 + 0 + 1

⎞⎟⎠ =
⎛⎜⎝
2 0 2

0 0 0

2 0 2

⎞⎟⎠ .
Now notice that

A2 = 2A.

So,

A3 = A2A = (2A)A = 2A2 = 2 (2A) = 4A.
and

A4 = A3A = (4A)A = 4A2 = 4 (2A) = 8A.
And this pattern will continue, to get the fifth power we multiply A4 with A, and we’ll get

8A2 = 16A. Thus we have,

An = 2n−1A =
⎛⎜⎝
2n−1 0 2n−1

0 0 0

2n−1 0 2n−1

⎞⎟⎠ .
We can formalize the above argument to an inductive proof. So we will prove, using

induction, that for all n ≥ 111

An = 2n−1A.

For n = 1 the formula clearly holds since both sides are equal to A. Assuming it holds for
n we get

An+1 = AnA = (2n−1A) A = 2n−1A2 = 2n−1 2A = 2nA = 2n+1−1A.

11Why the formula doesn’t work for n = 0?



92 3. MATRICES AND THEIR ALGEBRA

EXAMPLE 57. Let

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
−1
2

1

2
−1
2

−1
2

1

2

1

2
−1
2

1

2

1

2

1

2

1

2

−1
2
−1
2

1

2

1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A direct calculation shows that

A2 = I.

Then,

A3 = A2A = I A = A, A4 = A3A = AA = I.

And therefore12

An = {I n even

A n odd
.

Now that we have powers, scalar multiplication, and addition we can plug a matrix in any
polynomial with real coefficients.

DEFINITION 25 (Evaluating polynomials at matrices). Let

p(x) = d

∑
j=0

aj x
j = a0 x

0 + a1 x1 +⋯ + ad−1 xd−1 + ad xd,

be a polynomial of degree d, where ai ∈ R, and let A ∈Mn. Then the evaluation of p(x) at A is
defined via

p (A) = d

∑
j=0

aj A
j = a0A

0 + a1A1 +⋯ + ad−1Ad−1 + adAd.

If p (A) = O then we say that A is a root or zero of p(x).
REMARK 14. Since A0 = I we often write

p (A) = a0 I + a1A +⋯+ ad−1Ad−1 + adAd.

EXAMPLE 58. Let A = (2 −3
3 2

), and let p(x) = x3 − 2x2 − 2x + 6, and q(x) = x2 − 4x + 13.

We calculate:

A0 = (1 0

0 1
) , A1 = (2 −3

3 2
) , A2 = (−5 −12

12 −5 ) , A3 = (−46 −9
9 −46) .

Then

12Give an inductive proof of this.
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p (A) = A3 − 2A2 = 2A + 6

= (−46 −9
9 −46) − 2 (−5 −1212 −5 ) − 2 (2 −33 2

) + 6 (1 0

0 1
)

= (−46 −9
9 −46) + ( 10 24

−24 10
) + (−4 6

−6 −4) + (6 0

0 6
)

= (−34 21

−21 −34) .
And

q (A) = A2 − 4A + 13 I
= (−5 −12

12 −5 ) − 4 (2 −33 2
) + 13 (1 0

0 1
)

= (−5 −12
12 −5 ) + ( −8 12

−12 −8) + (13 0

0 13
)

= (0 0

0 0
) .

So A is a root of q(x).
The following theorem is immediate13.

THEOREM 3.4.4. If A is an algebra of matrices, A ∈A and p(x) is any polynomial, then p(A) ∈A.

3.4.2. Invertible Matrices. We now focus on invertible matrices. We already know quite a
few characterizations of invertible matrices, and we will see a few more down the road. From
an algebraic point of view perhaps the following definition is the most convenient.

DEFINITION 26 (General Linear Group). We say that a square matrix A ∈Mn is invertible
if there exists a matrix B in Mn such that

(3.12) AB = I = BA.

In that case we call B the inverse of A and write A−1 = B.
The set of n × n invertible matrices is called the General Linear Group and is denoted by

GL(n).
THEOREM 3.4.5 (Invertible matrices form a group). We have

(a) A ∈ GL(n) Ô⇒ A−1 ∈ GL(n), and actually

(A−1)−1 = A.
(b) A,B ∈ GL(n) Ô⇒ AB ∈ GL(n), and actually14

(AB)−1 = B−1A−1.
13Provide the proof
14Notice the reverse of the order!
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PROOF. The first is obvious since by definition we have

AA−1 = I = A−1A,

and therefor A is the inverse of A−1.
For the second we have:

(AB) (B−1A−1) = A (BB−1) A−1 = AI A−1 = AA−1 = I.

Similarly,

(B−1A−1) (AB) = B−1 (A−1A) B = B−1 I B = B−1B = I.
�

It turns out that we don’t need to check that both products in Equation (3.12) give the
identity matrix. As the following Lemma shows, if one of the products is the identity the
other will be as well.

LEMMA 3. If AB = I then we also have BA = I and therefore B = A−1. Similarly, if AB = I then
B = A−1.

PROOF. If AB = I then for all x ∈ Rn we have

A (B x) = x.
So, every x ∈ Rn is in the range of A and therefore A is surjective. By Theorem 3.3.2 it follows
that A is invertible. We have then

AB = I Ô⇒ A−1(AB) = A−1
Ô⇒ (A−1A) B = A−1
Ô⇒ I B = A−1

Ô⇒ B = A−1.

�

The properties listed in Theorem 3.4.5 have many important consequences, so we abstract
them by introducing the concept of a group. Groups play a fundamental role not only in
modern mathematics, but in physics and other sciences as well.

DEFINITION 27 (Group of functions). LetG be a set of functions with domain and codomain
the same set X . We say that G is a group if the following hold:

(a) The identity function of X is in G.
(b) G is closed under composition of functions.
(c) All elements of G are invertible, and their inverses are also in G. That is,

g ∈ G Ô⇒ g−1 ∈ G.

Thus Theorem 3.4.5 says that GL(n) is a group. Usually the operation of composition is
written as multiplication and we can define powers gn where g ∈ G and n ∈ Z, that satisfy the
algebraic properties (1), (2), and (4) of Proposition 4. We will not pursue this further at this
point. We’ll come back to these ideas later though.

In Examples 54 and 57 we have matrices where one of their powers is the identity matrix.
Lemma 3 implies that such matrices are invertible because if Ak = I then Ak−1A = I .
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EXAMPLE 59. Let

A =
1

9

⎛⎜⎝
4 7 −4
1 4 8

8 −4 1

⎞⎟⎠ .
We calculate15 that

A2 =
1

9

⎛⎜⎝
−1 8 4

8 −1 4

4 4 −7
⎞⎟⎠ , A3 =

1

9

⎛⎜⎝
4 1 8

7 4 −4
−4 8 1

⎞⎟⎠ , A4 = I.

We conclude that A is invertible and

A−1 = A3 =
1

9

⎛⎜⎝
4 1 8

7 4 −4
−4 8 1

⎞⎟⎠ .
When Ak = I the matrix A is a root of the polynomial xk − 1. More generally we have the

following proposition.

PROPOSITION 6. If X is a root of a polynomial p(x) = akxk + ⋯ + a1x + a0 with constant term
a0 ≠ 0, then X is invertible.

PROOF. We have

akX
k +⋯ + a1X + a0 I = O ⇐⇒ X (akXk−1 +⋯+ a1 I) = −a0I.

If a0 ≠ 0 then we can divide both sides by a0 to get

X (−ak
a0

Xk−1 −⋯− a1

a0
I) = I.

So X is invertible by Lemma 3, and furthermore

X−1 = −ak
a0

Xk−1 −⋯− a1

a0
I,

that is the inverse of X can be expressed as a polynomial in X . �

EXAMPLE 60. In Example 58 we saw that A = (2 −3
3 2

), is a root q(x) = x2 − 4x+ 13. So, A is

invertible and

A−1 = − 1

13
(A − 4 I) = − 1

13
(−2 −3
3 −2) .

EXAMPLE 61. Let

X =

⎛⎜⎜⎜⎝

−4 1 1 1

−16 3 4 4

−7 2 2 1

−11 1 3 4

⎞⎟⎟⎟⎠
.

Then one can verify16 that X is a root of the following polynomial:

p(x) = x4 − 5x3 + 9x2 − 7x + 2.
It follows that X is invertible, and its inverse is

X−1 = −1
2
(X3 − 5X2 + 9X − 7 I) .

15Do the calculations!
16Do the calculations!
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Since, as you have already calculated,

X2 =

⎛⎜⎜⎜⎝

−18 2 5 5

−56 5 16 16

−29 4 8 7

−37 2 11 12

⎞⎟⎟⎟⎠
, and X3 =

⎛⎜⎜⎜⎝

−50 3 15 15

−144 7 44 44

−81 6 24 23

−93 3 29 30

⎞⎟⎟⎟⎠
,

we find that17

X−1 =
1

2

⎛⎜⎜⎜⎝

3 −2 1 1

8 −2 0 0

−1 −4 5 3

7 −2 −1 1

⎞⎟⎟⎟⎠
.

Down the road, as a consequence of the Cayley-Hamilton Theorem we will see that the
converse of Proposition 6 is also true. We state the proposition postponing the proof.

PROPOSITION 7. If X is invertible then it is a root of a polynomial with non-zero constant term.

Combining this with 3.4.4 we get the proof of Theorem 3.4.2.

PROOF OF THEOREM 3.4.2. If A is invertible then by Propositions 7 and 6 we have that
A−1 is a polynomial of A. Theorem 3.4.4 then implies that A−1 ∈A. �

17Do the calculations!
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3.5. The transpose of a matrix and the adjoint of a linear operator

We have identified matrices with linear operations by letting matrices act from the left that
is the image of x is obtained by multiplying x from the left, in other words

xz→ Ax.

In order for that to make sense we represent x as a column vector.
Now, an m × n matrix can also act on m-vectors, but it has to act from the right

xz→ xA.

In order for this to make sense we need x to be a row vector. We have

(x1 ⋯ xm) ⎛⎜⎝
a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

⎞⎟⎠ = (x1 a11 + x2 a21 +⋯+ xm am1 ⋯ x1 a1n + x2 a2n +⋯+ xm amn) .
Thus the same matrix defines two linear functions,

Rn
Ð→ Rm, x z→ Ax

and
Rm
Ð→ Rn, xz→ xA.

These two linear maps are called adjoint maps. If one of them is denoted by A the other is
denoted by A∗.

DEFINITION 28 (Adjoint operators, Transpose matrices). Let A∶ Rn
Ð→ Rm be a linear

operator induced by multiplication from the left by a matrix A. Then the adjoint of A, is the
operator

A∗∶ Rm
Ð→ Rn, xz→ xA.

The transpose of an m × n matrix A, denoted by A∗ is the n ×m matrix with row vectors
equal to the column vectors of A, or equivalently, column vectors equal to the row vectors of
A. In other words, if aij and a∗ij are the elements in the i-th row and j-th column of A, and A∗

respectively, then
a∗ij = aji.

EXAMPLE 62. Consider the 4 × 3 matrix

A =

⎛⎜⎜⎜⎝

−1 42 11

3 5 −10
0 6 4

7 −2 0

⎞⎟⎟⎟⎠
.

The transpose of A is the 3 × 4 matrix A∗, with a∗11 = a11, a∗12 = a21, a∗13 = a31, and a∗14 = a41,
and so on. Thus,

A∗ =
⎛⎜⎝
−1 3 0 7

42 5 6 −2
11 −10 4 0

⎞⎟⎠ .
Of course, if we transpose the transpose, we’ll get a matrix with rows the columns of A∗,

that is the rows of A. Two matrices with the same rows are of course equal so

(A∗)∗ = A.
For our example, we see that indeed,
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(A∗)∗ =
⎛⎜⎜⎜⎝

−1 42 11

3 5 −10
0 6 4

7 −2 0

⎞⎟⎟⎟⎠
.

Now because, the number of columns of A is equal to the number of rows of A∗ the multi-
plication AA∗ is defined and the product is a 3 × 3 matrix. But also the number of columns of
A∗ equals to the number of rows of A, the multiplication A∗A is also defined with product a
4 × 4 matrix.

Notice that both of these matrices are square matrices, but of different dimension. We have

AA∗ =
⎛⎜⎝
59 −41 −41
−41 1829 436

−41 436 237

⎞⎟⎠ , A∗A =

⎛⎜⎜⎜⎝

1886 97 296 −91
97 134 −10 11

296 −10 52 −12
−91 11 −12 53

⎞⎟⎟⎟⎠
.

Notice that both of these square matrices are symmetric, their rows are identical with their
columns.

Now let’s look at A as a linear operator, A∶ R3
Ð→ R4. What is A∗ the adjoint linear opera-

tor?
A∗∶ R4

Ð→ R3,xz→ xA.

What’s the matrix of A∗. It’s columns are the images of the basic vectors ei for i = 1,2,3,4.
We have,

e1 z→ (1 0 0 0)
⎛⎜⎜⎜⎝

−1 42 11

3 5 −10
0 6 4

7 −2 0

⎞⎟⎟⎟⎠
= (−1 ⋅ 1 + 3 ⋅ 3 + 0 ⋅ 0 + 7 ⋅ 0 42 ⋅ 1 + 5 ⋅ 0 + 6 ⋅ 0 − 2 ⋅ 0 11 ⋅ 1 − 10 ⋅ 0 + 4 ⋅ 0 + 0 ⋅ 0)
= (−1 42 11)

Entirely similarly,

e2 z→ (3,5,10), e3 z→ (0,6,4), e4 z→ (7,−2,0).
Thus the columns of the matrix of the adjoint operator, has columns equal to the rows of

A. Thus the matrix of the adjoint operator is the transpose of the matrix of A.
Let’s also look at the reduced echelon forms of A and A∗.

A =

⎛⎜⎜⎜⎝

−1 42 11

3 5 −10
0 6 4

7 −2 0

⎞⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

0 0 0

⎞⎟⎟⎟⎠
,

and,

A∗ =
⎛⎜⎝
−1 3 0 7

42 5 6 −2
11 −10 4 0

⎞⎟⎠ ∼
⎛⎜⎜⎜⎜⎝

1 0 0 −292
113

0 1 0 361
113

0 0 1 3411
226

⎞⎟⎟⎟⎟⎠
.

We notice that A, and A∗ have the same rank.



3.5. THE TRANSPOSE OF A MATRIX AND THE ADJOINT OF A LINEAR OPERATOR 99

EXAMPLE 63 (Column and Row vectors as matrices). So far we have treated m × 1 and
1 × n matrices as column and row vectors, respectively. Let’s now look at them as matrices,
and what operations they induce.

Let a be an n × 1 matrix, then it induces the linear operation that sends 1-vectors to n-
vectors.

a∶ R1
Ð→ Rn, ax =

⎛⎜⎝
a1
⋮
an

⎞⎟⎠ (x) =
⎛⎜⎝
a1 x

⋮
an x

⎞⎟⎠ = xa.
Thus, if we identify R1 with R, then we see that the operation induced by a as a matrix,

sends a real number x to x times the vector a.
We can think of this as introducing coordinates in the line determined by a, where 1 cor-

responds to a.
The adjoint of a on the other hand, is induced by acting by a from the right, so

a∗∶ Rn
Ð→ R1, xz→ ax = (x1 ⋯ xn) ⎛⎜⎝

a1
⋮
an

⎞⎟⎠ = (x1 a1 +⋯ + xn am) = x ⋅ a.
Thus a∗, as an operator, sends a vector to its dot product with a. Now since the standard

basis is orthonormal, we have

ei ⋅ a = ai,
and we see that the matrix of a∗ is a row vector, with the same coordinates as a, and of

course, the transpose of a as a matrix.

a =
⎛⎜⎝
a1
⋮
an

⎞⎟⎠ Ô⇒ a∗ = (a1 ⋯ an)

a = (a1 ⋯ an) Ô⇒ a∗ =
⎛⎜⎝
a1
⋮
an

⎞⎟⎠ .

Adjoint Operators, Transpose matrices

The transpose of an m×n matrix, is an n×m matrix, such that for any m×1 matrix x we
have:

(3.13) A∗x = (x∗A)∗ .

Using Equation (3.13) we can prove the following property of the transpose.

THEOREM 3.5.1 (Transpose is an anti-homomorphism). The following hold.

(a) Transpose respects scalar multiplication. That is, for any scalar λ

(λA)∗ = λA∗.
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(b) Transpose respects matrix addition. That is,

(A +B)∗ = A∗ +B∗.
(c) If AB is defined then B∗A∗ is also defined and

(3.14) (AB)∗ = B∗A∗.
PROOF. The proof of (1) and (2) are straightforward and left as an exercise.
For the third, we will use Equation (3.13). To prove that two functions are equal, we have

to prove that they take the same values on all elements of their domain. So, we have

(AB)∗ x = x∗ (AB)
= (x∗A) B
= B∗ (x∗A)∗
= B∗ (A∗ x)
= (B∗A∗) x.

�

Equation (3.14) has the same structure as property (2) in Theorem 3.4.5. Transposing, just
like inverting, doesn’t preserve multiplication but it doesn’t totally destroy it either, it just
reverses the order of the factors.

If A ∈Mn (i.e it is an n × n square matrix) then A∗ ∈Mn as well. In that case Ak is defined
for k ∈ N and the following holds.

THEOREM 3.5.2. We have for k ∈ N.

(a) If A ∈Mn then

(Ak)∗ = (A∗)k .
(b) If p(x) is any polynomial then

p(A∗) = (p(A))∗ .
PROOF. The first follows from Equation (3.14), and the fact that all powers of the same

matrix commute, using induction. For k = 0 both sides are equal to the identity matrix so the
statement is true. Now assume that we have proved it for k. Then we have

(Ak+1)∗ = (Ak A)∗ = A∗ (Ak)∗ = A∗ (A∗)k = (A∗)k+1 .
Evaluating a polynomial at a matrix involves scalar multiplication, matrix addition, and

powers of matrices. We have seen that transposing respects all of these operations and the
result follows. More formally, let

p(x) = ad xd +⋯+ a1 x + a0 x0.

Then

p (A∗) = ad (A∗)d +⋯ + a1 (A∗)1 + a0 (A∗)0
= ad (Ad)∗ +⋯+ a1A∗ + a0 I
= (adAd)∗ +⋯+ (a1A)∗ + (a0 I)∗
= (adAd +⋯+ a1A + a0 I)∗
= (p(A))∗ .

�
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Furthermore, as the following Theorem shows, if A is invertible so is its transpose.

THEOREM 3.5.3 (Transposing and Inverting commute). If A is invertible then so is A∗. Fur-
thermore (A∗)−1 = (A−1)∗ .

PROOF. We have:

AB = I Ô⇒ (AB)∗ = I∗
Ô⇒ B∗A∗ = I.

And the result follows from Lemma 3. �

DEFINITION 29 (Symmetric and orthogonal matrices). A square n × n matrix A is called
symmetric if

(3.15) A = A∗.

Equivalently, for all i, j ∈ {1, . . . , n} we have

aij = aji.

A linear operator A∶ Rn
Ð→ Rn that satisfies Condition (3.15), is said to be self-adjoint. The

set of symmetric n × n matrices is denoted by Sn.
A square n × n matrix is said to be orthogonal if

(3.16) AA∗ = I.

A linear operator A∶ Rn
Ð→ Rn that satisfies Condition (3.16), is said to be a (linear) iso-

mometry, or an orthogonal transformation.
The set of orthogonal n × n matrices is denoted by O(n) and called the orthogonal group of

n-dimensional space.

The reason for the terminology symmetric should be clear. The entries aij and aji are in
symmetric position with respect to the main diagonal, so when they are equal there is a sym-
metry in the matrix. Consider the symmetric matrix AA∗ of Example 62, we can see the
symmetry by coloring symmetric entries with the same color:

⎛⎜⎝
59 −41 −41
−41 1829 436

−41 436 237

⎞⎟⎠ ,
The reason for the terminology orthogonal is that the columns of an orthogonal matrix A

form an orthonormal basis of Rn. When we officially introduce the dot product we will explore
this property further. For now let’s us just state the following Proposition.

PROPOSITION 8. A is orthogonal if and only if

ai ⋅ aj = δij .

PROOF. The element in the i, j column of A∗A is the inner product of the i-th row of A∗

and the j-th row of A. But the i-th row of A∗ is the i-th column of A. �

PROPOSITION 9. If A is an m × n matrix then AA∗ and A∗A are symmetric matrices.

PROOF. We have (A∗A)∗ = A∗ (A∗)∗ = A∗A.
Similarly, we have (AA∗)∗ = AA∗.

�



102 3. MATRICES AND THEIR ALGEBRA

We will prove that the set of symmetric matrices is closed under scalar multiplication and
matrix addition. But first we note that in general Sn is not closed under matrix multiplication.
That is, if A and B are symmetric their product is not necessarily symmetric. For example, let

A =
⎛⎜⎝
1 2 3

2 −1 0

3 0 −4
⎞⎟⎠ , B =

⎛⎜⎝
3 −1 −5
−1 0 4

−5 4 −4
⎞⎟⎠ .

two symmetric matrices.
Now we calculate,

AB =
⎛⎜⎝
−14 11 −9
7 −2 −14
29 −19 1

⎞⎟⎠
and we see that AB is not symmetric.
BA is not symmetric either:

BA =
⎛⎜⎝
−14 7 29

11 −2 −19
−9 −14 1

⎞⎟⎠ .
However, the sum AB +BA is symmetric:

AB +BA =
⎛⎜⎝
−28 18 20

18 −4 −33
20 −33 2

⎞⎟⎠ .
THEOREM 3.5.4. If λ ∈ R and A,B ∈Mn then:

(a) A ∈ Sn Ô⇒ λA ∈ Sn.
(b) A,B ∈ Sn Ô⇒ A +B ∈ Sn.
(c) A,B ∈ Sn Ô⇒ (AB)∗ = BA.
(d) A,B ∈ Sn Ô⇒ AB +BA ∈ Sn.

PROOF. If A∗ = A and B∗ = B we have:

(a) (λA)∗ = λA∗ = λA.
(b) (A +B)∗ = A∗ +B∗ = A +B.
(c) (AB)∗ = B∗A∗ = BA.
(d) (AB +BA)∗ = (AB)∗ + (BA)∗ = B∗A∗ +A∗B∗ = BA +AB = AB +BA.

�

The set of orthogonal matrices on the other hand is closed under taking inverses and under
matrix multiplication. In, other words, O(n) is a subgroup of GL(n).

THEOREM 3.5.5. If λ ∈ R and A,B ∈Mn then:

(a) A ∈ O(n) Ô⇒ A−1 ∈ On.
(b) A,B ∈ O(n) Ô⇒ AB ∈ O(n).

PROOF. To prove that a matrix is orthogonal we have to prove that its inverse is equal to
its transpose.

(a) We have

A−1 = A∗ Ô⇒ (A−1)∗ = (A∗)∗
Ô⇒ (A−1)∗ = (A−1)−1 .
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Therefore A−1 is orthogonal.
(b) Let A and B be two orthogonal matrices. Then we have

(AB)−1 = B−1A−1
= B∗A∗

= (AB)∗ .
�

3.5.1. The rank of the transpose. In Section 3.1 we saw that a matrix A ∈Mm×n defines a
linear map A∶ Rn

Ð→ Rm given by

xz→ Ax,

where x ∈ Rn is considered a column vector. We concluded (among other things) that the
range of this linear is spanned by the columns of A, namely

y = Ax ⇐⇒ y =
n

∑
i=1

xi ai.

Entirely similar arguments show that the range of the adjoint linear map A∗ is spanned by
the rows of A, namely

x = yA ⇐⇒ x =
m

∑
i=1

yi a
∗
i .

Another way to see this is to recall that the columns of the transpose matrix A∗ are the
rows of A. Either way we have the following Theorem.

THEOREM 3.5.6. The range of A∗ is spanned by the rows of A. Therefore the rank of A∗ is the
dimension of the linear span of the rows of A.

Now recall that a basis for the range of A consists of the basic columns of A, that is the
columns that contain a leading 1 in the reduced echelon form of A. Now if ai is a basic
column, then the row that contains the leading one has all zero entries to the left of the leading
1. Therefore all these rows are linearly independent.

Therefore there are at least rankA linearly independent rows. Therefore we conclude that
the dimension of the linear span of the rows of A is greater of equal to the rank of A. So

rankA ≤ rankA∗.

Applying this to A∗, whose transpose is A, we conclude that

rankA∗ ≤ rankA,

as well.
Therefore we have proved the following theorem.

THEOREM 3.5.7 (Transpose matrices have the same rank). We have

rankA = rankA∗.

When we restrict attention to square matrices we obtain the following corollary.

COROLLARY 3. Let A ∈Mn be a square matrix. Then A is invertible if and only if A∗ is invertible.

We already knew that of course, see Theorem 3.5.3.
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3.6. Elementary matrices and row (or column) operations

We have seen two ways of solving systems of linear equations. In Section 1.1 we devel-
oped the method of using elementary row operation to get the (augmented) matrix of the
system to a (reduced) echelon form. On the other hand, Theorem 3.3.3 suggests another way,
assuming that the matrix of the system is invertible: just multiply the vector of constants with
the inverse of the matrix. In other words, the solution of

Ax = c,

is

x = A−1 c,

The second method, in practice, is not really that different, since our method of finding the
inverse of a matrix involves row operations anyway (see Example 42). In this section we will
see that row operations can be thought of as multiplication with some special matrices: when
we use row operations we still multiply with the inverse of the matrix, but we do it in several
steps.

Recall that there are three types of elementary operations:

(a) Type I: Interchange two rows.
(b) Type II: Multiply a row by a non-zero scalar.
(c) Type III: Add a row to an other row.

DEFINITION 30 (Elementary Matrices). An n × n matrix resulting from the application of
a row operation to the identity matrix In is called an elementary matrix of the same type as the
row operation.

EXAMPLE 64. The following are 4×4 elementary matrices of type I, II, and III respectively:

⎛⎜⎜⎜⎝

1 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

1 0 0 1

0 1 0 0

0 0 −2 0

0 0 0 1

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
.

Indeed in the first we have interchanged the second and third row, in the the second we
multiplied the third row by −2, and the for the last we added the fourth row to the first.

THEOREM 3.6.1. Let E be an elementary n × n matrix and A an n ×m matrix. Then EA is
obtained by performing to A the same elementary row operation that was performed to I to get E.

REMARK 15. We have already seen this for Type II elementary matrices. Indeed those
are diagonal matrices with all diagonal entries except one equal to 1 and one diagonal entry
equal to a number λ, and the effect of multiplying with a diagonal matrix was discussed in
Example 49.

PROOF. Recall that the i-th row of the product AB consists of the dot products of the i-th
row of A with the columns of B. This means that the i-th row of the product AB depends
only on the i-th row of A and no other rows.

Now, let E an elementary matrix of Type I where the rows k and ℓ of I have been inter-
changed. Then if i ≠ k, ℓ the i-th row of E is the same as the i-th row of I and therefore the i-th
row of the product EA is the same as the i-th row of the product I A, that is the i-th row of A.
On the other hand the k-th row of E is the ℓ-th row of I , hence the k-th row of EA equals the
ℓ-th row of I A = A. Similarly, the ℓ-th row of EA equals the k-th row of A.
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If E is obtained by I by multiplying the row k by λ then all rows of EA except the k-th are
the same as the rows of A. On the other hand, the j-th entry of the k-th row of EA is the dot
product (λek) ⋅ aj = λakj.

If E is an elementary matrix of type III, obtained, say, by adding the k-th row to the ℓ-th
row, then all the rows of E, except the ℓ-th, are the same as the rows of I thus all the rows of
EA, except the ℓ-th, are the same as the rows of A. On the other hand the ℓ-th row of E is
ek + eℓ and so the j-the entry of the ℓ-row is

(ek + eℓ) ⋅ aj = akj + aℓj.
�

Next we prove that all elementary matrices are invertible. But before that let’s introduce
some notation.

DEFINITION 31. The elementary matrix obtained by interchanging the k-th and ℓ-th rows
of I will be denoted by Pkℓ, the one obtained by multiplying the k-th row by λ will be denoted
by Mk;λ, and the one obtained by adding the k-th row to the ℓ-th row by Skℓ.

THEOREM 3.6.2. All elementary matrices are invertible. Namely,

(a) P −1kℓ = Pkℓ.
(b) M−1

k;λ =Mk;λ−1 .

(c) S−1kℓ =Mk;−1SkℓMk;−1.

PROOF. By Theorem 3.6.2 when multiplying Pkℓ with Pkℓ interchanges the k-th and ℓ-th
rows of Pkℓ and so

P 2
kℓ = I.

Similarly,

Mk;λ−1 Mk;λ = I.

For (3) notice that Mk;−1SkℓMk;−1A has the effect of subtracting the k-th row of A from its ℓ-
th row. Indeed Mk;−1 multiplies the k-th row by −1, then Skℓ adds it to the ℓ-th row, and finally
Mk;−1 multiplies the k-th row by −1 again reverting it to the original row of A. Therefore,

Mk;−1 SkℓMk;−1 Skℓ = I.

�

So applying an elementary row operation to the augmented matrix of a system is equiv-
alent to multiplying, from the left, both sides of the corresponding vector equation by an
elementary matrix. Let’s reconsider the 3 × 3 system of Example 518

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + y + z = 3
x − y + z = 1
4x + 2y + z = 10

.

The corresponding vector equation is

(3.17) Ax = c

where

18I changed the variables to x, y and z.
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A =
⎛⎜⎝
1 1 1

1 −1 1

4 2 1

⎞⎟⎠ , and c =
⎛⎜⎝
3

1

10

⎞⎟⎠ .
We started by subtracting the first row from the second. This is really a combination of two

elementary row operations: we first multiplied the second row with −1 and then we replaced
the second row by the sum of the first and second row. In terms of elementary matrices this
is equivalent to first multiply Equation (3.17) with M2;−1 and then by S12.

Ax = c ⇐⇒ M2;−1 (Ax) =M2;−1 c ⇐⇒ S12M2;−1 (Ax) = S12M2;−1 c.

Then we subtracted 4 times the first equation from the third. This is equivalent to the com-
position of four elementary operations: multiply the third equation by −1, then the first by 4,
then add the first equation to the third, and finally multiply the first equation by 1/4. In terms
of elementary matrices we multiplied both sides of the vector equation with M1;1/4 S13M1;4M3;−1

to get

M1;1/4 S13M1;4M3;−1 S12M2;−1 (Ax) =M1;1/4 S13M1;4M3;−1 S12M2;−1 c.

Continuing in this fashion we see that overall we multiplied the vector equation by the
matrix

B ∶=M2;−1M3;−1 S21M2;1/2 S31M3;1/3 S2;3M3;−1M1;1/4 S13M1;4M3;−1 S12M2;−1.

In other words, the whole process of Gauss-Jordan elimination can be summarized as

Ax = c ⇐⇒ BAx = B c.

But since the echelon form of A turned out to be the identity matrix we have that BA = I ,
which means that B = A−1.

The Gauss-Jordan elimination method is an efficient way of multiplying both sides
of Equation (3.17) by A−1.

The above discussion also gives an algebraic interpretation of the method of finding the
inverse of a matrix exposed in Example 42. Namely, we see that the inverse of an invertible
matrix is a product of elementary matrices. Since any invertible matrix is the inverse of its
inverse we see that every invertible matrix is a product of elementary matrices.

Conversely, since elementary matrices are invertible, a matrix that is a product of elemen-
tary matrices is invertible. We thus have the following Theorem.

THEOREM 3.6.3 (Elementary matrices generate GL(n)). A square matrix is invertible if and
only it can be written as a product of elementary matrices.

EXAMPLE 65. The 3 × 3 matrix

A =
⎛⎜⎝
1 1 1

0 1 −1
2 −1 0

⎞⎟⎠
is invertible. To express A as a product of elementary matrices we need to find a sequence

of row operations that reduces it to the identity matrix.
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We start by multiplying the adding −2 times the first row to the third row. This corre-
sponds to the product M1;−1/2 S13M1;−2. Then we add 3 times the second row to the third.
This corresponds to the product M2;1/3 S23M2;3. Then we divide the third row by −5. This is
accomplished by M3;−1/5. This turns A into an upper triangular matrix.

A =
⎛⎜⎝
1 1 1

0 1 −1
2 −1 0

⎞⎟⎠ ∼
⎛⎜⎝
1 1 1

0 1 −1
0 −3 −2

⎞⎟⎠ ∼
⎛⎜⎝
1 1 1

0 1 −1
0 0 −5

⎞⎟⎠ ∼
⎛⎜⎝
1 1 1

0 1 −1
0 0 1

⎞⎟⎠ .
The last matrix is equal to the product

M3;−1/5M2;1/3 S23M2;3M1;−1/2 S13M1;−2A.

Next we add the third row to the second. This is accomplished by S32 . We then multiply
the first row by −1 (corresponding to M1;−1), add the third and then the second row to the first
(S31 S21), and finally we multiply the first row by −1 (M1;−1).

∼
⎛⎜⎝
1 1 1

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
−1 −1 −1
0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
−1 −1 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
−1 0 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ .
So we have

M1;−1 S21 S31M1,−1 S32M3;−1/5M2;1/3 S23M2;3M1;−1/2 S13M1;−2A = I.n

Therefore

A = (M1;−1 S21 S31M1,−1 S32M3;−1/5M2;1/3 S23M2;3M1;−1/2 S13M1;−2)−1
=M1;−1/2M1;−1 S13M1;−1M1,−2M2;1/3M2;−1 S23M2;−1M23M3;−5M3;−1 S32M3;−1M2;−1 S21M2;−1M1,−1.

Notice that even for a relatively small matrix we get a rather complicated expression. We
could simplify the expression a bit by noticing that, for example

M1;−1/2M1;−1 =M1;1/2

because multiplying the same row two consecutive times can be done with one step. We get
a simpler, but still complicated expression:

A =M1;1/2 S13M1;2M2;−1/3 S23M2;3M3;5 S32M3;−1M2;−1 S21M2;−1M1,−1.

REMARK 16. As the previous example demonstrates using elementary matrices to com-
pute inverses is not really that practical. Computing with row operations, as we have been
doing so far is more efficient. This doesn’t mean that elementary matrices are useless though,
looking at the same topic from different points of view increases our understanding and leads
to new insights that could be much harder to reach otherwise.

Recall (see Definition 3) that two matrices A and B are called row equivalent if there is a
finite sequence of elementary row operations that turn A on to be. By our discussion so far
we have the following theorem.

THEOREM 3.6.4. Two m × n matrices A, B are row equivalent if and only if there an invertible
m ×m matrix C such that

B = C A.
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3.6.1. Column operations. We introduced row operations in Section 1.1 as operations on
the equations of a linear system. When we later introduced the vector form of a system,
equations corresponded to rows of the matrix and so these operations ended up to act on the
rows of the matrix. We represented the system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 +⋯ + a1nxn = c1
a21x1 + a22x2 +⋯ + a2nxn = c2
⋮ ⋮ ⋮

am1x1 + am2x2 +⋯+ amnxn = cm
as

⎛⎜⎜⎜⎝

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋯ ⋮

am1 am2 ⋯ amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2

⋮
xn

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

c1
c2
⋮
cm

⎞⎟⎟⎟⎠
.

But that was a choice. We could also have represent it as

(x1 x2 ⋯ xn)
⎛⎜⎜⎜⎝

a11 a21 ⋯ am1

a12 a22 ⋯ am2

⋮ ⋮ ⋯ ⋮
a1n a2n ⋯ amn

⎞⎟⎟⎟⎠
= (c1 c2 ⋯ cm) .

In other words, we represented a vector x ∈ Rn as a column but we could have represented
it as row instead. Had we done that, the matrix of the system would have been the transpose
A∗ instead of A. After all,

Ax = c ⇐⇒ x∗A∗ = c∗.

Perhaps we made that choice in a parallel universe. In that universe, the equations of the
system would correspond to the columns of its matrix and the variables would correspond
to its rows, and we would talk about elementary column operations and (reduced) column echelon
form.

Of course, such a choice doesn’t really change the system, or its solution set, a vector
doesn’t care whether we write it as a column or as a row, it’s the same vector either way. So
in that hypothetical universe19 there would be a theory of linear systems that would get the
same results by using elementary column operations. The elementary matrices that would
represent their column operations would be the same as our elementary matrices though, just
applied on the right of a matrix not on the left.

Column operations and column equivalence are completely analogous to row operations
and row equivalence. Rather than copying the definitions changing “row” to column we
develop them from an algebraic point of view starting with the analog of Theorem 3.6.4.

DEFINITION 32 (Column Equivalence). We say that A,B ∈Mm×n are column equivalent if

B = AC

for some invertible n × n matrix C.

For the remaining of this section, let’s use the notation

A ≅ B

to mean that A is column equivalent to B.

19This is not pure science fiction. There are books where this choice is made.
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THEOREM 3.6.5. Column equivalence is an equivalence relation. In other words if X,Y,Z are
m × n matrices, we have:

(a) X ≅X .
(b) X ≅ Y Ô⇒ Y ≅ Z.
(c) X ≅ Y and Y ≅ Z Ô⇒ X ≅ Z.

PROOF. (1) holds because X = X I .
(2) follows from the implication Y =XC Ô⇒ X = Y C−1.
To prove (3), notice that if Y = X C and Z = Y D then Z = X (CD). Furthermore, if C,D

are invertible then so is CD (see Theorem 3.4.5). �

THEOREM 3.6.6. Two matrices are column equivalent if and only if their transposes are row equiv-
alent. In other words,

A ≅ B ⇐⇒ A∗ ∼ B∗.

PROOF. We have (see Theorem 3.5.1)

B = AC ⇐⇒ B∗ = C∗A∗.

and C is invertible if and only if C∗ is invertible (see Theorem 3.5.3). Thus, if A ≅ B then (by
Theorem 3.6.4) A∗ ∼ B∗.

Conversely, if A∗ ∼ B∗ then, again by Theorem 3.6.4 we have that B∗ = C A∗ for some
invertible matrix C. But then B = AC∗ and therefore A,B are row equivalent. �

As a corollary we have the following Theorem.

THEOREM 3.6.7. Let A and B be m × n matrices. Then A ≅ B if and only if B can be obtained
from A by applying a finite sequence of elementary column operations:

● Interchanging two columns.
● Multiplying a column by a non-zero scalar.
● Adding a column to an other column.

The elementary matrices Pij and Mk;λ are symmetric. This is obvious for Mk;λ since it’s a
diagonal matrix. On the other hand, the ij and ji as well as the kk entries, for k ≠ i, j, of Pij

are 1 and all other entries are 0, and so Pij is symmetric.
For the third type of elementary matrices we have that the diagonal entries as well as the

ℓk entry of Skℓ are 1 and all other entries are 0. Thus the transpose of Skℓ has the diagonal
entries and the kℓ entry 1, and all other entries 0. So the transpose of Skℓ is Sℓk.

Thus the following theorem holds.

THEOREM 3.6.8. We have

(a) P ∗kℓ = Pkℓ.
(b) M∗

k;λ =Mk;λ.
(c) S∗kℓ = Sℓk.

THEOREM 3.6.9. Let A be an m × n matrix. Then

(a) APkℓ has the same columns as A with the k and ℓ columns interchanged.
(b) AMk;λ has the same columns as A except the k-th that is equal to λ times the k-th column of

A.
(c) ASkℓ has the same columns as A except the k-th that is the sum of the k-th and ℓ-th columns

of A.

PROOF. We have (APkℓ)∗ = PkℓA
∗.
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Thus the columns of APkℓ are the rows of PkℓA∗, that is the rows of A∗ with the k-th and
ℓ-th rows interchanged. In other words the columns of A with the k-th and ℓ-th columns
interchanged. This proves (1).

Similarly,

(AMk;λ)∗ =Mk;λA
∗.

Thus the columns of AMk;λ are the rows of Mk;λA∗, that is the rows of A∗ with the k-th row
multiplied by λ. In other words the columns of A with the k-th column multiplied by λ. This
proves (2).

Finally,

(ASkℓ)∗ = SℓkA
∗.

Thus the columns of ASkℓ are the rows of SℓkA∗ that is the rows of A∗ with the ℓ-th row added
to the k-th. In other words the columns of A with the ℓ-th column added to the k-th. �

DEFINITION 33. We say that two m × n matrices A,B are equivalent, and write A ≈ B, if
there is an invertible m ×m matrix C and an invertible n × n matrix D such that

B = C AD.

Equivalently if B can be obtained by applying a finite sequence of elementary row or
column operations.

Exercise 8. Prove that ≈ is an equivalence relation.

THEOREM 3.6.10. Any matrix A is equivalent to a block matrix of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0 0 ⋯ 0

0 1 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 0 ⋯ 0

0 0 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The number of non-zero rows (and columns) is rankA.

PROOF. We use row operations to bring the matrix to its reduced row echelon form. Then
we use column operations to put all the free columns at the end. Finally we use the leading 1

of each row to kill all non-zero entries on that row.
The number of non-zero columns is the number of basic columns in the reduced row

echelon form of A and therefore equal to rankA. �

EXAMPLE 66. Consider the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 −1 4 0 −1 −2 0

2 −4 −5 11 0 −4 −16 −1
−2 4 5 −11 1 4 16 1

4 −8 −9 21 −2 −7 −27 −2
−1 2 5 −8 1 3 16 1

1 −2 −2 5 −1 0 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Its reduced row echelon form is

A ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 0 3 0 0 3 0

0 0 1 −1 0 0 2 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 3 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We use column interchanges to move the free columns to the end:

A ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −2 3 3

0 1 0 0 0 0 −1 2

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 3

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, we add 2 (respectively −3, −3) times the first column to the fifth (respectively sixth,
seventh), add the second column to the sixth, add −2 times the second column to the seventh,
and finally −3 times the fourth column to the seventh to get

A ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We conclude that rankA = 5.

Exercise. Prove Theorem 3.5.7 using Theorem 3.6.10.





CHAPTER 4

Abstract Vector Spaces

In this chapter we abstract the algebraic properties of the standard real vector spaces Rn.
We start by abstracting the properties of addition and multiplication of the real numbers and
get the concept of a field. Roughly speaking a field is a set whose elements we can add or
multiply and all the algebraic manipulations that are valid for addition and multiplication of
real numbers are still valid. In particular almost all the theory we developed in the previous
three chapters works in all fields. There are standard n-dimensional vector spaces defined
over any field, they have vector subspaces, matrices define linear maps and so on.

Then we go to the next level of abstraction by isolating the properties of scalar multipli-
cation and vector addition of the standard vector spaces that make the theory we developed
in the first three chapters work. This leads to the definition of an abstract vector space. A
vector space is thus, roughly, a set whose elements (“vectors”) can be added and multiplied
by scalars, and these operations satisfy the vector space axioms.

These are very powerful abstractions with vast scope of applications. An abstract “vector”
can be a geometric vector, a matrix, a function, the state of a quantum system, and so on.

4.1. Fields

DEFINITION 34 (Fields). A set K endowed with two binary operations + and ⋅ called addi-
tion and multiplication respectively is a field if the following properties, called the field axioms
hold:

(a) Addition is commutative. That is, for all a, b ∈K

a + b = b + a.
(b) Addition is associative. That is, for all a, b, c ∈K

a + (b + c) = (a + b) + c.
(c) Addition has a neutral element. That is there exists an element 0 ∈ K such that for all

a ∈K

a + 0 = a.
(d) Every element has an opposite (or negative) element. This means that for every a ∈ K

there exists −a ∈K such that

a + (−a) = 0.
(e) Multiplication is commutative. That is, for all a, b ∈K

ab = ba.

(f) Multiplication is associative. That is, for all a, b, c ∈K

a (b c) = (ab) c.
(g) Multiplication has a neutral element. That is, there exists an element 1 ∈ K such that

for all a ∈K
1 ⋅ a = a.

113
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(h) Every non-zero element has an inverse (or reciprocal) element. This means that for
every a ∈K there exists a−1 ∈K such that

a ⋅ a−1 = 1.
(i) Multiplication distributes over addition. That is, for all a, b, c ∈K we have

a (b + c) = ab + ac.
It turns out that these nine axioms imply that we can do algebra in any field, pretty much

the same way we do algebra with real numbers. For the rest of this section elaborates this
vague remark.

There is only one 0 and only one 1 in any field, i.e. the elements that satisfy Properties (3)
and (7) are unique. For, assume that for 0′ ∈K we have that for all a ∈K

a + 0′ = a.
Then for a = 0 we have

0 + 0′ = 0.
On the other hand, by Property (3) for a = 0′ we have

0′ + 0 = 0′.
But addition is commutative, and therefore 0 + 0′ = 0′ + 0. It follows then that

0 = 0′.

The proof of the uniqueness of 1 is entirely similar.
The opposite and inverse of an element are also unique. Let’s prove it for the inverse. Let

a ≠ 0 be an element of K and let a−1 be an element that satisfies Property (9) and let b ∈ K be
another element that satisfies

ab = 1.

We will prove, using the field axioms, that b = a−1. Indeed,

ab = 1 Ô⇒ a−1 (ab) = a−1 ⋅ 1 Multiply both sides by a−1

Ô⇒ a−1 (ab) = 1 ⋅ a−1 Using (5)

Ô⇒ a−1 (ab) = a−1 Using (7)

Ô⇒ (a−1 a) b = a−1 Using (6)

Ô⇒ (a ⋅ a−1) b = a−1 Using (5)

Ô⇒ 1 ⋅ b = a−1 Using (8)

Ô⇒ b = a−1 Using (7).

The following theorem summarizes some algebraic properties that follow from the field
axioms and that we will be using freely from now on. We provide proofs of some of them and
invite the reader to provide proofs of the rest and in genera to feel the details.

THEOREM 4.1.1. Let K be a field. Then the following hold.

(a) Let a ∈K. If for some b ∈K we have a + b = b then a = 0.
(b) Let a ∈K. If for some b ∈K we have ab = b and b ≠ 0, then a = 1.
(c) For all a ∈K we have

−(−a) = a.
(d) For all a ∈K,

0 ⋅ a = 0.
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(e) For all a ∈K, (−1) a = −a.
(f) For all a, b ∈K,

−(a + b) = (−a) + (−b).
(g) For all a, b ∈K,

ab = 0 ⇐⇒ a = 0 or b = 0.

(h) For all a ∈K if a ≠ 0 then a−1 ≠ 0 and

(a−1)−1 = a.
(i) If a, b ∈K with a ≠ 0 and b ≠ 0 then ab ≠ 0 and

(ab)−1 = a−1 b−1.
PROOF. (a) Starting with a + b = b we add −b to both sides and get

(a + b) + (−b) = 0.
Using associative property we get

a + (b + (−b)) = 0,
and since b + (−b) = 0,

a + 0 = 0,
and finally

a = 0.

(b) Note that since b ≠ 0 the inverse b−1 exists. The proof then proceeds as in (1): we
multiply both sides by b−1, and then use the properties of multiplication.

(c) We have a+ (−a) = 0 and by commutativity of addition (−a)+a = 0. By the discussion
about the uniqueness of the opposite it follows that the opposite of −a is a.

(d) Since 0 + 0 = 0 we have, by the distributive property

0a = (0 + 0)a = 0a + 0a,
that is, 0a + 0a = 0a. The result then follows from (1).

(e) We have,
0 = 0a (1 + (−1)) a = 1 ⋅ a + (−1)a = a + (−1)a.

Adding −a to both sides then yields the result.
(f) By (5) this is equivalent to

(−1) (a + b) = (−1)a + (−1) b
which holds by the distributivity of multiplication.

(g) If a = 0 or b = 0 then by (4) we have ab = 0.
To prove the converse, we’ll assume ab = 0 and prove that if b ≠ 0 we must have

a = 0, thus establishing the result. Now, if b ≠ 0 the inverse b−1 exists and we can
multiply both sides of ab = 0 by b−1, to get

(ab) b−1 = 0 ⋅ b−1
which using distributivity of multiplication and (4) gives

a (b b−1) = 0.
And this using the field axioms (8) and (7) gives

a = 0.
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(h) We will show that (ab) (a−1 b−1) = 1. Here is the calculations in full detail:

(ab) (a−1 b−1) = ((ab)a−1) b−1 (Using distibutivity)

= ((ba)a−1) b−1 (Using commutativity)

= (b (aa−1)) b−1 (Using distibutivity)

= (b1) b−1 (Using Axiom (8))

= (1 b) b−1 (Using commutativity)

= b b−1 (Using Axiom (7))

= 1 (Using Axiom (8)).

�

The associative property of addition means that if a, b, c ∈K the triple sum

a + b + c
is well defined and we don’t need to write parentheses. More generally, we can prove that for
any a1, . . . , an the sum

n

∑
i=1

ai = a1 + a2 +⋯+ an
is well defined and gives the same answer no matter how we insert the parentheses. For
example:

a1 + ((a2 + a3) + (a4 + a5)) = (a1 + a2) + (a3 + (a4 + a5)) .
Similarly the product of a1, . . . , an

n

∏
i=1

ai = a1 a2⋯an

is well defined, no matter how we parenthesize we’ll get the same answer. From now on we
will not write parentheses for multiple sums and products.

DEFINITION 35 (Subtraction and Division in a field). If K is a field and a, b ∈ K then the
difference of a and b is defined via

a − b = a + (−b).
If b ≠ 0 we define the quotient of a and b via

a

b
= ab−1.

As an example of how our familiar algebraic manipulations work in any field we prove
the following proposition.

PROPOSITION 10. If K is a field and a, b, c, d ∈K with b ≠ 0 and d ≠ 0 then

a

b
+ c

d
=
ad + b c

bd
.

PROOF. We have

(ab−1 + c d−1) bd = ab−1 bd + c d−1 bd
= a1d + c d−1 d b
= ad + c1 b
= ad + c b.
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Thus we have (ab−1 + c d−1) bd = ad + c b.
Multiplying both sides with (bd)−1 gives

ab−1 + c d−1 = (ad + c b) (bd)−1.
The last equation is equivalent to

a

b
+ c

d
=
ad + b c

bd
.

�

Finally in any field we can define the powers an with n ∈ Z.

DEFINITION 36 (Integer powers in a field). Let a ∈K. For n ≥ 0 we define recursively

{ a0 = 1

an+1 = an a
.

If a ≠ 0 and n ≥ 0 we also define

a−n = (1
a
)n .

The familiar properties of powers hold in any field. We list some of them in the following
theorem. The proofs are straightforward and are left as an exercise.

THEOREM 4.1.2. Let K be a field, a, b ∈ K and m,n ∈ Z. Assuming that when the exponents are
negative the base is non-zero, the following hold:

(a) am an = am+n.

(b) (am)n = amn.

(c) (ab)n = an bn.
(d)

an

am
= an−m.

(e) (a
b
)n = ( b

a
)−n.

EXAMPLE 67 (The reals). The set of real numbers R endowed with the usual addition and
multiplication is a field. Indeed all the field axioms hold.

EXAMPLE 68 (The rationals). The set of rational numbers Q endowed with the usual ad-
dition and multiplication is a field. Recall that a real number q is said to be rational if there
are two integers m,n such that q =m/n (n is non-zero of course).

Now notice that

(a) 0 ∈ Q.
Indeed we can write

0 =
0

1
and since 0,1 ∈ Z it follows that 0 ∈ Q.

(b) 1 ∈ Q. Indeed, 1 = 1/1.
(c) Q is closed under addition. That is,

q1, q2 ∈ Q Ô⇒ q1 + q2 ∈ Q.

Indeed, if qi =mi/ni with mi, ni ∈ Z, and ni ≠ 0 for i = 1,2 then

q1 + q2 = m1 n2 +m2 n1

n1 n2

.

Now the sums and products of integers are integers and therefore m1 n2 +m2 n1 ∈ Z

and n1 n2 ∈ Z. Thus q1 + q2 ∈ Q.
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(d) Q is closed under opposites. That is,

q ∈ Q Ô⇒ −q ∈ Q.

Indeed if q =m/n with m,n ∈ Z then

−q = −m
n

and since −m is an integer we conclude that −q ∈ Q.
(e) Q is closed under multiplication. That is,

q1, q2 ∈ Q Ô⇒ q1 q2 ∈ Q.

Indeed,

q1 q2 =
m1m2

n1 n2

and Z is closed under multiplication.
(f) Q is closed under inverses. That is,

q ∈ Q, q ≠ 0 Ô⇒ q−1 ∈ Q.

Indeed if q =m/n with m,n ∈ Z then if q ≠ 0 we have that m ≠ 0. Then

q−1 =
n

m
∈ Q.

Since Q ⊆ R and R is a field we conclude that all the field axioms hold for Q.

EXAMPLE 69 (N, Z are not fields). The set of natural numbers with the usual operations
of addition and multiplication is not a field. One can check that all field axioms except (4)
and (8) hold, i.e. opposites and inverses do not exist in N.

The set of integers Z has opposites but it fails axiom (8). For example 2−1 doesn’t exist in
Z.

DEFINITION 37 (Subfield). Let K be a field and F ⊆ K. We say that F is a subfield if the
following hold.

(a) 0 ∈ F .
(b) 1 ∈ F .
(c) F is closed under addition. That is,

a, b ∈ F Ô⇒ a + b ∈ F.
(d) F is closed under opposites. That is,

a ∈ F Ô⇒ −a ∈ F.
(e) F is closed under multiplication. That is,

a, b ∈ F Ô⇒ ab ∈ F.

(f) F is closed under inverses. That is,

a ≠ 0 and a ∈ F Ô⇒ a−1 ∈ F.

THEOREM 4.1.3 (Subfields are fields). If F is a subfield of a field K, then F is also a field with
addition, multiplication, 0, 1, opposites, and inverses the same as K.

PROOF. Exercise. �
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EXAMPLE 70 (The complexes). C, the set of complex numbers, is a field. There various
ways to define C. We use the one in our see Exercise E.6 of Homework 4. For a more compre-
hensive treatment of complex numbers and their properties, consult Appendix A.

Let’s then define the set of complex numbers to be the following set of matrices

C = {(a −b
b a

) ∶ a, b ∈ R} .
Addition and multiplication of complex numbers is the usual addition and multiplication of
matrices. Notice that for all a ∈ R the scalar matrix aI2 ∈ C and if we identify the real numbers
with 2 × 2 scalar matrices we have

R ⊆ C.

Identifying a ∈ R with aI2 ∈ C is justified since as we saw in Example 48, addition and multi-
plication of scalar matrices mimics addition and multiplication of real numbers. In particular
we have identified I2, the 2 × 2 identity matrix, with 1.

Let us now set

i = (0 −1
1 0

) ∈ C.
We have

i2 = (0 −1
1 0

) (0 −1
1 0

) ∈ C. = (−1 0

0 −1) = −1 I2 = −1.
Now,

(a −b
b a

) = (a 0

0 a
) + b (0 −1

1 0
) = a + b i,

since we have identified the scalar matrix aI2 with a. Thus every element of C can be written
in the form a + bß for a, b ∈ R. Thus we have

C = {a + b i ∶ a, b ∈ R} .
Now notice that

a + b i = c + d i ⇐⇒ a = c and b = d.

So we have that a complex number z ∈ C and be written uniquely as

z = a + b i, a, b ∈ R.

We call a the real part, and b the imaginary part, of z.

CLAIM 2. C endowed with matrix addition and multiplication is a field, where the unit 1 is the
identity matrix, and the zero element 0 is the zero matrix1.

PROOF. Since addition in C is just matrix addition we have that addition in C is commuta-
tive and associative. Similarly we have that multiplication is associative and distributes over
addition. Since 0 is the zero matrix we also have that for all z ∈ C

z + 0 = 0
and thus axiom (3) holds.

Now by the properties of matrix addition we have

aI2 + b i + (−aI2 − b i) = (a − a) I2 + (b − b) i = O,

that is,
a + b i + (−a − b i) = 0.

1Notice that these matrices are identified with the real numbers 1 and 0 via our identification of real numbers
and scalar matrices.
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So, axiom (4) also holds where

−(a + b i) = −a − b i.
Now,

(a + b i) (c + d i) = ac + ad i + b c i + bd i2
= ac − bd + (ad + b c) i.

And so,

(c + d i) (a + b i) = c a − d b + (da + c b) i
= ac − bd + (ad + b c) i.

Therefore we proved that multiplication in C is commutative.
The only axiom left to prove is axiom (8) the existence of inverses for non-zero complex

numbers. Let z = a + b i ∈ C with z ≠ 0. Then multiplying with its conjugate z = a − b i we get

z z = a2 + b2,
and since z ≠ 0 we have a2 + b0 ≠ 0. Thus the last equation can be written

z
z

a2 + b2 = 1.
Thus axiom (8) also holds, and

z−1 =
z

a2 + b2 .
�

EXAMPLE 71 (Z/2: The smallest possible field). The definition requires that a field has at
least two elements the zero element 0 and the unity 1. It turns out that there is a field, the
smallest possible, that has only those two elements. Let

Z/2 = {0,1}
and define addition a multiplication as follows:

+ 0 1

0 0 1

1 1 0

⋅ 0 1

0 0 0

1 0 1

The multiplication table is determined by the axioms, if Z/2 is to be a field then 0 ⋅ 0 = 0,
etc. The addition table is also defined by the axioms. The only non-obvious entry is probably

1 + 1 = 0.
This follows because 1 needs an opposite and this opposite can’t be 0 because 1 + 0 = 1. Thus
we must have −1 = 1, or in other words, 1 + 1 = 0.

The verification of the axioms is straight forward and involves checking finitely many
identities.

We can see for example that every element has an opposite, namely itself, and that the
only non-zero element 1 has an inverse, again itself.

To verify that addition is commutative for example, we need to verify that for all a, b ∈ Z/2
we have

a + b = b + a.
Since this is obviously true when a = b we need to verify it only for a = 0, b = 1 and a = 1, b = 0,
and by symmetry we only need to check that
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0 + 1 = 1 + 0,
which is true since both sides of this equation equal to 1.
To verify that multiplication distributes over addition we need to verify

a (b + c) = ab + ac
for all eight choices of a, b, c. By commutativity of addition these reduce to six, we chose a and
the pair {b, c}. So we have to verify that

0 (0 + 0) = 0 ⋅ 0 + 0 ⋅ 00 (0 + 1) = 0 ⋅ 0 + 0 ⋅ 1 0 (1 + 1) = 0 ⋅ 1 + 0 ⋅ 1
1 (0 + 0) = 0 ⋅ 0 + 0 ⋅ 01 (0 + 1) = 0 ⋅ 0 + 0 ⋅ 1 1 (1 + 1) = 0 ⋅ 1 + 0 ⋅ 1.

The verification of all these is straightforward. Similarly we can check that addition and
multiplication is associative.

Doing algebra on Z/2 is easy because x+x = 0 and x2 = x for all x ∈ Z/2. So for example the
freshman’s dream identity holds:

(x + y)2 = x2 + y2.
There are (at least) two interesting interpretations of the field Z/2. The first one is via logic.

If we consider 0 to stand for False and 1 to stand for True, then multiplication is the logical and
operation while addition is the logical exclusive or. Indeed, ab is 1 only when both a and b

are 1, just as p and q is true only when both p and q are true.
Similarly a + b = 1 when exactly one of the a, b is 1, just as the exclusive disjunction of two

propositions is true when exactly one of them is true.
The other interpretation of Z/2 is as integers modulo 2. In this case 0 stands for even and 1

stands for odd. Then 1+ 1 = 0 means that if we add two odd integers the result is even, 0 ⋅ 1 = 0
means that if we multiply an even and an odd integer the result is even, and so on.

In general Z/m is defined for all integers m ≥ 2. We can define for example

Z/m = {0,1, . . . ,m − 1}
and think of its elements as the possible remainders of the division by m. It turns out that if a
and c leave the same remainder when divided by m, and so do b and d, then a + b leaves the
same remainder as c+d, and ab leaves the same remainder as c d. Then for x, y ∈ Zm we define
x + y to be the remainder of the sum of x and y as integers, Similarly xy is the remainder of
the product of x and y as integers.

For example in Z/8 we have 7 + 5 = 4 because when we add 7 and 5 as integers we get 12,
and 12 leaves remainder 4 when divided by 12. On the other hand 5 ⋅7 = 3 because the product
of the integers 5 and 7 is 35, and it leaves remainder 3.

Addition and multiplication of integers satisfy all the field axioms except the existence of
inverses. It follows that so do modular addition and multiplication. For example the modular
products x (y z) and (xy)z are equal because the products x (y z) and (xy)z are equal in Z,
and thus leave the same reminder.

Sometimes of course we get a filed, for example Z/2 is a field as we saw. It turns out that
for prime modulus axiom (8) is satisfied as well.

THEOREM 4.1.4. For any m ≥ 2 modular addition and multiplication satisfy all the field axioms
with the possible exception of axiom (8), in other words inverses don’t always exist. In fact, Z/p is a
field if and only if p is a prime.

PROOF. See Theorem B.2.4 in Appendix B. �
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EXAMPLE 72 (Z/3 is a field). We have the following tables for addition and multiplication
in Z/3:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

⋅ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1
.

From the multiplication table we see that 1−1 = 1 and 2−1 = 2 and thus every non-zero
element has an inverse. Thus axiom (8) is satisfied. Since the remaining axioms are satisfied
for all Z/m we conclude that indeed Z/3 is a field.

EXAMPLE 73 (Z/4 is not a field). Indeed in Z/4 we have 2 ⋅ 2 = 0 and 2 ≠ 0. This contradicts
Property (7) in Theorem 4.1.1.

EXAMPLE 74 (Z/5 is a field). For Z/5 we have

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

⋅ 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1
.

We can think of the elements of Z/5 arranged in a circle at the vertices of a regular penta-
gon, see Figure 1.

0

1

2

3

4

FIGURE 1. Modular arithmetic for m = 5.

Addition and multiplication are then defined as follows:

To find a + b ∈ Z/5, start at a and walk along the circle for b steps.

Thus to find 2 + 4 I start at 2 and walk 4 steps, thus going through 3,4,0 and ending in 1.
Thus 2 + 4 = 1.

Multiplication can be defined as repeated addition.
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To find ab ∈ Z/5, start at 0 and and walk b steps a times.

Thus to find 4⋅3, we start at 0 and walk 3 steps, for 4 times, going through 3,1,4 and ending
at 2 thus 4 ⋅ 3 = 2.

As an example of how our familiar algebra works in any field let us prove the following
claim.

CLAIM 3. For all x ∈ Z/5 we have:

x5 = x.

PROOF. Let p(x) = x5 − x. We will prove that for all a ∈ Z/5 we have p(a) = 0. We factor:

x5 − x = x (x4 − 1)
= x (x2 − 1) (x2 + 1)
= x (x − 1) (x + 1) (x2 − 4)
= x (x − 1) (x + 1) (x − 2) (x + 2)
= x (x − 1) (x − 4) (x − 2) (x − 3)
= (x − 0) (x − 1) (x − 2) (x − 3) (x − 4).

In the above calculations we used that 1 = −4 and 2 = −3 in Z/5.
Thus all elements of Z/5 are roots of p(x). �

REMARK 17. There are similar interpretations for the arithmetic operations in Z/m for all
m. We also remark that an analogous result to Claim 3 holds in all fields Z/p. Indeed we have

∀x ∈ Z/p, xp = x.

EXAMPLE 75. The set

Q[√2] = {a + b√2 ∶ a, b ∈ Q}
is a subfield of R. This means that it contains 0 and 1, and it is closed under addition, multi-
plication, opposites, and inverses.

(a) 0 ∈ Q[√2]. Indeed 0 = 0 + 0√2.
(b) 1 ∈ Q[√2]. Indeed 0 = 1 + 0√2.
(c) Q[√2] is closed under addition. Indeed,

(a + b√2) + (c + d√2) = (a + c) + (b + d)√2.
(d) Q[√2] is closed under multiplication. Indeed,

(a + b√2) (c + d√2) = (ac + 2 bd) + (ad + b c)√2.
(e) Q[√2] is closed under opposites. Indeed,

−(a + b√2) = −a + (−b)√2.
(f) Q[√2] is closed under inverses. This is a bit more challenging. We have to show that

for a, b ∈ Q with a + b√2 ≠ 0 we have

1

a + b√2 ∈ Q[
√
2].
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We have (a + b√2) (a − b√2) = a2 − 2 b2,
and so if a2 − 2 b2 ≠ 0 we have

1

a + b√2 = a

a2 − 2 b2 −
b

a2 − 2 b2
√
2 ∈ Q[√2].

Thus we have to show that if a, b ∈ Q not both zero, then a2 − 2 b2 ≠ 0. To see this
notice that if b = 0 then a ≠ 0 and so a2 − 2 b2 = a2 ≠ 0.

On the other hand, if b ≠ 0 then

a2 − 2 b2 = 0 ⇐⇒ √2 = a

b
Ô⇒

√
2 ∈ Q.

Since
√
2 is irrational we conclude that a2 − 2 b2 ≠ 0.

4.1.1. Standard vector spaces over arbitrary fields. All the material we developed in the
previous three chapters can be extended over any field K. We can solve linear systems, using
Gauss, or Gauss-Jordan elimination. Any matrix is row equivalent to one in echelon form
and has a unique reduced echelon form. The solutions of an m×n systems are n-dimensional
vectors i.e. elements of Kn, the standard n-dimensional vector space over k. In Kn we have
vector addition, and scalar multiplication by scalars λ ∈ K. We have vector subspaces of Kn,
linear combinations, bases, dimension and so on.

This is so because all the operations we used make sense in K as well and have the same
algebraic properties. We give a few examples of applying the theory we developed to fields
different than R.

EXAMPLE 76 (Solving a system in Z/3). Consider the following 3 × 3 system of linear
equations over the field with three elements Z3⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 2y − z = 2
2x + y = 1

y + z = 0
.

The augmented matrix of the system is.

⎛⎜⎝
1 2 −1
2 1 0

0 1 1

RRRRRRRRRRRRR
2

1

0

⎞⎟⎠ .
First notice that in Z/3 we −2 = 1. We add the first row to the second, then interchange the
second and third rows.

⎛⎜⎝
1 2 −1
0 0 −1
0 1 1

RRRRRRRRRRRRR
2

0

0

⎞⎟⎠ ∼
⎛⎜⎝
1 2 −1
0 1 1

0 0 −1

RRRRRRRRRRRRR
2

0

0

⎞⎟⎠ .
Now we add the third row to the second, subtract it from the first and multiply it by −1.

Finally we add the second row to the first.

⎛⎜⎝
1 2 0

0 1 0

0 0 1

RRRRRRRRRRRRR
2

0

0

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1

0 0 1

RRRRRRRRRRRRR
2

0

0

⎞⎟⎠ .
Thus the system has a unique solution (x, y, z) = (2,0,0).
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EXAMPLE 77. Find a basis for the subspace of C5 spanned by the vectors

v1 = (1, i,1 + i,1 + 3 i,−2 i) v2 = (1, i,1 + i,1 + 3 i,−2 i)
v3 = (1, i,1 + i,1 + 3 i,1 + i,−1 − 2 i) v4 = (0,0,0,1,−1)
v5 = (0,0,0,0,1)

Let A be the matrix with columns vi, i = 1, . . . ,5

A =

⎛⎜⎜⎜⎜⎜⎝

1 i 0 1 0

i −1 0 i 0

1 + i −1 + i 0 1 + i 0

1 + 3 i −3 + i 0 1 + 3 i 1

−2 i 2 1 −1 − 2 i −1

⎞⎟⎟⎟⎟⎟⎠
.

We’ll bring A to its reduced row echelon form. Let’s start by using the second row to get
rid of of the imaginary parts of below it. So we subtract the second row from the third, add
−3 times the second row to the fourth, and 2 times the second row to the fifth.

A ∼

⎛⎜⎜⎜⎜⎜⎝

1 i 0 1 0

i −1 0 i 0

1 i 0 1 0

1 i 0 1 1

0 0 1 −1 − 4 i −1

⎞⎟⎟⎟⎟⎟⎠
.

Now we add −i times the first row to the second, and subtract the first row from the third
and fourth:

A ∼

⎛⎜⎜⎜⎜⎜⎝

1 i 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 1 −1 −1

⎞⎟⎟⎟⎟⎟⎠
.

Next we move the zero row to the bottom and the last row to the second place

A ∼

⎛⎜⎜⎜⎜⎜⎝

1 i 0 1 0

0 0 1 −1 −1
0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
.

Finally, we add the third row to the second

A ∼

⎛⎜⎜⎜⎜⎜⎝

1 i 0 1 0

0 0 1 −1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
.

Thus a basis for the span of vi, i = 1, . . . ,5 is {v1,v2,v3} and the span has dimension 3.

EXAMPLE 78. Find A−1 where A is the following matrix with entries in Z/5.

A =
⎛⎜⎝
1 3 2

4 0 1

0 2 3

⎞⎟⎠
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In Z/5 we have 2 + 3 = 1 + 4 = 0 and 2 ⋅ 3 = 4 ⋅ 4 = 1.
We have

⎛⎜⎝
1 3 2

4 0 1

0 2 3

RRRRRRRRRRRRR
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 3 2

0 3 3

0 2 3

RRRRRRRRRRRRR
1 0 0

1 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 3 2

0 3 3

0 0 1

RRRRRRRRRRRRR
1 0 0

1 1 0

1 1 1

⎞⎟⎠ ,
where we first added the first row the second and then the second to the third.

Now we add 2 (respectively 3) times the third row to the second (respectively first), and
then subtract the second row from the first. Finally we divide the second row by 3 (i.e. we
multiply with 2)

∼
⎛⎜⎝
1 3 0

0 3 0

0 0 1

RRRRRRRRRRRRR
4 3 3

3 3 2

1 1 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 3 0

0 0 1

RRRRRRRRRRRRR
1 0 1

3 3 2

1 1 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
1 0 1

1 1 4

1 1 1

⎞⎟⎠ .
Thus,

A−1 =
⎛⎜⎝
1 0 1

1 1 4

1 1 1

⎞⎟⎠ .
EXAMPLE 79. Show that the map

T ∶ C2
→ C3, T (z1, z2) = (2 z1 − i z2, (1 − 3 i)z1, (3 + i)z1 − 2 i z2).

is linear and find its matrix.
We will first find the matrix of T assuming it is linear and then we will show that T is given

by multiplying column vectors from the left with that matrix thus establishing the linearity of
T . We calculate

T (1,0) = (2,1 − 3 i,3 + i), T (0,1) = (−i,0,−2 i)
and so if T is linear its matrix will be

⎛⎜⎝
2 −i

1 − 3 i 0

3 + i −2 i
⎞⎟⎠ .

Now, we have ⎛⎜⎝
2 −i

1 − 3 i 0

3 + i −2 i
⎞⎟⎠ (

z1
z2
) = ⎛⎜⎝

2 z1 − i z2(1 − 3 i)z1(3 + i)z1 − 2 i z2
⎞⎟⎠ = T (z1, z2).

Thus T is linear.

EXAMPLE 80 (A puzzle). We have five coins each with one side green and and the other
red. We place them in a row with the green sides up.

We are allowed to flip any coin and its immediate neighbors. Thus we are allowed to

(a) Flip the first two coins, or
(b) flip the first three coins, or
(c) flip the middle three coins, or
(d) flip the last three coins, or
(e) flip the last two coins.
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To solve the puzzle, we have, using only these allowed operations, to get the first, third,
and fifth coin with the red side up, and the second and fourth with the green side up.

This is a typical example of a system described by finitely many bits. Each coin can be
flipped or not. If we let 0 stand for “not flipped” and 1 for “flipped” the state of our system
can be represented by a tuple of five bits, that is by a vector in (Z/2)5 . Thus flipping the first
and the fourth coin is represented by the vector (1,0,0,1,0), and flipping only the third coin
by (0,0,1,0,0). Adding the vectors that correspond to two states corresponds to performing
the corresponding flipping operations consecutively.

Now the allowed operations correspond to the vectors

v1 = (1,1,0,0,0), v2 = (1,1,1,0,0), v3 = (0,1,1,1,0), v4 = (0,0,1,1,1), v5 = (0,0,0,1,1),
and the final state we want to achieve corresponds to the vector

v = (1,0,1,0,1),
Thus to solve the puzzle we have to express v as a linear combination of vi, i = 1, . . . ,5. So

we have to solve the system

v =
5

∑
i=1

xi vi

where xi is either 0 or 1.
Taking the augmented matrix we have

⎛⎜⎜⎜⎜⎜⎝

1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

RRRRRRRRRRRRRRRRRRRRRR

1

0

1

0

1

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 1 0 0 0

0 0 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

RRRRRRRRRRRRRRRRRRRRRR

1

1

1

0

1

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 1 1 1

0 0 0 1 1

RRRRRRRRRRRRRRRRRRRRRR

1

1

1

0

1

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 1 1 1

0 0 0 0 0

RRRRRRRRRRRRRRRRRRRRRR

1

1

1

0

1

⎞⎟⎟⎟⎟⎟⎠
.

The last row implies that the system has no solutions and therefore the puzzle is impossi-
ble.

EXAMPLE 81 (An other puzzle). Assume that we have the same puzzle as in Example 81
but now when the allowed move is to flip any coin and its coin to the left (if present).

This puzzle leads to the augmented matrix

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

RRRRRRRRRRRRRRRRRRRRRR

1

0

1

0

1

⎞⎟⎟⎟⎟⎟⎠
.

We proceed to get the row-echelon form:

∼

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

RRRRRRRRRRRRRRRRRRRRRR

1

1

1

0

1

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 1 0

0 0 0 1 1

RRRRRRRRRRRRRRRRRRRRRR

1

1

0
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Thus
v = v1 + v2 + v5,

and thus the puzzle can be solved by flipping the first two coins, then the second and the
third, and then the fifth. We show the solution in Figure 2

Initial State

Flip first and second

Flip second and third

Flip last

FIGURE 2. The solution of the puzzle in Example 81.

We remark that we could perform the three operations in any order since vector addition
is commutative.

4.2. Vector Spaces

DEFINITION 38 (Vector space). Let K be a field. A set V is said to be a vector space over K
if there are is a binary operation, called (vector) addition

V × V → V, (v,w)↦ v +w
and a binary operation, called scalar multiplication

K × V → V, (λ,w)↦ λw

that satisfy the following properties (called vector space axioms):

(a) Addition is commutative. That is for all v,w ∈ V we have

v +w =w + v.
(b) Addition is associative. That is for all u,v,w ∈ V we have

u + (v +w) = (u + v) +w.

(c) Addition has a neutral element 0. That is for all v ∈ V

v + 0 = v.
(d) Every v ∈ V has an opposite −v. That is, there exists −v ∈ V such that

v + (−v) = 0.
(e) Scalar multiplication distributes over vector addition. That is for λ ∈ K and v,w ∈ V

we have
λ (v +w) = λv + λw.

(f) Scalar multiplication distributes over field addition. That is for λ,µ ∈K and v ∈ V we
have (λ + µ) v = λv + µv.

(g) For all λ,µ ∈K and v ∈ V ,
λ (µv) = (λµ)v.
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(h) For all v ∈ V we have
1v = v.

As we remarked in Section 2.1 all the usual algebraic properties of scalar multiplication
and vector addition follow from these axioms.

THEOREM 4.2.1 (Some consequences of the axioms). We have:

● The zero vector is unique. That is there is only one element 0 ∈ V that satisfies Axiom (3).
● For v ∈ V the opposite −v is unique. That is there is only one element −v ∈ V that satisfies

Axiom (4).
● For all vectors a, b the equation

a + x = b
has a unique solution.
● For any vector a

−1a = −a
● For any scalar λ we have

λ0 = 0.

● For any vector a
0a = 0.

● For scalar λ and vector a

λa = 0 ⇐⇒ λ = 0 or a = 0.

PROOF. Exercise. For the first two the proof mimics the proof of the analogous properties
of a field, see the proofs in Section 4.1. The proofs of the other properties are exactly the same
as the proofs for the standard vector spaces, see Section 2.1. �

EXAMPLE 82. Kn is a vector space over K. This follows from Theorem 2.1.1.

EXAMPLE 83. If V is a vector subspace of Kn (see Definition 6) then V with the scalar
multiplication and vector addition inherited from Kn is a vector space. First of all we note
that these operations are well defined by definition. Also we have 0 ∈ V and if v ∈ V its
opposite −v ∈ V . Since the vector space axioms hold for K they also hold for V .

More generally we have the following definition of vector subspace.

DEFINITION 39. Let V be a vector space over a field K and W ⊆ V . We say that W is a
vector subspace of V if the following hold.

(a) W contains the zero vector of V , that is 0 ∈W .
(b) W is closed under vector addition, that is

x,y ∈W Ô⇒ x + y ∈W.

(c) W is closed under scalar multiplication, that is

λ ∈K,x ∈W Ô⇒ λx ∈W.

And of course we have the following theorem.

THEOREM 4.2.2 (Alternative definition of vector subspace). Let V be a vector space over a
field K. A subset W ⊆ V is a subspace if and only if the following two properties hold:

● W ≠ ∅.
● For all λ,µ ∈K and a,b ∈ V

a,b ∈W Ô⇒ λa + µb ∈W.
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PROOF. Entirely analogous to the proof of Theorem 2.1.3. �

We can now generalize Example 83.

THEOREM 4.2.3. If V is a vector space and W is a vector subspace of V then W with the operations
inherited from V is also a vector space.

PROOF. Exercise. Follow the proof that a vector subspace of Kn is a vector space given in
Example 83. �

EXAMPLE 84. Let m,n be two positive integers. Then the set Mm×n(K) of m × n matrices
with entries in K is a vector space over K with the zero matrix playing the role of the zero
vector 0. See the discussion at the beginning of Section 3.4.

EXAMPLE 85 (Function Spaces). Let X be any set, and let V be a vector space over a field
k. Denote by V Xthe set of functions X → V , that is

V X = {f ∣ f ∶ X → V } .
For f, g ∈ V X and λ ∈K we define the functions f + g and λf as follows:

(f + g) (x) = f(x) + g(x), (λf) (x) = λf(x).
Then V X endowed with these operations is a vector space over K. The role of 0 is played

by the zero function O∶ X → V defined via

O(x) = 0,
and the opposite −f is the function

(−f)(x) = −f(x).
To prove that V X is indeed a vector space we have to prove that all the Vector Space

Axioms listed in Definition 38 hold. To prove that two functions , say f, g, are equal we need
to prove that f(x) = g(x) for all x ∈X . We have,

(a) Let x ∈ X then

(f + g) (x) = f(x) + g(x) (By Definition)

= g(x) + f(x) (Addition in V is commutative)

= (g + f) (x) (By definition) .

Therefore f + g = g + f .
(b) Let x ∈ X then

(f + (g + h)) (x) = f(x) + (g + h) (x) (By Definition)

= f(x) + (g(x) + h(x)) (By Definition)

= (f(x) + g(x)) + h(x) (Addition in V is associative)

= ((f + g) + h) (x) (By Definition) .

Thus f + (g + h) = (f + g) + h.
(c) For x ∈ X we have

(f +O)(x) = f(x) +O(x)
= f(x) + 0
= f(x)

Thus f +O = f .
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(d) We have for x ∈X

(f + (−f)) (x) = f(x) + (−f)(x)
= f(x) + (−f(x))
= 0

= O(x).
Thus f + (−f) = O.

(e) Let x ∈ X , then

(λ (f + g)) (x) = λ ((f + g)(x))
= λ (f(x) + g(x))
= λf(x) + λg(x)
= (λf) (x) + (λg) (x)
= (λf + λg) (x).

Thus, λ (f + g) = λf + λg.
(f) For x ∈ X we have

((λ + µ)f) (x) = (λ + µ)f(x)
= λf(x) + µf(x)
= (λf) (x) + (µf) (x)
= (λf + µf) (x).

Thus, (λ + µ)f = λf + µf .
(g) For x ∈ X we have

((λµ)f) (x) = (λµ)f(x)
= λ (µf(x))
= λ ((µf)(x))
= (λ (µf)) (x)

Thus, (λµ)f = λ (µf).
(h) For x ∈ X , we have

(1f) (x) = 1f(x)
= f(x).

Thus 1f = f .

From Theorem 4.2.3 and Example 85 we have the following examples of function spaces
that are vector spaces.

EXAMPLE 86 (The vector space of continuous functions). The set C(R) of continuous func-
tions R → R is a vector space. Indeed, as we know from Calculus, the sum of two continuous
functions is continuous as is the product of a real number and a continuous function.

EXAMPLE 87 (The vector space of differentiable functions). The set C1(R) of differentiable
functions R → R is a vector space. Indeed, as we know from Calculus, the sum of two dif-
ferentiable functions is differentiable as is the product of a real number and a differentiable
function.
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EXAMPLE 88 (The set of functions that vanish on a given point). Let a ∈ R be an arbitrary
(but fixed) real number. Then

V = {f ∈ C(R) ∶ f(a) = 0}
is a vector subspace of C(R). Indeed, the zero function 0 vanishes at a and so 0 ∈ V . Further-
more, if λ,µ ∈ R and f, g ∈ V , we have

(λf + µg) (0) = λf(0) + µg(0) = 0
and therefore λf + µg ∈ V .

EXAMPLE 89 (The vector space of everywhere convergent powerseries). A function f ∶ R→
R that is defined via a powerseries

f(x) = ∞∑
n=0

an x
n

that converges for all x ∈ R is said to be analytic. The set Cω(R) of analytic functions R→ R is a
vector space.

Indeed, as we know from Calculus, the sum of two convergent series is convergent as is
the product of a real number and a convergent series.

EXAMPLE 90. R is a vector space over the field of rational numbers Q. Vector addition
is the usual addition of real numbers, and scalar multiplication is the usual multiplication of
real numbers. This makes sense because Q ⊆ R so for λ ∈ Q and x ∈ R we have λx ∈ R. The
zero vector is the real number 0 ∈ R, and the opposite of a is the usual opposite −a.

The first four of the Vector Space Axioms hold because vector addition is just field ad-
dition. Axioms (5) and (6) follow from the fact that in a field, and thus R, multiplication
distributes over addition. Axiom (7) holds because multiplication is associative, and (8) is
true because 1 is neutral for multiplication.

In general we have the following theorem.

THEOREM 4.2.4. If F is a subfield of K then K is a vector space over F .

PROOF. Exercise. �

EXAMPLE 91 (The vector space of polynomials). See Appendix C for the basic definitions
and properties of polynomials.

Let K be a field. A polynomial of one variable x, over K, is an expression of the form

p(x) = n

∑
k=0

ak x
k = a0 + a1 x +⋯+ an xn,

where ak ∈K, and x an indeterminate.
The set of all polynomials of one variable x with coefficients in K is denoted by K[x].

It is sometimes convenient to write polynomials as a sum of infinite many terms, with only
finitely many of them non-zero. In other words we think of a polynomial as having infinitely
many coefficients, one for each power xn, but after a certain power of x all coefficients are 0.
Thus we write

p(x) =∑
k∈N

ak x
k = a0 + a1 x +⋯ + an xn +⋯,

and we assume that an = 0 for all but finitely many n ∈ N.
We define addition and scalar multiplication via

(∑
n∈N

an x
n) + (∑

n∈N

bn x
n) = ∑

n∈N

(an + bn)xn, λ (∑
n∈N

an x
n) = ∑

n∈N

(λan)xn.
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Note that these formulas really define polynomials because only finitely many of the sums
an + bn, or the products λan, are non-zero.

With these definitions, K[x] is a vector space over K, with the role of the zero vector
played by the zero polynomial, that is the polynomial with all coefficients 0. The opposite of
a polynomial p(x) is the polynomial with coefficients the opposites of the coefficients of p(x),
i.e.

p(x) = ∑
n∈N

an x
n
Ô⇒ −p(x) = ∑

n∈N

(−an)xn.

The proof that K[x] is indeed a vector space is straightforward. The verification of all the
axioms follows from the field axioms. For example the proof that Axiom (8) holds goes as
follows:

1 (∑
n∈N

an x
n) = ∑

n∈N

(1an)xn

= ∑
n∈N

an x
n.

Exercise 9. Prove that K[x] is indeed a vector space over K.

4.2.1. The vector space of linear forms. Let X be a set of variables and K a field. Then
we define a linear form to be a formal sum

ω = ∑
x∈X

λx x

where λx ∈ K, and only finitely many of λx are non-zero. The scalars λx are called the coeffi-
cients of ω. The set of all linear forms with set of indeterminates X is denoted by K ⟨X⟩. Two
linear forms on the same set of indeterminates are considered equal if they have the same
coefficients, that is

∑
x∈X

λx x = ∑
x∈X

µx x ⇐⇒ ∀x ∈X, λx = µx.

If X is a finite set then we often write the sums in expanded form. For example if X ={x1, x2, x3, x4} then instead of

ω = ∑
x∈X

λx x

we write

ω = λx1
x1 + λx2

x2 + λx3
x3 + λx4

x4.

When we use this expanded form we omit terms with 0 coefficient, thus writing

ω = −3x1 + 4x3

instead of

ω = −3x1 + 0x2 + 4x3 + 0x4.

If all the coefficients are 0 we simply write 0. In other words, the zero-form

∑
x∈X

0x

is written simply 0. If x ∈X write x instead of 1x and −x instead of −1x.
Thus instead of

1x1 + 2x2 + 0x3 + (−1)x4

we write simply

x1 + 2x2 − x4.
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If X is finite the requirement that only finitely many of the coefficients are non-zero is
always satisfied. The condition is non-trivial only when we have infinitely many variables.
For example if X = {x1, . . . , xn, . . .} the expression

x1 + x2 +⋯+ xn +⋯ =∑
i∈N

1xi ∉K ⟨X⟩
since infinitely many coefficients are non-zero. Informally speaking, we allow the sum of
infinitely many zero-terms but we only add finitely many non-zero terms.

We add two linear forms, with the same set of variables X , by adding their coefficients,
and we multiply a form with a scalar by multiplying all the coefficients with that scalar.

DEFINITION 40. Let ω1 =∑x∈X λx x and ω2 =∑x∈X µx x be two linear forms and λ ∈K. Then
we define

ω1 + ω2 = ∑
x∈X

(λx + µx) x
and

λω1 = ∑
x∈X

(λλx) x.
EXAMPLE 92. Consider linear forms over R with variables x, y, z. We have

(x + 3 y − 5 z) + (−2, x + y + 8 z) = −x + 4 y + 3 z,
while

7 (2x + y − 3 z) = 14x + 7 y − 21 z.
REMARK 18. We have used subtraction as a an abbreviation. 2x+y −3 z stands for 2x+y +(−3)z.

THEOREM 4.2.5. Let X be a set of indeterminates and K a field. Then, K ⟨X⟩ endowed with
addition and scalar multiplication is a vector space over K. The zero vector is the linear form 0, that is

∑
x∈X

0x.

The opposite of a form has the opposite coefficients, that is

− ∑
x∈X

λx x = ∑
x∈X

(−λx)x.
PROOF. Exercise. �

We consider X ⊂K ⟨X⟩ by identifying the variable y ∈X with the form

∑
x∈X

δxyx

that is the form where all variables have coefficient 0 except y that has coefficient 1. With this
convention we see that every element of K ⟨X⟩ can be expressed as a linear combination of the
variables in X in a unique way. In other words X is a basis of K ⟨X⟩.

4.3. Linear dependence, basis, dimension

The concepts studied in Section 2.2 (such as linear span, linear (in)dependence, basis, di-
mension) are defined in exactly the same way in all vector spaces and the results (and their
proofs) proved there carry over almost verbatim.

There is an important caveat however, not all vector spaces are finite-dimensional, that is
not all vector spaces have bases with finitely many elements. Some of the results of Chap-
ter 2 do not hold for infinite-dimensional vector spaces, and some results that do hold, have
different proofs.



4.3. LINEAR DEPENDENCE, BASIS, DIMENSION 135

That said, we will mostly concentrate on finite-dimensional vector spaces, infinite-dimensional
ones will occasionally occur but mostly in examples, they are not studied per se.

NOTE (Notation). We will be using normal fonts for elements of an arbitrary vector space
V . Thus we will use v, u,w for elements of V , and 0 for the zero vector. When there is a chance

of confusion we may use special notation for elements of V , such as
Ð→

0 for the zero vector. We
reserve bold font for the elements of the standard vector space Kn.

DEFINITION 41. Let V be a K-vector space and S ⊆ V . A linear combination of elements of
S is a sum

∑
v∈S

λv v

where only finitely many coefficients λv are non-zero.
By convention a linear combination of elements of the empty subset of V is a sum with

zero terms and is equal to the zero vector of V .
The linear span of S, denoted K ⟨S⟩ or when K is understood simply ⟨S⟩, is the set of all

linear combinations of S.
A subset S of V is called spanning if ⟨S⟩ = V , that is if every element of V can be written as

a linear combination of S.
A subset S of V is said to be linearly independent if every element of ⟨S⟩ can be written as a

linear combination of S in a unique way. That is, if the following condition holds

∑
v∈S

λv v =∑
v∈S

µv v ⇐⇒ ∀v ∈ S, λv = µv.

If S is not linearly independent we say that S is linearly dependent.
The trivial linear combination (or zero linear combination) of S is the linear combination with

all coefficients zero.
A linear dependency in S is a non-trivial linear combination of S equal to the zero-vector.
If S is both spanning and linearly independent then S is said to be a basis. Thus S is a basis

if every element of V can be written as a linear combination of S in a unique way.

REMARK 19. If S is an infinite set, then according to Definition 41 a linear combination of
S is a sum with infinitely many terms. This doesn’t cause a real problem because only finitely
many terms are non-zero, and we make the convention that a sum of infinitely many zeros
equals to zero.

Essentially, linear combinations are finite sums, potentially padded with (potentially
infinitely many) zeros.

This convention makes all linear combinations of S to have the same numbers of terms,
and this is convenient in many circumstances.

This approach introduces some annoying insolvencies as well. For, if S′ ⊊ S then a linear
combination of S′ is not a linear combination of S: there are no terms corresponding to the
elements of S ∖ S, i.e. the elements of S that are not in S′. For example, if S′ = {v, u} and
S = {v, u,w} then a linear combination of S′ has two terms λv+µu while a linear combination
of S has three terms λv + µu + ν w, and strictly speaking these are different expressions even
if ν = 0.
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Of course, we can easily fix this, we extend any linear combination of S′ to a linear combi-
nation of S by adding zero terms. So we identify the linear combinations

∑
v∈S′

λv v =∑
v∈S

µv v

where

(4.1) µv = {λv v ∈ S′

0 v ∉ S′
.

Also, unless we want to emphasize them, we will omit the zero terms in a linear combi-
nation. Thus instead of 2 v + 0u − 3w we write 2 v − 3w. If needed we may consider 2 v − 3w
as a linear combination of {x, v,w} as well. No harm is caused by this because the only linear
combinations that extends to a trivial linear combination is the trivial one. Indeed using the
notation of Equation (4.1), we have that if µv = 0 for all v ∈ S, then λv = 0 for all v ∈ S′.

In what follows many of the proofs are only sketched because the are (nearly) identical to
the proofs in Chapter 2.

THEOREM 4.3.1. Let S ⊆ V where V is a vector space over a field K. The following hold:

(a) S is linearly dependent if and only if there is a linear dependency in S.
(b) S is linearly independent if and only if the only linear combination of S equal to 0 is the trivial

linear combination.
(c) If S′ ⊆ S and S′ is spanning then so is S.
(d) If S′ ⊆ S and S′ is linearly dependent then so is S.
(e) If S′ ⊇ S and S′ is linearly independent then so is S.
(f) If 0 in S then S is linearly dependent.
(g) If some w ∈ S is a linear combination of S ∖ {w} then S is linearly dependent.

PROOF. (a) If there is a linear dependency

∑
v∈S

λv v = 0

with some λv ≠ 0, then 0 can be written as a linear combination of S in two different
ways:

∑
v∈S

λv v = 0 =∑
v∈S

0 v.

Thus S is not linearly independent.
Conversely, if S is linearly dependent then some w ∈ V can be expressed as a linear

combination of S in two different ways, say

w =∑
v∈S

λv v, w =∑
v∈S

µv v

with λu ≠ µu for some u ∈ S. Then by subtracting the two equations we get

0 =∑
v∈S

λv v −∑
v∈S

µv v =∑
v∈S

(λv − µv)v.
Since λu ≠ µu we have λu − µu ≠ 0 and thus

∑
v∈S

(λv − µv)v = 0
is a non-trivial linear combination equal to zero, i.e. a linear dependency.

(b) Logically equivalent to Item (a).
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(c) Every element of V is a linear combination of S′. Since, (see Remark 19) linear com-
binations of S′ are also linear combinations of S it follows that every element of V is
a linear combination of S. Thus S is spanning.

(d) A linear dependency on S′ is also a linear dependency on S.
(e) Logically equivalent to Item (d).

(f) {Ð→0 } is linearly dependent since 1 ⋅Ð→0 = Ð→0 . and by Item (d) so is every superset of

{Ð→0 }.
(g) If w = λ1 v1 +⋯+ λn vn with λi ∈K and vi ∈ S ∖ {w}we have

−1w + λ1 v1 +⋯ + λn vn = 0,

a linear dependency in S since −1 ≠ 0.
�

EXAMPLE 93 (Examples of linearly dependent and independent sets). Here are some
examples of linearly dependent, and linearly independent sets for several vector spaces.

(a) Consider R as a vector space over Q. Then the set

{√2,√3}
is linearly independent.

Indeed, assume to the contrary that there are two rational numbers p, q ∈ Q such
that

(4.2) p
√
2 + q√3 = 0.

Then squaring both sides we get

2p2 + 2p q√6 + 3 q2 = 0.
Now if p = 0 we get 3 q2 = 0 and so q = 0 as well. Similarly, if q = 0 we have that p = 0
as well.

Assume then that p ≠ 0 and q ≠ 0. Then we get√
6 = −2p

2 + 3 q2
2p q

.

Since p, q ∈ Q the RHS of the last equation is a rational number and thus we get

that
√
6 ∈ Q. But this is a contradiction because

√
6 is irrational (see Corollary 5 in

Appendix B).

(b) The set {√20,√45} ⊆ R is linearly dependent over Q.

Indeed
√
20 = 2

√
5 and

√
45 = 3

√
5. Therefore,

3
√
20 − 2√45 = 0.

(c) The set {v,u,w} ⊆ C3 where

v = (1 + 2 i,1 − i, i), u = (2,−3 i,3 − 4 i), w = (11,1 − 12 i,11 − 11 i),
is linearly dependent.

Considering the matrix A with columns v,u,w we have

A = (v u w) = ⎛⎜⎝
1 + 2 i 2 11

1 − i −3 i 1 − 12 i
i 3 − 4 i 11 − 11 i

⎞⎟⎠ ∼
⎛⎜⎝
1 0 −2i + 1
0 1 3

0 0 0

⎞⎟⎠ .
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And thus {v,u,w} is linearly independent. We actually have

w = (1 − 2 i)v + 3u
because A is the augmented matrix of the vector equation

z1 v + z2 u = w
considered as a system.

(d) Let S be the subset of M2×3 consisting of the matrices

A = (2 −1 0

0 1 1
) , B = (0 2 −2

1 0 3
) , C = (1 3 −4

1 0 0
)

is linearly independent.
Indeed the equation

xA + yB + z = O
is equivalent to

x (2 −1 0

0 1 1
) + y (0 2 −2

1 0 3
) + z (1 3 −4

1 0 0
) = (0 0 0

0 0 0
) ,

which in turn is equivalent to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x + 3z = 0
−x + 2y + 3z = 0
− 2y − 4z = 0

y + z = 0

x = 0

x + 3y = 0

.

Solving this is straightforward, the fifth equation gives x = 0, and then the sixth
gives y = 0, and then the fourth gives z = 0. Thus only the trivial linear combination
of S equals to zero, and S is linear independent.

(e) Consider the subset S of R[x] consisting of the polynomials

p0(x) = 1, p1(x) = x, p2(x) = x (x − 1), p3(x) = x (x − 1) (x − 2).
To check whether S is linearly independent we have to solve the equation

(4.3)
3

∑
i=0

λi pi(x) = 0,
for λi ∈ R.

We can proceed in two ways:

First way: Find the coefficients We expand

p2(x) = x2 − x
and then

p3(x) = (x2 − x) (x − 2) = x3 − 3x2 + 2x.
Thus the LHS of Equation (4.3) is

λ0 + λ1 x + λ2 (x2 − x) + λ3 (x3 − 3x2 + 2x) = λ0 + (λ1 − λ2 + 2λ3)x + (λ2 − 3λ3)x2 + λ3 x
3.

In order for this to be the zero polynomial all coefficients have to be 0. So we get
the system
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ0 = 0

λ1 − λ2 + 2λ3 = 0

λ2 − 3λ3 = 0

λ3 = 0

.

Clearly the system has only the trivial solution and therefore S is linearly inde-
pendent.

Second way: Evaluate at select points We write Equation (4.3) as p(x) = 0 where,

p(x) = λ0 + λ1 x + λ2 x (x − 1) + λ3 x (x − 1) (x − 2).
Since p(x) is the zero polynomial, p(a) = 0 for all real numbers a.
Evaluating at 0 we have p(0) = λ0 and thus λ0 = 0. Thus

p(x) = λ1 x + λ2 x (x − 1) + λ3 x (x − 1) (x − 2).
Evaluating at 1 we have p(1) = λ1 and so λ1 = 0. Therefore

p(x) = λ2 x (x − 1) + λ3 x (x − 1) (x − 2).
Evaluating at 2 we get p(2) = 2λ2 and so λ2 = 0. But then

p(x) = λ3 x (x − 1) (x − 2).
and evaluating at any number other than 0,1,2 we get that λ3 = 0. Thus we con-

clude again that Equation (4.3) has only the trivial solution.
(f) The set of functions

S = {f1, f2, f3} ⊆ RR

where,

fk∶ R→ R, fk(x) = cosk x, k = 1,2,3

is linearly independent.
Indeed consider a linear dependency

a cosx + b cos 2x + c cos 3x = 0.
Evaluating at x = π/2 gives −b = 0 and so b = 0. Evaluating then at x = π/6 gives

a cos
π

6
= 0 Ô⇒ a = 0

and finally evaluating at x = 0 gives c = 0 as well.
Therefore only the trivial linear combination of S equals the zero function estab-

lishing that S is linearly independent.

THEOREM 4.3.2 (Characterizations of basis). Let V be a vector space and B ⊆ V . Then the
following are equivalent.

(a) B is a basis.
(b) B is spanning and linearly independent.
(c) Every v ∈ V can be written uniquely as a linear combination of elements of B.
(d) B is a maximal linearly independent subset of V . That is, B is linearly independent, and if

B ⊊ B′ then B′ is not linearly independent.
(e) B is a minimal spanning subset of V . That is B is spanning and if B′ ⊊ B then B′ is not

spanning.
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PROOF. We have that (a), (b), and (c) are equivalent by definition.
(a) Ô⇒ (d). If B is a basis and w ∉ B then w is a linear combination of elements of B and
therefore, by Item (g) of Theorem 4.3.1, B ∪ {w} is linearly dependent.
(d) Ô⇒ (a). If B is a maximal linearly independent subset of V , then B is spanning. For, if
there was a w ∈ V ∖ ⟨B⟩we would have that B ∪ {w} is linearly independent contradicting the
maximality of B.
(a) Ô⇒ (e). Let B be a basis of V and B′ a proper subset of B. Then there is a w ∈ B ∖B′ and
such a w is not a linear combination of elements of B′, otherwise, by Item (g) of Theorem 4.3.1,
B would be linearly dependent. Since w ∉ ⟨B′⟩ we have that B′ is not spanning.
(d) Ô⇒ (a). If B is a minimal spanning subset of V then B is linearly independent. For, if
there is a linear dependency in B

λ1 v1 + λ2 v2 +⋯ + λn vn = 0

with, say, λ1 ≠ 0 then

v1 =
λ2

λ1

v2 +⋯ + λn

λ1

vn

and this means that B ∖ {v1} is spanning. Indeed, in any linear combination of B, we can
replace v1 with the RHS of the above equation to get a linear combination that does not involve
v1. But B ∖ {v1} is a proper subset of B and thus it is not spanning, and we’ve arrived at a
contradiction. Thus B is linearly independent and thus a basis. �

It turns out that every vector space has a basis. The idea of the proof is essentially the
same as in the case of subspaces of Rn (see Theorem 2.2.6) but there are some logical subtleties
arising from the fact that a basis is not necessarily a finite set. So we just state the following
theorem and provide a rough sketch of the proof in Appendix D.

THEOREM 4.3.3 (Existence of basis). Every vector space has a basis. Furthermore, if B1 and B2

are bases of the same vector space V then there is a bijection B1 → B2
2.

If V has a finite basis all the proofs of Section 2.2 go through. We collect the main results
in the following theorem.

THEOREM 4.3.4. et V be a vector space over a field K and let B = {v1, . . . , vd} be a basis of V .
Then the following hold.

(a) Every other basis of V has d elements.
(b) If B′ ⊆ V is linearly independent and ∣B′ ∣ = d then B′ is a basis.
(c) If B′ ⊆ V is spanning and ∣B′ ∣ = d then B′ is a basis.
(d) If B′ ⊆ V and ∣B′ ∣ > d then B′ is linearly dependent.
(e) If B′ ⊆ V and ∣B′ ∣ < d then B′ is not spanning.

PROOF. Exercise. Go through Section 2.2, find the corresponding statements and verify
that the proofs go through. �

DEFINITION 42 (Dimension). The cardinality of a basis of V is called the dimension of V
and is denoted by dimV . If dimV is finite we say that V is finite dimensional. If V is not finite
dimensional we say that V is infinite dimensional.

Occasionally we write dimV <∞ (respectively dimV =∞) to mean that V is finite dimen-
sional (respectively infinite dimensional).

REMARK 20 (Basis and dimension of the zero vector space). We make the convention that
the empty set ∅ is a basis of the zero vector space {0} and therefore dim {0} = 0.

2This means, by definition, that B1 and B2 have the same cardinality, i.e. the same number of elements.
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THEOREM 4.3.5. Let V be a finite dimensional vector space over a field K and W ⊆ V a vector
subspace. Then

dimW ≤ dimV,

with equality holding if and only if W = V .
Furthermore any basis of W can be extended to a basis of V .

EXAMPLE 94 (The standard basis of Mm×n). The set of basic matrices B = {Eij ∶ i = 1, . . . ,m, j = 1, . . . , n}
where Eij has all entries 0, except the (i, j)-th entry that is 1 (see Definition 20) form a basis of
Mm×n(K).

The proof is very similar to the proof of the real case. See Proposition 2.
It follows that dimMm×n =mn.

As an application we can prove the following proposition.

PROPOSITION 11. Let A ∈Mn(K). Then there exists a non-zero polynomial p(x) ∈ K[x] such
that p(A) = O.

PROOF. Since dimMn = n2 the set {Ak ∶ k = 0, . . . , n2} is linearly dependent. Therefore there
is a non-trivial linear combination

c0 I + c1A + c2A2 +⋯ + cn2 An2

= O

with at least one coefficient ci ≠ 0. That means that A is a root of the non-zero polynomial

p(x) = c0 + c1 x +⋯+ cn xn.

�

EXAMPLE 95 (Basis for upper triangular matrices). Recall (see Example 50 in Chapter 3)
that ∆n stand for the set of n×n triangular matrices, and that ∆n is closed under addition and
multiplication, in particular, ∆n is a vector subspace of Mn.

The set of basic matrices
B = {Eij ∶ 1 ≤ j ≤ n}

is a basis of ∆n. For example, for n = 3 we have the basis

{E11,E12,E13,E22,E23,E33} .
It follows that

dim∆n = n + (n − 1) +⋯+ 2 + 1 = n (n + 1)
2

.

EXAMPLE 96 (The standard basis of K[x]). The set

B = {xn ∶ n ∈ N} = {1, x, x2, . . . , xn, . . .}
is a basis of K[x]. Indeed B is spanning because every polynomial is, by definition, a linear
combination of elements of B. To see that B is linearly independent observe that if

∑
n∈N

an x
n = 0

then the polynomial ∑an xn is the zero polynomial and therefore an = 0 for all n ∈ N.
We call B the standard basis of K[x]. Since B is infinite we conclude that K[x] is infinite

dimensional.

EXAMPLE 97 (Polynomials of degree up to n). Let Pn(K) be the set of polynomials with
coefficients in K and degree at most n. That is

Pn(K) = { n

∑
k=0

ak x
k ∶ ai ∈K, for i = 0, . . . , n} .
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Clearly,
Pn =K ⟨1, x, . . . , xn⟩

and therefore Pn(K) is a vector subspace of K[x]. By Example 96 we have that

B = {xn ∶ n = 0, . . . , n}
is linearly independent.

Therefore dimPn(K) = n + 1.
EXAMPLE 98 (An other basis of R[x]). The set B consisting of polynomials

p0(x) = 1
p1(x) = x
p2(x) = x (x − 1)
p3(x) = x (x − 1) (x − 2)
⋯⋯

pn(x) = x (x − 1) (x − 2)⋯ (x − n + 1)
⋯⋯

is a basis of R[x].
Formally, we define pn(x) recursively as follows:

p0(x) = 1, pn+1(x) = pn(x) (x − n).
We can see3 that B is linearly independent as in Item (e) of Example 93.
To prove that B is spanning we will prove that every element of the standard basis of R[x]

(see Example 96) is a linear combination of elements of B.
Thus, we will prove using mathematical induction that for all n ∈ N, xn ∈ ⟨B⟩.
For n = 0 we have x0 = 1 ∈ B. Now assume that for some n1, n2, . . . , nk ∈ N we have

xn = λ1 pn1
+ λ2 pn2

+⋯+ λk pnk
.

Then, since
xpn(x) = pn+1(x) + npn(x),

we have

xn+1 = xn x

= (λ1 pn1
+ λ2 pn2

+⋯+ λk pnk
) x

= λ1 (pn1+1(x) + n1 pn1
(x)) +⋯ + λk (pnk+1(x) + nk pnk

(x))
= λ1 pn1+1(x) + n1 λ1 pn(x) +⋯ + λk pnk+1(x) + nk λk pnk

(x).
So xn+1 is also a linear combination of elements of B. Thus we established that B is spanning.

4.4. Linear maps

The definition of linear map (see Definition 14) carries over almost verbatim.

DEFINITION 43 (Linear function). Let V and W be vector spaces over a field K. A function

f ∶ V →W

is said to be linear if it enjoys the following two properties.

3Do this yourself.
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(a) It respects vector addition. This means that for any two vectors v,w ∈ V we have

f(v +w) = f(v) + f(w).
(b) It respects scalar multiplication. This means that for all λ ∈K and v ∈ V we have

f(λv) = λf(v).
And of course Theorems 3.1.1 and 3.1.2 also hold, as does Corollary 2.

EXAMPLE 99. The function

f ∶ K[x]→K[x], f(p(x)) = 3p(x) − 2
is not linear. Indeed, f(0) = −2 ≠ 0.

EXAMPLE 100 (The zero function and the identity function are linear). Let V,W be vector
space over a field K. Then we can define the zero map that sends all vectors to the zero vector
of W :

O∶ V →W, O(v) = 0.
Clearly O is linear4

Also clearly5, the identity function I ∶ V → V that sends every vector to itself (i.e. I(v) = v)
is linear.

EXAMPLE 101 (The derivative is a linear operator). Let C(R) be the vector space of con-
tinuous functions R → R, and let C1(R) be the vector space of continuously differentiable
functions R→ R, that is functions that have continuous derivatives. Then the function

D∶ C1(R)→ C(R), D (f) = f ′
is linear.

Indeed, let f, g be continuous differentiable functions and a, b ∈ R. Then from Calculus we
know that

D(af + b g) = (af + b g)′ = af ′ + b g′ = aD(f) + bD(g).
EXAMPLE 102 (The definite integral is a linear operator). Let C([0,1]) be the vector space

of continuous functions [0,1]→ R. Then the function

S∶ C([0,1])→ R, S (f) = ∫ 1

0
f(x)dx

is linear.
Indeed, let f, g be continuous real functions on the unit interval a, b ∈ R. Then from Calcu-

lus we know that

S(af + b g) = ∫ 1

0
(af + b g) (x)dx = ∫ 1

0
af(x)dx + b∫ 1

0
g(x)dx = aS(f) + bS(g).

To simplify notation let’s write Fp to stand for the field Z/p.

EXAMPLE 103. Let
L∶ F2[x]→ F2[x], L (p(x)) = p(x)2.

Then L is a linear map.
We first establish the following result.

CLAIM 4. Let p(x) ∈ F2[x]. Then

p(x) + p(x) = 0.
4Is it clear? Prove it.
5Ditto.
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PROOF. Let p(x) = ∑an xn, with an ∈ F2. Then

p(x) + p(x) =∑an x
n +∑an x

n =∑(an + an)xn =∑0xn = 0

because for a ∈ F2 we have a + a = 0. �

Let then p(x), q(x) ∈ F2[x]. We have

L (p(x) + q(x)) = (p(x) + q(x))2 = p(x)2+p(x) q(x)+p(x) q(x)+q(x)2 = p(x)2+q(x)2 = L(p(x))+L(q(x)).
Thus Poperty (a) of Definition 43 is satisfied. Poperty (b) is also satisfied since

L(0p(x)) = (0p(x))2 = 02 = 0,
and

L(1p(x)) = (1p(x))2 = p(x)2 = 1p(x)2 = 1L(p(x)).
EXAMPLE 104 (Evaluation is linear). Let K be a field and let a ∈ K. Let Ea∶ K[x] → K be

the map that assigns to a polynomial its value at a. That is,

Ea(p(x)) = p(a).
Then Ea is linear.
I leave the proof as an exercise. Start by writing p(x) =∑an xn, q(x) =∑ bn xn, and compute

λp(x) + µq(x) and substitute a for x.

EXAMPLE 105 (Taking transpose is linear). The function

T ∶Mm×n →Mn×m, T (A) = A∗
is linear.

We already proved this, see Theorem 3.5.1.

EXAMPLE 106 (Extracting the diagonal is linear). The function that extracts the diagonal
of a square matrix is linear. That is, (refer to Example 49 for the notation), the map

D∶Mn →Mn T (A) = diag(a11, a22, . . . , ann).
is linear.

Indeed

D(λA + µB) = diag(λa11 + µ, b11, . . . , λ ann + µ, bnn)
= diag(λa11, . . . , λ ann) + diag(µ, b11, . . . , µ, bnn)
= λ diag(a11, . . . , ann) + µ diag(b11, . . . , bnn)
= λD(A) + µD(B).

EXAMPLE 107. Let Sn be the vector spaces of symmetric matrices. The the function

f ∶Mn → Sn, f (A) = A +A∗
where A∗ is the transpose of A, is linear.

We first note that f is well defined, that is f(A) is indeed a symmetric matrix since

(A +A∗)∗ = A∗ + (A∗)∗ = A∗ +A = A +A∗.
The linearity of f follows from the properties of the transpose. Indeed, if λ,µ ∈ R and

A,B ∈Mn we have

f (λA + µB) = (λA + µB)∗ = λA∗ + µB∗ = λf (A) + µf (B) .
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EXAMPLE 108. Let X ∈ Mm be an m × m matrix. Then for any positive integer n, the
function

f ∶Mm×n →Mm×n, f (A) = XA

is linear.
Indeed, Poperty (a) of Definition 43 holds because matrix multiplication distributes over

matrix addition (Property (b) of Theorem 3.4.1):

f (A +B) = XA +XB = f(A) + f(B)
Poperty (b) of Definition 43 holds because of Property (c) of Theorem 3.4.1:

f (A) =X (λA) + λ (XA) = λ, f(A).
The kernel and the range of a linear map are also defined the same way as in the case of

linear maps between standard vector spaces. That is, if f ∶ V →W is a linear map then

ker f = {v ∈ V ∶ f(v) = 0}
is a subspace of V , and

R(f) = {f(v) ∶ v ∈ V }
is a subspace of W .

THEOREM 4.4.1. Let V,W be vector spaces over a field K and let let f ∶ V → W be a linear map.
Then f is injective if and only if

ker f = {0} .
PROOF. Since f is linear we have f(0) = 0, and thus if f is injective we have

v ∈ kerf Ô⇒ f(v) = 0 Ô⇒ f(v) = f(0) Ô⇒ v = 0.

Conversely, the linearity of f gives

f(v) = f(w) Ô⇒ f(v) − f(w) = 0 Ô⇒ f(v −w) = 0 Ô⇒ v −w ∈ ker f.
Thus if ker f = {0}, we have

v −w ∈ ker f Ô⇒ v −w = 0 Ô⇒ v = w,

that is, f is injective. �

As in the case of the standard vector spaces, a linear map is completely determined by the
images of a basis. We express this idea in the following two theorems, the first, Theorem 4.4.2
says that if two linear maps agree on a basis then they are equal. The second, Theorem 4.4.3
says that to define a linear function we only need to define it on a basis.

THEOREM 4.4.2. Let f, g∶ V →W be two linear maps and let B be a basis of V . If for allv ∈ B we
have

f(v) = g(v)
then f = g.

PROOF. We need to prove that for all v ∈ V we have f(v) = g(v). So, let v ∈ V . Since B is a
basis of B we have

v = ∑
u∈B

λu u,

for some (unique) λu ∈K. But then using the linearity of f and g we have

f(v) = f (∑
u∈B

λu u) = ∑
u∈B

λu f(u) = ∑
u∈B

λu g(u) = g (∑
u∈B

λu u) = g(v).
�
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THEOREM 4.4.3. Let V,W be vector spaces over a field K, and let B be a basis of V . Then any
function

f ∶ B →W

can be uniquely extended to a linear function

L∶ V →W.

That is there one, and only one, linear function

L∶ V →W

such that for all v ∈ B we have

L(v) = f(v).
Furthermore, the range of L is the linear span

R(L) =K ⟨f(u) ∶ u ∈ B⟩ .
PROOF. By Theorem 4.4.2, there can be only one such linear function. Now for v ∈ V , there

are unique coefficients λu such that

v = ∑
u∈B

λu u

. We can then define,

L(v) = ∑
u∈B

λu f(u).
We remark, that the uniqueness of the coefficients λu guarantees that this indeed defines a
unique vector L(v).

Let now, λ,µ ∈K and v,w ∈ V . We need to prove that

L(λv + µw) = λL(v) + µL(w).
Let us express v and w as linear combinations of B:

v = ∑
u∈B

λu u, w = ∑
u∈B

µu u

and observe that the expression of λv + µw is

λv + µw = ∑
u∈B

(λλu + µµu)u.
It follows that

L(λv + µw) = ∑
u∈B

(λλu + µµu)f(u)
= λ ∑

u∈B

λu f(u) + µ∑
u∈B

µu f(u)
= λL(v) + µL(w).

Now, by definition, L(v) is a linear combination of {f(u) ∶ u ∈ B}, and any linear combina-
tion is the image of a vector v ∈ V . Indeed

∑
u∈B

λu f(u) = L(∑
u∈B

λu u) .
Thus,

R(L) =K ⟨f(u) ∶ u ∈ B⟩ .
�
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In practice when we use Theorem 4.4.3 we use the same symbol for f and L, and say
something “like let L∶ V → W be the linear function defined on B via” and give the values
L(u) for u ∈ B. Here are a few examples.

EXAMPLE 109. Find a formula for the linear function L∶Mn(K) → K defined on the stan-
dard basis of Mn(K) by

L(Eij) = δij .
In other words if i = j then L(Eij) = 1 otherwise L(Eij) = 0.

Let X = (xij) be an n × n matrix with entries in K. Then

X =
n

∑
i,j=1

xij Eij

and therefore

L(X) = n

∑
i,j=1

xij δij =
n

∑
i=1

xii.

Thus L(X) is the sum of the diagonal entries of X .

The linear function of Example 109 is an important one, it will appear later in this course.

DEFINITION 44 (The trace of a square matrix). The function defined in Example 109 is
called the trace, and is denoted by trace. Thus for X = (xij) ∈Mn(K)we have

traceX =
n

∑
i=1

xii.

EXAMPLE 110. Let C ⟨z1, z2, z3⟩ be the vector space of linear forms with indeterminates
z1, z2, z3 (see Section 4.2.1), and let

f ∶ C ⟨z1, z2, z3⟩→ C3

be defined on the basis {z1, z2, z3} via

f(z1) = (i,0,0), f(z2) = (1,1 − i,0), f(z3) = (i,−i,3 i).
Find a formula for f , and determine its kernel and its range.

We have for a1, a2, a3 ∈ C

f(a1 z1 + a2 z2 + a3 z3) = a1 f(z1) + a2 f(z2) + a3 f(z3)
= a1 (i,0,0) + a2 (1,1 − i,0) + a3 (i,−i,3 i)
= (a2 + (a1 + a3) i, a2 − (a2 + a3) i,3a3 i) .

The kernel of f consists of all linear forms a1 z1 + a2 z2 + a3 z3 such that

f(a1 z1 + a2 z2 + a3 z3) = 0.
This means (a2 + (a1 + a3) i, a2 − (a2 + a3) i,3a3 i) = 0,
which is equivalent to the system

(4.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a2 + (a1 + a3) i = 0
a2 − (a2 + a3) i = 0

3a3 i
.

It’s easy to see that The only solution is the trivial one and it follows that

ker f = {0} .
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The range of f is the linear span C ⟨f(z1), f(z2), f(z3)⟩. But since the system (4.4) has only
the trivial solution the set {f(z1), f(z2), f(z3)} is linearly independent, and since dimC3 = 3 it
follows that it is a basis of C3. Thus

R = C3.

EXAMPLE 111. Consider the linear map L∶M3(R)→ R[x] defined on the standard basis as
follows:

L(Eij) = xi+j .

Then we have6

L(A) = a11 x2 + (a12 + a21 ) x3 + (a13 + a22 + a31 ) x4 + (a23 + a32 ) x5 + a33 x6.

The range of L is then

R(L) = ⟨x2, x3, x4, x5, x6⟩
a 5-dimensional subspace of R[x].

By solving the equation

L(A) = 0
we find that

kerL =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

0 a b

−a c d

−c − d −b 0

⎞⎟⎠ ∶ a, b, c, d ∈ R
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

a 4-dimensional subspace of M3.
Notice that

dimM3 = dimkerL + dimR(L).
This indicates that a version of the rank-nullity theorem, holds in general. We will indeed see
that this is the case.

DEFINITION 45. The set of linear functions V → W is denoted by L(V,W ). If V = W we
simply write L(V ).

THEOREM 4.4.4 (A linear combination of linear maps is linear). Let V,W be vector spaces
over a field K. Then L(V,W ) is a vector subspace of W V (see Example 85 for the definition of W V ).

PROOF. Exercise. See the proofs of Theorems 3.1.6 and 3.1.7. �

THEOREM 4.4.5 (Composition of linear maps is linear). Let V,U,W be vector spaces over a
field K and let g∶ V → U and f ∶ U →W be two linear maps. Then the composition

f ○ g∶ V →W

is linear.

PROOF. Identical to the proof of Theorem 3.1.9. �

THEOREM 4.4.6 (Inverse of a linear map is linear). Let f ∶ V →W be an invertible map. If f
is linear then so is f−1.

PROOF. Recal that a function is invertible if and only if it is a bijection, and in particular
an invertible function is surjective. Let then λ1, λ2 ∈ K and w1,w2 in W and ler f ∶ V → W be

6Verify this.
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an invertible linear map. Since f is surjective, for i = 1,2 we have wi = f(vi) (or equivalently
vi = f−1(wi)) for some (unique) vi ∈ V . Then,

f−1(λ1w1 + λ2w2) = f−1 (λ1 f(v1) + λ2 f(v2))
= f−1 (f(λ1 v1 + λ2 v2))
= λ1 v1 + λ2 v2

= λ1 f
−1(w1) + λ2 f

−1(w2).
Therefore f−1 is also linear. �

4.5. Isomorphisms

The concept of isomorphism is fundamental in modern mathematics. Roughly speaking,
two mathematical objects are isomorphic with respect to some “structure” if they are copies
of each other, as far as that structure is concerned. Even when we don’t explicitly mention
it we use isomorphisms, particular identifications that preserve the structure of interest, all
the time. For example we say that R ⊂ C, but strictly speaking that’s false. For example,
if we take C to be a 2-dimensional real vector space, with a certain multiplication defined
as we do in Appendix A, R and C have no elements in common. The real numbers that sit
inside C are an isomorphic copy of R. But we don’t really care, because that copy has, exactly
the same properties as R as far we are concerned. We don’t really care about ontological
questions, what we care about is that R is a field that has certain properties, any field with
those properties will do. The same goes for C, we could consider C to be a set of matrices as
we did in Example 70, and nothing of importance would change, we would have exactly the
same theorems, because we don’t really use the nature of the elements of C, once we establish
the basic properties that we want, we forget all about the fact that complex numbers were
defined as matrices, or as vectors, or whatever definition we used.

When we study a vector space, the important properties from our point of view, are those
properties that are defined in terms of scalar multiplication and vector addition. Things like
bases, dimension, etc. If two vector spaces have all those properties the same, we might as
well consider them identical. An isomorphism of vector spaces is then a way to identify two
vector spaces, i.e. a bijection, that respects scalar multiplication and vector addition. This
means that if we have identified v ∈ V with w ∈ W then λv should be identified with λw for
all scalars λ. Similarly, if v1, v2 ∈ V are identified with w1,w2 ∈ W , respectively, then v1 + v2
should be identified with w1 + w2. In other words, the bijection we use to identify V and W

should be a linear map.

DEFINITION 46. If V,W are vector spaces over K, and f ∶ V → W is a linear bijection, we
say that f is an isomorphism of vector spaces, or simply an isomorphism.

If there is an isomorphism f ∶ V →W we say that V is isomorphic7 to W and we write V ≅W .

THEOREM 4.5.1. Let V,U,W be vector spaces over a field K, and let g∶ V → U and f ∶ U →W be
isomorphisms. Then the following hold:

(a) The identity map

IV ∶ V → V, IV (v) = v
is an isomorphism.

7The term “isomorphic” comes from the greek words “ΙΣΟΣ” (isos) meaning equal or the same and
“ΜΟΡΦΗ” (morphe) meaning form or shape. Thus two isomorphic vector spaces have the same form, they
look the same as vector spaces.
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(b) The inverse
f−1∶ W → U

is an isomorphism.
(c) The composition

f ○ g∶ V →W, (f ○ g) (v) = f (g(v))
is an isomorphism. Furthermore, its inverse

(f ○ g)−1 ∶ W → V

is (f ○ g)−1 = g−1 ○ f−1.
PROOF. The first item is obvious and the second was proven in Theorem 4.4.6.
For the third item we have to prove three things:

(a) f ○ g is linear.
Let λ1, λ2 ∈K and v1, v2 ∈ V . Then

(f ○ g) (λ1 v1 + λ2 v2) = f (g(λ1 v1 + λ2 v2))
= f (λ1 g(v1) + λ2 g(v2))
= λ1 f (g(v1)) + λ2 f (g(v2))
= λ1 (f ○ g)) (v1) + λ2 (f ○ g)) (v2),

establishing that f ○ g is linear.
(b) f ○ g is injective.

Since f ○ g is linear it suffices to prove that

ker f ○ g = {0} ,
or equivalently, that for v ∈ V

(f ○ g) (v) = 0 Ô⇒ v = 0.

Indeed,

(f ○ g) (v) = 0 Ô⇒ f (g(v)) = 0 by definition

Ô⇒ g(v) = 0 f is injective

Ô⇒ v = 0 g is injective .

Thus f ○ g is injective.
(c) f ○ g is surjective.

Let w ∈ W then since f is surjective, there is a (unique) u ∈ U such that f(u) = w.
Now, since g is surjective, there is a (unique) v ∈ V with g(v) = u. So

w = f(u) = f (g(v)) = (f ○ g) (v).
Thus f ○ g is surjective.

Thus f ○ g is an isomorphism.
The identity

(f ○ g)−1 = g−1 ○ f−1
holds for any composable bijections. We have already seen of it, but let’s prove it again

anyway.
For w ∈W we have

f (g (g−1 (f−1(w)))) = f (f 1(w)) = w,
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and similarly for v ∈ V

g−1 (f−1 (f (g(v)))) = g−1 (g(v)) = v.
�

We have then the following corollary.

COROLLARY 4. The relation of isomorphism is an equivalence relation. That is

(a) It is reflexive. That is for any vector space V we have

V ≅ V.

(b) It is symmetric. That is for any vector spaces V,U we have

V ≅ U Ô⇒ U ≅ V.

(c) It is transitive. That is for any vector spaces V,U,W we have

V ≅ U and U ≅W Ô⇒ V ≅W.

PROOF. Exercise. Use Theorem 4.5.1 to find the required isomorphisms. �

We already have seen many examples of isomorphisms Rn
→ Rn. Indeed the linear maps

defined by invertible matrices are isomorphisms.

EXAMPLE 112. Consider the subspace8

V = {(x, y,0)} ⊆ R3.

Then

L∶ V → R2, L(x, y,0) = (x, y)
is an isomorphism.

Clearly L is linear. It is also, but perhaps not quite so clearly, a bijection. To see that let

M ∶ R2
→ V, M(x, y) = (x, y,0).

Then

L (M(x, y)) = L(x, y,0) = (x, y), M (L(x, y,0)) =M(x, y) = (x, y,0).
Thus M = L−1 and so L is a bijection.

EXAMPLE 113. The subspace

V = {(2x − 3 z, y + z, x + 2 z, x) ∶ x, y, z ∈ R} ⊆ R4

is isomorphic to the subspace

W = {(x,x + y, x + z, x + y + z, x − z) ∶ x, y, z ∈ R} ⊆ R4.

Indeed,

L∶ V →W, L(2x − 3 z, y + z, x + 2 z, x) = (x,x + y, x + z, x + y + z, x − z)
is an isomorphism.

Let’s prove first that L is linear. For i = 1,2, let λi ∈ R and vi = (2xi −3 zi, yi+zi, xi +2 zi, xi) ∈
V .

8Can you see that this is really a subspace? Prove it.
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Using column vectors for readability we have

λ1 v1 + λ2 v2 = λ1

⎛⎜⎜⎜⎝
2x1 − 3 z1
y1 + z1
x1 + 2 z1

x1

⎞⎟⎟⎟⎠ + λ2

⎛⎜⎜⎜⎝
2x2 − 3 z2
y2 + z2
x2 + 2 z2

x2

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
2λ1 x1 − 3λ1 z1 + 2λ2 x2 − 3λ2 z2

λ1 y1 + λ1 z1 + λ2 y2 + λ2 z2
λ1 x1 + 2λ1 z1 + λ2 x2 + 2λ2 z2

λ1 x1 + λ2 x2

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
2 (λ1 x1 + λ2 x2) − 3 (λ1 z1 + λ2 z2)(λ1 y1 + λ2 y2) + (λ1 z1 + λ2 z2)(λ1 x1 + λ2 x2) + 2 (λ1 z1 + λ2 z2)

λ1 x1 + λ2 x2

⎞⎟⎟⎟⎠ .
Therefore,

L(λ1 v1 + λ2 v2) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ1 x1 + λ2 x2(λ1 x1 + λ2 x2) + (λ1 y1 + λ2 y2)(λ1 x1 + λ2 x2) + (λ1 y1 + λ2 y2)(λ1 x1 + λ2 x2) + (λ1 z1 + λ2 z2)(λ1 x1 + λ2 x2) + (λ1 y1 + λ2 y2) + (λ1 y1 + λ2 y2)(λ1 x1 + λ2 x2) − (λ1 z1 + λ2 z2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Similar calculations show that

λ1L(v1) + λ2L(v2) =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ1 x1 + λ2 x2(λ1 x1 + λ2 x2) + (λ1 y1 + λ2 y2)(λ1 x1 + λ2 x2) + (λ1 y1 + λ2 y2)(λ1 x1 + λ2 x2) + (λ1 z1 + λ2 z2)(λ1 x1 + λ2 x2) + (λ1 y1 + λ2 y2) + (λ1 y1 + λ2 y2)(λ1 x1 + λ2 x2) − (λ1 z1 + λ2 z2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

establishing the linearity of L.
Now, L is invertible and its inverse is

L−1∶ W → V, L(x,x + y, x + z, x + y + z, x − z) = (2x − 3 z, y + z, x + 2 z, x),
as can be easily seen by computing L ○L−1 and L−1 ○L.

EXAMPLE 114. Let ∆4 be the vector space of upper triangular 4 × 3 matrices and S4 the
vector space of symmetric 4 × 4 matrices. Let L∶ ∆4 → S4 be given by

⎛⎜⎜⎜⎝
a x y z

0 b p q

0 0 c s

0 0 0 d

⎞⎟⎟⎟⎠z→
⎛⎜⎜⎜⎝
a x y z

x b p q

y p c s

z q s d

⎞⎟⎟⎟⎠ .
Then L is an isomorphism.
It is clear that L is a bijection. One way to see this is to prove that it has an iverse, that is

there is a function L−1∶ S4 →∆4 such that for X ∈∆4 and Y ∈ S4 we have

(4.5) L−1 (L(X)) =X and L (L−1(Y )) = Y.
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Indeed if we define L−1∶ S4 →∆4 by L−1∶ S4 →∆4 by

⎛⎜⎜⎜⎝
a x y z

x b p q

y p c s

z q s d

⎞⎟⎟⎟⎠z→
⎛⎜⎜⎜⎝
a x y z

0 b p q

0 0 c s

0 0 0 d

⎞⎟⎟⎟⎠ ,
then clearly Conditions (4.5) hold.

Linearity can be proved by straightforward calculations. A slicker way to prove it is to
note that

L = I + T −D
where I is the identity map, T is the map defined in Example 105, and D is the map defined
in Example 106. Therefore, by Theorem 4.4.4 L is linear.

EXAMPLE 115. Let a, b ∈K and consider the following subspaces of K[x]
V = {p(x) ∶ p(a) = 0} , W = {p(x) ∶ p(b) = 0} .

To see that V and W are really subspaces notice that

V = kerEa, W = kerEb

where Ea (respectively Eb) is the “evaluate at a” (respectively at b) as in Example 104.
I claim that V ≅ W . Indeed, by Theorem C.1.5, we have for every p(x) ∈ V we have the

quotient

p(x)
x − a ∈K[x].

We define then,

L∶ V →W, p(x) z→ p(x)
x − a (x − b).

We have

L(λp(x)+µq(x)) = λp(x) + µq(x)
x − a (x−b) = λ p(x)

x − a (x−b)+µ q(x)
x − a (x−b) = λL(p(x))+µL(q(x)),

and so L is linear.
L is also a bijection with inverse

L−1∶ W → V, p(x)z→ p(x)
x − b (x − a),

as we easily verify.

4.5.1. Go forth, do your business, come back. In the first three chapters we developed a
powerfull method, namely getting matrices to reduced row echelon form, that can answer all
kinds of questions in Rn. We can solve linear systems, find inverses of linear transformations,
finding bases of subspaces and so on. As we remarked in Section 4.1.1, and as we have seen
in examples, these methods work for the vector spaces Kn, as well, where K is an arbitrary
field. Since all vector spaces of dimension n are isomorphic to Kn, it turns out that we can use
these methods for any finite dimensional vector space.

The basic idea is indicated schematically in Figure 3. Let’s say we have a question in an
arbitrary n-dimensional vector space V , then we use an isomorphism L∶ V → Kn to transfer
the question to Kn. For example if we want to express a vector v ∈ V as a linear combination
of S ⊆ V , we go to Kn and express L(v) as a linear combination of L(S). Once we get our
answer, we use the inverse isomorphism L−1 to transfer it back to V .
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V Kn

Go Forth

Come Back

L

L−1

?

S
o

lv
e

FIGURE 3. Go forward, do stuff, come back

EXAMPLE 116. Consider the polynomials

B = {1, x + 1, (x + 1)2, (x + 1)3, (x + 1)4} ⊆ P4.

Let’s prove that B is a basis of P4 and then express the polynomial p(x) = 3x4 − 5x3 − x + 4 as
a linear combination of B.

Using the binomial theorem we express the elements of B in terms of the standard basis:

1 = 1

x + 1 = x + 1
(x + 1)2 = x2 + 2x + 1
(x + 1)3 = x3 + 3x2 + 3x + 1
(x + 1)4 = x4 + 4x3 + 6x2 + 4x + 1

.
Using the isomorphism L∶ P4

→ R5 with

L(1) = e1, . . . ,L(x4) = e5
we have the image L(B) consists of the collumns of the matrix

⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 1

0 0 0 1 4

0 0 1 3 6

0 1 2 3 4

1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

Thus L(B) is linearly independent, and therefore a basis of R5. It follows that B is a basis
of P4.

Now, L(p(x)) = (3,−5,0,−1,4). Taking the reduced echelon form of the augmented matrix
we get
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⎛⎜⎜⎜⎜⎜⎝

0 0 0 0 1

0 0 0 1 4

0 0 1 3 6

0 1 2 3 4

1 1 1 1 1

RRRRRRRRRRRRRRRRRRRRRR

3

−5
0

−1
4

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

RRRRRRRRRRRRRRRRRRRRRR

9

−16
21

−13
3

⎞⎟⎟⎟⎟⎟⎠
.

Therefore

L(p(x)) = 9L(1) − 16L(1 + x) + 21L ((1 + x)2) − 13L ((1 + x)3) + 3L ((1 + x)4) .
Going back to P4 via L−1 we have that

p(x) = 9 − 16 (1 + x) + 21 (1 + x)2 − 13 (1 + x)3 + 3 (1 + x)4.
EXAMPLE 117. Lets find the dimension of the linear span of the following 2 × 2 real matri-

ces:

( 1 −5
−4 2

) ( 1 1

−1 5
) ( 2 −4

−5 7
) ( 1 −7

−5 1
) .

Let L∶M4 → R4 be the isomorphism that sends E11 to e1, E12 to e2, E21 to e3, and E22 to e4.
Then the matrices transform to the vectors

(1,−5,−4,2) (1,1,−1,5) (2,−4,−5,7) (1,−7,−5,1).
We have ⎛⎜⎜⎜⎝

1 1 2 1

−5 1 −4 −7
−4 −1 −5 −5
2 5 7 1

⎞⎟⎟⎟⎠ ∼
⎛⎜⎜⎜⎝
1 0 1 4/3
0 1 1 −1/3
0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ .
Thus the dimension of the linear span is 2.

EXAMPLE 118. Consider P4 and let

B = {1, x, x (x + 1), x (x + 1) (x + 2), x (x + 1) (x + 2) (x + 3)} .
(a) Verify that B is a basis.
(b) Let T ∶ P4 → P4 be the isomorphism defined by

T (xn) = n−1

∏
k=0

(x + 1), n = 0,1,2,3,4.
For n = 0 we have the empty product that by convention is 1. Find a formula for T .

(c) Find a formula for T −1.

We will use the isomorphism defined by

L(xk) = ek+1, i = 0,1,2,3,4.
We have

1 = 1

x = x

x (x + 1) = x2 + x
x (x + 1) (x + 2) = x3 + 3x2 + 2x

x (x + 1) (x + 2) (x + 3) = x4 + 6x3 + 11x2 + 6x.
Now using L we consider the linear transformation A = L○T ○L−1 as shown in the diagram

below.
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P4

P4 R5

R5

T A

L

L

We have

Ae1 = L (T (L−1(e1))) = L (T (1)) = L(1) = e1.
Similarly

Ae2 = 2, Ae3 = e2 + e3, Ae4 = 2e2 + 3e3 + e4, Ae5 = 6e2 + 11e3 + 6e4 + e5.
This means that A is given by the matrix

A =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 1 2 6

0 0 1 3 11

0 0 0 1 6

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

We compute the inverse of A and we find

A−1 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 −1 1 −1
0 0 1 −3 7

0 0 0 1 −6
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

So,

T = L−1 ○A ○L, T = L−1 ○A−1 ○L.
What is then T (9x4 − 3x3 + 2x2 − 4x + 7)?

A(L(p(x))) =
⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 1 2 6

0 0 1 3 11

0 0 0 1 6

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

9

−3
2

−4
7

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

9

33

67

38

7

⎞⎟⎟⎟⎟⎟⎠
.

Therefore

T (p(x)) = 9 + 33x + 67x2 + 38x3 + 7x4.

If we have a linear map

T ∶ ∶ V →W

between two different vector spaces, say of dimentsion n and m we need two isomorphisms

L1∶ V → Rn, L2∶ W → Rm
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V

W Rn

Rm

T A

L2

L1

and we’ll get a linear map A∶ Rn
→ Rm defined by

A = L2 ○ T ○L−11 .

EXAMPLE 119. Let’s look at the linear function L∶ ∶M3(R)→ P6 and use the isomorphisms
defined by

L1(Eij) = e3 (i−1)+j , L2(xn) = en+1.
We get the 6 × 9 matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 1 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 1 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
And we see that a basis for the range of A is given by the the columns

{a1,a2,a3,a6,a9,} = {e3,e4,e5,e6,e7} .
Thus we get the basis {x2, x3, x4, x5, x6} for the range of L.

A basis for the kernel of A is given by the free columns with the standard basis of R4

interpolated. So we get the basis

{(0,−1,0,1,0,0,0,0,0), (0,0,−1,0,1,0, 0,0,0), (0, 0,−1, 0,0,0, 1,0,0), (0, 0,0,−1,0,0, 0,1,0)} .
We can write this basis as {e4 − e2,e5 − e3,e7 − e3,e8 − e4} ,
and thus we get the following basis for the kernel of L:

{E21 −E12,E22 −E13,E31 −E13,E32 −E21} ,
i.e. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎝
0 −1 0

1 0 0

0 0 0

⎞⎟⎠ ,
⎛⎜⎝
0 0 −1
0 1 0

0 0 0

⎞⎟⎠ ,
⎛⎜⎝
0 0 −1
0 0 0

1 0 0

⎞⎟⎠ ,
⎛⎜⎝
0 0 0

−1 0 0

0 1 0

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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APPENDIX A

Complex Numbers

A.1. C as an algebra over R

We define C as a commutative 2-dimensional algebra over the real field R, that contains
a square root of −1. Thus we consider the real vector space with basis {1, i} and we want
to define a commutative, associative multiplication that distributes over vector addition, and
such that i2 = −1.

Therefore we define the set of complex numbers to be the linear span

C = {a + b i ∶ a, b ∈ R}
where {1, i} is linearly independent. This means that

a + b i = c + d i ⇐⇒ a = c and b = d,

addition is defined by (a + b i) + (c + d i) = (a + c) + (b + d) i,
and scalar multiplication is defined by

λ (a + b i) = (λa) + (λb) i.
The linear span R ⟨1⟩ is called the real axis and we identify its elements with real numbers,

and consider R ⊆ C. The linear span R ⟨i⟩ is called the imaginary axis and its elements are
called imaginary numbers, in particular, i = 1 i is called the imaginary unit.

For a complex number z = a + b i we say that a is its real part and b its imaginary part, and
write

Rz = a, Iz = b.

We identify the vector space C with the standard real vector space R2 using the isomor-
phism

T ∶ R2
→ C, T e1 = 1, T e2 = i,

and consider complex numbers as standard real 2-dimensional vectors, see Figure 1. We refer
to this interpretation as “the Cartesian representation of complex numbers”.

The multiplication in C is determined by the requirements that it forms a commutative
algebra over R and i2 = −1. Indeed, under these requirements we have

(a + b i) (c + d i) = ac + ad i + b i c + bd i2
= ac + ad i + b c i − bd
= (ac − bd) + (ad + b c) i.

You should be able to prove the following theorem, we’ve seen all the necessary ingredi-
ents already.

THEOREM A.1.1. Define multiplication of complex numbers via

(a + b i) (c + d i) = (ac − bd) + (ad + b c) i.
163
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R
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i

−i

1−1−3

4 i
−3 + 4 i

z

z

a

b

−b

FIGURE 1. The Cartesian representation of complex numbers.

Then C is a superfield of R. In particular the inverse of z = a + b i is

z−1 =
a − b i
a2 + b2 .

PROOF. Left as an exercise. �

If z = a + b i then we call z = a − b i the complex conjugate of z. Geometrically z is given by
reflecting z across the real axis, see Figure 1.

The operation of complex conjugation has the following properties.

PROPOSITION 12 (Properties of complex conjugation). The following hold:

(a) z = z.
(b) z +w = z +w.
(c) z w = z w.
(d) z + z = 2Rz, z − z = 2Iz.
(e) z ∈ R ⇐⇒ z = z.
(f) z ∈ iR ⇐⇒ z = −z.

(g) z z = (Rz)2 + (Iz)2.
(h) If p(x) is a polynomial with real coefficients then for all z ∈ C we have

p(z) = p(z).
In particular, complex roots of real polynomials come in conjugate pairs.

PROOF. Exercise. �

The absolute value (or length, or modulus, or norm) of a complex number z = a+ b i is defined
to be ∣ z ∣ =√z z.
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Since √
z z =

√
a2 + b2,

we see that the absolute value of z equals the standard Euclidean norm of z considered as a
vector in R2.

We list some properties of the absolute value.

THEOREM A.1.2 (Properties of the absolute value). The following hold.

(a) z−1 =
z∣ z ∣2 .

(b) ∣ z̄ ∣ = ∣ z ∣ .
(c) ∣Rz ∣ ≤ ∣ z ∣ , ∣Iz ∣ ≤ ∣ z ∣.
(d) ∣ z ∣ ≥ 01, and ∣ z ∣ = 0 if and only if z = 0.
(e) ∣ z w ∣ = ∣ z ∣ ∣w ∣. In particular,

∣ z ∣ = ∣w ∣ = 1 Ô⇒ ∣ z w ∣ = 1.
(f) (Triangle inequality) ∣ z +w ∣ ≤ ∣ z ∣ + ∣w ∣ .

PROOF. (a) We have
z∣ z ∣ = z

zz
=
1

z
.

(b) We have ∣ z ∣2 = z z = z z = z z = ∣ z ∣2 .
(c) Let z = a + b i, with a, b ∈ R. Then a2, b2 ≥ 0 and so

a2 ≤ a2 + b2, b2 ≤ a2 + b2,
and the result follows by taking square roots.

(d) For two real numbers a, b we have

a2 + b2 = 0 ⇐⇒ a = 0 and b = 0.

(e) We have

∣ z w ∣2 = (z w) z w
= z w z w

= z z ww

= ∣ z ∣2 ∣w ∣2 .
(f) We have

∣ z +w ∣2 = (z +w)z +w
= (z +w) (z +w)
= z z + z w +wz +ww

= ∣ z ∣2 + 2R(z w) + ∣w ∣2 ,
1There is no order defined for complex numbers. So when we write z ≥ 0 we mean that z is real and non-

negative.
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where the last line follows from z w = z w. Now, using Item (c), we continue

≤ ∣ z ∣2 + 2 ∣ z w ∣ + ∣w ∣2
= ∣ z ∣2 + 2 ∣ z ∣ ∣w ∣ + ∣w ∣2
= ∣ z ∣2 + 2 ∣ z ∣ ∣w ∣ + ∣w ∣2
= (∣ z ∣ + ∣w ∣)2 .

So we’ve shown, ∣ z +w ∣2 ≤ (∣ z ∣ + ∣w ∣)2 ,
and the result follows by taking square roots.

�

REMARK 21. Triangle inequality says that the sum of the lengths of two sides of a triangle
is always greater than the length of the other side, see Figure 2.

z

w

z +w

FIGURE 2. Triangle inequality.

The set of complex numbers of length 1 is called the unit circle and is denoted by S1, that
is

S1 = {z ∈ C ∶ ∣ z ∣ = 1} .
Of course, when we think of complex numbers as points in R2, the unit circle is the circle of
radius 1 centered at the origin (0,0). Indeed, if z = x + i y then

∣ z ∣ = 1 ⇐⇒ x2 + y2 = 1
and the latter is the equation a circle of radius 1 and center (0,0).

An important corollary of Item (e) of Theorem A.1.2 is the following theorem.

THEOREM A.1.3. The unit circle S1 endowed with multiplication of complex numbers is a com-
mutative group.

A.1.1. Polar representation of complex numbers. Recall that one definition of the sine
and cosine of an angle θ is via the y and x coordinates, respectively of a point in the unit
circle, namely the point where the ray from the origin that forms an angle θ with the x-axis
intersects the unit circle. It follows then that if z ∈ S1 then

z = cos θ + i sin θ,
for some angle θ.

We now prove a formula that allow us to give a nice geometric interpretation of multipli-
cation of complex numbers of length 1.

THEOREM A.1.4 (de Moivre’s formula). The following hold.

(a) For ϕ, θ ∈ R we have

(cos θ + i sin θ) (cosϕ + i sinϕ) = cos (θ +ϕ) + i sin (θ +ϕ).
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(b) For θ ∈R and n ∈ N we have

(cos θ + i sin θ)n = cosnθ + i sinnθ.
PROOF. (a) We have

(cos θ + i sin θ) (cosϕ + i sinϕ) = (cos θ cosϕ − sin θ sinϕ) + i (cos θ sinϕ + cosϕ sin θ)
= cos (θ +ϕ) + i sin (θ +ϕ).

(b) We proceed by induction. For n = 0 the formula is true since

(cos θ + i sin θ)0 = 1, cos 0 = 1, sin 0 = 0.

Assuming now that the formula is true for n we have

(cos θ + i sin θ)n+1 = (cos θ + i sin θ)n (cos θ + i sinnθ)
= (cosnθ + i sinnθ) (cos θ + i sinnθ)
= (cosnθ cos θ − sinnθ sin θ) + i (cosnθ sin θ − sinnθ cos θ)
= cos (n + 1)θ + i, sin (n + 1)θ.

�

Thus, multiplication in S1 is just addition of angles, see Figure 3.

b
z

bw

bz w

θ

ϕ

θ +ϕ

FIGURE 3. Multiplication in S1.

We now introduce the exponential notation for unit complex numbers. In Equations (A.1)
and (A.2), e stands for the base of natural logarithms e ≈ 2.71828182845905 . . ..

DEFINITION 47 (Exponential notation for polar form). For θ ∈ R we define

(A.1) ei θ = cos θ + i sin θ.
More generally, for z = a + b i ∈ C we define

(A.2) ez = ea cos b + i sin b.
With this notation de Moivre’s formulas become

de Moivre’s formulas

ei (ϕ+θ) = eiϕ ei θ, (ei θ)n = ei n θ.
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Now let z be a non-zero complex number. Then the linear span R ⟨z⟩ is, geometrically, a
line passing through the origin and z. If we write

z = ∣ z ∣ z∣ z ∣ ,
then since

∣ z∣ z ∣ ∣ = ∣ z ∣∣ z ∣ = 1,
we have

z∣ z ∣ = ei θ
for some angle θ. Of course θ is not uniquely determined because for all k ∈ N

e2 i k π = 1

and therefore

ei θ = ei (θ+2k π).

Nevertheless, θ is determined mod 2π, in the sense that

ei θ = eiϕ Ô⇒ θ − ϕ = 2k π
for some k ∈ N. We call any such angle an argument of z and denote it by arg z.

In summary, every non-zero complex number has a polar representation

z = ∣ z ∣ ei arg z.
If we think of C as the Euclidean plane R2, the modulus ∣ z ∣ and the argument arg z are

the so-called polar coordinates of z. Two points that lie in the same line through the origin if
and only if they have the same argument (modulo 2π), and two points lie on the same circle
centered at the origin if and only if they have the same modulus, see Figure 4. Note that the
argument of 0 is undefined.

b

b

b

b

eiθ

e−iθ

2eiθ

2e−iθ

R

iR

θ

1−1

i

−i

2−2

2i

−2i

FIGURE 4. Polar representation of complex numbers.
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A.2. Roots of complex numbers

The polar representation of complex numbers makes it easy to see that every non-zero
complex number z has n distinct n-th roots for all positive integers n. Since an n-th root of z
is a root of the polynomial xn−z, by Corollary 7 in Appendix C, there are at most n, n-th roots
of z. Thus it suffices to show that z has at least n, n-th roots.

We start by exhibiting n distinct n-th roots of 1. Let Ωn be the following subset of S1

Ωn = {e2k π i/n ∶ k = 0,1, . . . , n − 1} .
Notice that

Ωn = {ωk
0 ∶ k = 0,1, . . . , n − 1}

where ω0 = e2π i/n. Now

ωn
0 = (e2π i/n)n = e2π,ß = 1,

and so for all k ∈ N, we have

(ωk
0)n = (ωn

0 )k = 1.
Thus all elements of Ωn are n-th roots of 1.
Geometrically, the elements of Ωn are the corners of a regular n-gon centered at the origin,

see for example Figure 5 for the six sixth roots of unity.

b

bb

b

b b

ω0
0 = 1

ω0ω2
0

ω3
0 = −1

ω4
0 ω5

0

FIGURE 5. The six sixth roots of unity.

We can now prove the general case.

THEOREM A.2.1 (n-th roots of complex numbers). Let z be a non-zero complex numbers and
n a positive integer. Then there are n distinct n-th roots of z namely

n

√∣ z ∣ earg z/nωk
0 , k = 0,1, . . . , n − 1

where ω0 = e2k π i/n.

PROOF. We have ( n

√∣ z ∣ earg z/nωk
0)n = ∣ z ∣ earg z = z.

�

In particular, every non-zero complex number has two square roots.



170 A. COMPLEX NUMBERS

THEOREM A.2.2 (Quadratic formula). Every complex quadratic polynomial

p(x) = az2 + b z + c, a ≠ 0

has two roots

z =
−b ±√D

2a
where D = b2 − 4ac is the discriminant of p(x). If the discriminant is 0 the two roots coincide, and
p(x) has a double root

z = − b

2a
.

PROOF. Exercise, just substitute and verify. �

It turns out that every polynomial in C has solutions. This result, known as The Funda-
mental Theorem of Algebra, is one of the reasons that complex numbers are useful. We state the
theorem without proof.

THEOREM A.2.3 (C is algebraically closed). Every degree n complex polynomial has exactly n

roots, counted with multiplicity2.

2See Appendix C for what this means.



APPENDIX B

A bit of number theory

B.1. Divisibility and primes

We collect some useful facts (mostly without proofs) about the divisibility relation in Z.

DEFINITION 48 (Divisibility of integers). Let m,n ∈ Z. We say that m divides n, or that m
is a divisor of n, or that n is a multiple of m, if

n =m ⋅ k, for some k ∈ Z.

We write m ∣ n to mean that m divides n.
We say that a positive integer p ≥ 2 is prime if

m ∣ p Ô⇒ m = ±p, or m = ±1.
NOTE. Please do not confuse ∣ and division /, the former is a relation while the later is an

operation. For two integers m ∣ n takes two possible values “True” or “False” while m/n is a
rational number. Of course, ∣ and / are related, we have, for m ≠ 0:

m∣n ⇐⇒ n

m
∈ Z.

The following properties of ∣ can be easily proved (Do it!):

(a) m ∣m.
(b) m ∣ n and n ∣m Ô⇒ m = ±n.
(c) m ∣ n and n ∣ k Ô⇒ m ∣ kn.
(d) For all n ∈ Z we have 0 ∣ n,
(e) on the other hand, n ∣ 0 Ô⇒ n = 0.
(f) m ∣ n Ô⇒ m ∣ −n, and
(g) m ∣ n Ô⇒ −m ∣ n.
(h) 1 ∣ n for all n ∈ Z.
(i) n ∣ 1 for all n = ±1.
(j) m ∣ n and m ∣ k Ô⇒ m ∣ nk.

(k) m ∣ n and m ∣ k Ô⇒ m ∣ n + k.

We have the following fundamental results. The second item in the theorem below is often
referred to, as The Fundamental Theorem of Arithmetic.

THEOREM B.1.1. We have:

(a) There are infinitely many primes.
(b) Every positive integer is a prime or the product of primes, in essentially one way. That is if

P = {p1, p2, . . . ,}
is the set of all primes written in an increasing order, then for every positive integer n, there
is a unique sequence of exponents ki, all but finitely many equal to 0, such that

n =
∞

∏
i=1

pkii .

171
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Notice that even though there are infinitely many factors in the product, all but finitely many
are equal to 1 and so the product makes sense.

PROPOSITION 13 (Euclidean division). If m,n ∈ Z there are unique integers q, r such that

n =mq + r, 0 ≤ r < ∣m∣.
We call q the quotient and r the remainder of the division of n by m.

PROPOSITION 14 (GCD and LCM). Given m,n ∈ Z

(a) There is a positive common divisor of m,n that is divided by any other common divisor. We
call that divisor the Greatest Common Divisor and we denote it by gcd(m,n). So the GCD
is characterized by the following two properties
(a) gcd(m,n) ∣m, and gcd(m,n) ∣ n.
(b) If d ∣m and d ∣ n, then d ∣ gcd(m,n).

(b) There is a positive common multiple of m,n that divides any other common multiple. We call
that common multiple the Least Common Multiple and we denote it by lcm(m,n). So the
LCM is characterized by the following two properties
(a) m ∣ lcm(m,n), and n ∣ lcm(m,n).
(b) If m ∣ k and n ∣ k, then lcm(m,n) ∣ k.

(c) The greatest common divisor can be written as a linear combination of m, n with integer
coefficients. That is, there are a, b ∈ Z such that

gcd(m,n) = am + bn.
Furthermore the GCD of m,n is the only positive common divisor that can be written as a
linear combination of m, n with integer coefficients.

DEFINITION 49. Two integers m,n are called relatively prime if gcd(m,n) = 1, that is if there
is no non-trivial common divisor.

The following is used often.

PROPOSITION 15. We have:

(a) If m,n are relatively prime then

m ∣ n ⋅ k Ô⇒ m ∣ k.
In particular if p is a prime number then

p ∣m ⋅ n Ô⇒ p ∣m or p ∣ n.
(b) If we divide two integers by their GCD we obtain two relatively prime integers. That is, if

gcd( m

gcd(m,n) , n

gcd(m,n)) = 1.
(c) If two integers are relatively prime, then so are any of their powers. That is, if m,n ∈ Z and

k, ℓ ∈ N then
gcd(m,n) = 1 Ô⇒ gcd (mk, nℓ) = 1.

Recall that a rational number is a number that is obtained as a quotient of two integers, that
is a number that can be written as q = m/n, with m,n ∈ Z. Of course, such representation of q
as a fraction is by no means unique, for example we could also write q = 2m

2n
.

DEFINITION 50. The fraction m
n

is called reduced if m and n are relatively prime. Every
q ∈ Q has a unique (up to signs) expression as a reduced fraction.

As an application of the above we prove the following theorem.
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THEOREM B.1.2 (Rational Root Theorem). Let p(x) = a0 + a1x + ⋅ ⋅ ⋅ + anxn be a polynomial
with integer coefficients and r a rational root of p(x). If r = k/ℓ is a reduced fraction representing q,
then k divides a0 and ℓ divides an. In particular, if p(x) is monic, that is an = 1, then a rational root of
p(x) is actually an integer that divides the constant term a0.

PROOF. We have p(r) = 0, and so

a0 + a1k
ℓ
+⋯+ ank

n

ℓn
= 0 ⇐⇒ −a0ℓn = a1kℓn−1 + ⋅ ⋅ ⋅ + ankn

Now k divides the RHS of the above and therefore

(B.1) k ∣ −a0ℓn.
We assumed that k/ℓ is a reduced fraction, and thus k and ℓ are relatively prime, and thus k,
and ℓn are relatively prime as well. By (B.1) and Proposition 15(1) it follows that k ∣ a0.

Similarly by writing −ank = a0ln +kl−1 + ⋅ ⋅ ⋅ +kn−1l we conclude that l divides −ank and thus
an. �

COROLLARY 5 (Irrationality of roots). Let m ∈ Z and n ≥ 2 a positive integer. Then the equation

xn =m

has rational solutions if and only if m = kn for some integer k. In other words, is irrational, unless m
is the n-th power of an integer.

PROOF. By the Rational Root Theorem, a rational root of xn −m = 0 is an integer k that
divides −m. Now by definition, n

√
m is a solution of that equation and thus if n

√
m ∈ Q then

n
√
m = k ∈ Z, or equivalently m = kn. �

Thus all of the following real numbers are irrational:√
2,
√
3,
√
6,
√
110,

3
√
42,

7
√
56.

In particular all roots of prime numbers are irrational1.

B.2. Modular arithmetic

DEFINITION 51 (Congruence modulo m). Let m be a positive integer, and a, b ∈ Z. We say
that a is congruent to b modulo m, and write a ≡ b (mod m), if m ∣ a − b.

The following characterization of congruence modulo m is often very useful.

THEOREM B.2.1. Let m be a positive integer. Then for all a, b ∈ Z we have a ≡ b (mod m) if and
only if a and b leave the same remainder when divided by m.

PROOF. Let a =mq1+r1, and b =mq2+r2 be the quotients and remainders of the Euclidean
division (see Proposition 13). Then

(B.2) a − b =m (q1 − q2) + (r1 − r2).
Now, if r1 = r2 then Equation B.2 becomes a − b =m (q1 − q2) and so m ∣ a − b.

Conversely, since ∣ r1 − r2 ∣ < ∣m ∣, Equation B.2 says that a − b leaves remainder ∣ r1 − r2 ∣
when divided by m. Thus if m ∣ a − b then ∣ r1 − r2 ∣ = 0, i.e. r1 = r2. �

Using Theorem B.2.1 we can prove the following theorem.

THEOREM B.2.2 (Congruence modulo m is an equivalence relation). The following hold for
any modulus m ≥ 1.

1Why? Prove this.
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(a) For all a ∈ Z,
a ≡ a (mod m).

(b) For all a, b ∈ Z,
a ≡ b (mod m) Ô⇒ b ≡ a (mod m).

(c) For all a, b, c ∈ Z,

a ≡ b (mod m) and b ≡ c (mod m) Ô⇒ a ≡ c (mod m).
PROOF. Exercise. �

Now, notice that each a ∈ Z is congruent (mod m) to exactly one of the possible remain-
ders {1, . . . ,m − 1}.

DEFINITION 52 (Congruence classes modulom). For a positive integer m, and k ∈ {0,1, . . . ,m − 1}
we define the congruence class of k (mod m), denoted by [k]m, to be the set of integers that are
congruent to k (mod ()m), i.e. leave reminder k when divided by m. Thus,

[m]k = {a ∈ Z ∶ a ≡ k (mod m)} ,
or equivalently, [m]k = {mℓ + k ∶ ℓ ∈ Z} .

The set of all congruence classes (mod m) is denoted Z/m. Thus

Z/m = {[k]m ∶ k = 0, . . . ,m − 1} .
Elements of Z/m are called integers modulo m.

More generally, if a ∈ Z we write [a]m to stand for the set of all integers that are congruent
to a (mod m). Thus, [a]m = {b ∈ Z ∶ a ≡ b (mod m)} .
So, [a]m = [b]m ⇐⇒ a ≡ b (mod m).

For m = 2, there are two possible remainders, namely {0,1}, and so we have two congru-
ence classes [0]2 and [1]2 and

Z = [0]2 ∪ [1]2.
Notice that [0]2 is the set of even integers and [1]2 is the set of odd integers. We have then

that, for example, [−4]2 = [42]2 = [0]2 and [11]2 = [−59]2 = [1]2.
NOTE. To simplify notation, we often identify [k]m with k and so we write

Z/m = {0, . . . ,m} .
THEOREM B.2.3 (Addition and multiplication respect congruences). Let m ≥ 1, and a, b, c, d

integers such that a ≡ c (mod m) and b ≡ d (mod m). Then,

a + b ≡ c + d (mod m) and ab ≡ c d (mod m).
PROOF. We have (a + b) − (c + d) = (a − c) + (b − d)

and so m ∣ (a + b) − (c + d).
And,

ab − c d = ab − ad + ad − c d = a (b − d) + (a − c)d.
Therefore m ∣ ab − c d. �

Theorem B.2.3 makes the following definition possible.
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DEFINITION 53 (Modular addition and multiplication). In Z/m we define operations of
addition and multiplication as follows:

[a]m + [b]m = [a + b]m
and [a]m [b]m = [ab]m.
In words, the sum (respectively product) of the congruence classes of two integers is the
congruence class of their sum (respectively product).

Theorem B.2.3 ensures that no matter what elements of the congruence classes we chose
we will always get the same answer.

EXAMPLE 120. Consider Z/12. We have

[7]12 + [8]12 = [15]12 = [3]12
while, [5]12 × [7]12 = [35]12 = [11]12.

Now, 7 ≡ −5 (mod 12) and 8 ≡ 32 (mod 12) and so [7]12 = [−5]12 and [8]12 = [32]12. Of
course, [−5]12 + [32]12 = [27]12 = [3]12
as we expect by Theorem B.2.3.

Similarly, [5]12 = [41]12 and [7]12 = [19]12 and

[41]12 [19]12 = [779]12 = [11]12
.

Before we continue we give the following definition.

DEFINITION 54. A set R with two operations + and ⋅ that satisfy all the axioms of a field
except (possibly) (5) and (8) is called a (unital) ring2.

If axiom (5) is also satisfied then we say that R is a commutative ring.

EXAMPLE 121. The set of integers is a commutative ring Z. The set of square matrices with
real entries is a non-commutative ring.

We then have the following theorem.

THEOREM B.2.4. We have:

(a) Z/m endowed with the operations of addition and multiplication as given by Definition 53 is
a commutative ring. The zero element is the class [0]m and −[k]m = [m = k]m.

(b) If p is a prime then Z/p is a field.
(c) If m is not prime then Z/m is not a field.

PROOF. (a) This follows from the fact that Z is a commutative ring. As an example I
prove the distributive property, and leave the other properties as an exercise.

2Sometimes people consider rings that don’t have 1, that is axiom (7) does not hold. When we want to
emphasize that the rings we consider have 1 we use the term unital.
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We have, omitting the subscript m,

[a] ([b] + [c]) = [a] [b + c]
= [a (b + c)]
= [ab + ac]
= [ab] + [ac]
= [a] [b] + [a] [c].

(b) Let k ∈ {1, . . . , p − 1} and consider the p − 1 products

[1]p [k]p, . . . , [p − 1]p [k]p.
If two of these products are equal, say

[a]p [k]p = [b]p [k]p
then ([a]p − [b]p) [k]p = [0]p
and so

p ∣ (a − b)k
and since k < p, and k ≠ 0, we have that p does not divide k. Therefore p ∣ a − b and it
follows that [a]p = [b]p.

It follows that the products [a]p [k]p, with a = 1, . . . , p − 1 are all different. Since
there are p − 1 possible values for this products, namely [1]p, . . . , [p − 1]p we conclude
that one of these products is equal to [1]p. Thus for for some [a]p ∈ Z/p ∖ {[0]p} we
have [a]p [k]p = [1]p.
Thus [k]p has an inverse.

(c) If m is composite (i.e. not prime) then m = ab with 1 < a, b <m. But then

[a]m [b]m = [m]m = [0]m
while [a]m ≠ [0]m and [b]bm ≠ [0]m. But this cannot happen in a field, see Item (g) of
Theorem 4.1.1.

�
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Polynomials

C.1. The algebra of polynomials

We are mostly interested in polynomials with coefficients in a field, but sometimes we
may consider more general coefficients. For example we may consider polynomials with
coefficients in Z, and (see Example 121 of Appendix B), Z is only a ring.

If R is a ring then R[x] denotes the set of all polynomials with coefficients in R and inde-
terminate x. A polynomial with coefficients in R is an algebraic expression of the form

(C.1) p(x) = a0 + a1 x +⋯+ ad xd,

where x is an indeterminate, i.e. a variable, and a0, . . . , ad ∈ R are the coefficients.
The set of all polynomials of one variable x with coefficients in R is denoted by R[x]. It

is sometimes convenient to write polynomials as a sum of infinitely many terms, with only
finitely many of them non-zero. In other words we think of a polynomial as having infinitely
many coefficients, one for each power xn, but after a certain power of x all coefficients are 0.
Thus we may write any of the following expressions

p(x) =∑
k∈N

ak x
k = a0 + a1 x +⋯+ an xn +⋯ =∑ak x

k

and we assume that an = 0 for all but finitely many n ∈ N.
Two polynomials are considered equal if they have the same coefficients. That is,

∑
k∈N

ak x
k =∑

k∈N

bk x
k
⇐⇒ ∀k ∈ N, ak = bk.

We emphasize that, at the outset, the operations in Equation (C.1) are formal, an xn is not
really1 a product, it’s only an symbolic expression. Similarly ∑an xn is not really a sum. Of
course eventually, after we have introduced addition and multiplication, we will be able to
interpret the formal sums and products as actual sums and products.

The zero polynomial, denoted simply by 0, is the polynomial with all coefficients equal to
0 ∈ R. That is,

0 = ∑
n∈N

0xn.

More generally, for a ∈ R we define the constant polynomial with value a, to be the polyno-
mial with the 0-th coefficient equal to a and all other coefficients equal to 0. We simply write
a for the constant polynomial with value a. Thus

a = ∑
n∈N

δ0nax
n.

The leading term of p(x) is defined to be the largest non-zero term, provided that such a
term exists (that is provided that p(x) ≠ 0). If ad xd is the leading term, then we say that ad

1Not yet, at least.
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is the leading coefficient of p(x) and that p(x) has degree d. We denote the degree of p(x) by
deg p(x). Thus, for p(x) = ∑an xn we have

deg p(x) = d ⇐⇒ ad ≠ 0, and ak = 0 for k > d.

Notice that since the zero polynomial has no non-zero terms its degree is not defined. By
convention we define deg 0 = −∞, so that the degree of the zero polynomial is less than the
degree of all other polynomials.

We employ the usual shorthands when writing a polynomial as the sum of finitely many
terms: we write xn instead of 1xn, and am xm − an xn instead of am xm + (−an)xn, etc. Thus for
example,

3x2 − 5x3 + x5

is the polynomial p(x) =∑an xn with

an =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3 n = 2

−5 n = 3

1 n = 5

0 otherwise

.

Of course, a polynomial’s purpose in life is to be evaluated for various values of the variable
x. In elementary algebra variables such a x stand for unknown, or indeterminate numbers2

and then a polynomial stands for the result of some algebraic operations applied to that un-
known number. Thus if x stands for a unknown number, x2 − 3x stands for the difference of
the square of that number and three times that number. Once x is known or fixed we can find
what number x2 − 3x stands for by evaluating, i.e. substituting that value for x.

DEFINITION 55 (Evaluating polynomials). Let p(x) = ∑an xn ∈ R[x] and a ∈ R. Then the
evaluation of p(x) at a, denoted by p(a), is defined to be

p(a) =∑an a
n,

where, as usual we consider the sum of infinitely many zeros to be zero. The notation

p(x)∣x=a
is also used occasionally for p(a).

If p(a) = 0 then we say that a is a root or zero of p(x).
Thus p(x), via evaluation, defines a function

p∶ R → R, a↦ p(a).
We say that p is the polynomial function defined by p(x).

We now want to define addition and multiplication of polynomials in a way that respects
evaluation. That means we want,

(p(x) + q(x)) ∣x=a = p(a) + q(a)(C.2) (p(x) q(x)) ∣x=a = p(a) q(a),(C.3)

for all a ∈ R.

2The terms “unknown” and “indeterminate” or “arbitrary” have different connotations. If x is an unknown
number then x is a certain number, we just don’t know which number it is. On the other hand if x is an indeter-
minate then x can vary, it could be any number. In practice though the distinction is not that important because
in both cases we manipulate x and expressions involving it, using only properties that hold for all numbers.
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Let then p(x) = ∑an xn and q(x) = ∑ bn xn be two polynomials, and let a ∈ R be arbitrary.
Then, using the properties of addition and multiplication in the commutative ring R we have,

p(a) + q(a) =∑an a
n + sumbn x

n =∑ (an an + bn an) =∑ (an + bn) an.
Thus Equation (C.2) is satisfied if we define

(C.4) p(x) + q(x) =∑ (an + bn) xn.

It is straightforward to verify then that addition is commutative and associative, that the
zero polynomial is neutral for addition and that p(x) + (−p(x)) = 0 where

−p(x) =∑(−an)xn.

To define a multiplication that satisfies Equation (C.3) we start by declaring that cxm,
viewed as a polynomial, is actually the product of the constant polynomial c, and the polyno-
mial xm. That is

(∑ (δ0n c) xn) (∑ δmn x
n) =∑ (δmn c) xn.

Similarly, since am an = am+n we declare that

xm xn = xm+n.

REMARK 22 (Formal sums are actual sums). Notice that with our definitions so far mean
that a polynomial is actually the sum of its terms3, and each term an xn is the actual product
of its coefficient, the constant polynomial an, and the polynomial xn.

Now given that we want multiplication to distribute over addition we define

(C.5) p(x) q(x) = ∑
n∈N

⎛⎜⎜⎝ ∑0≤k,ℓ≤n
k+ℓ=n

⎞⎟⎟⎠ x
n.

That is, the coefficient of xn in the product of two polynomials, is the sum of the products
of all coefficients of terms with degrees that add up to n.

THEOREM C.1.1 (Polynomials form a ring). R[x] endowed with addition as defined by (C.4),
and multiplication defined by (C.5) is a commutative ring. The role of zero is played by the zero
polynomial and the role of one is played by the constant polynomial 1.

If we identify a ∈ R with the constant polynomial a ∈ R[x] then R ⊆ R[x] is a subring of R[x].
PROOF. Exercise. �

Recall from Definition 25 that we can evaluate a polynomial p(x) ∈ R[x] at a square matrix
A ∈Mn(R) to obtain p(A) ∈Mn(R). Clearly this definition make sense for any field K4. More
generally, if A is an algebra over a field K, and a ∈A we can define p(a) ∈A.

Now K[x] is an algebra over K and therefore we can evaluate p(x) at any polynomial q(x)
to obtain a polynomial p (q(x)) ∈ K[x]. In particular, if we evaluate p(x) at the polynomial x
we obtain the polynomial p(x).

3With the usual caveat regarding sums of infinitely many zero terms
4Or any ring really, but our main interest is polynomials over a field.
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C.1.1. Polynomials vs Polynomial functions. Often polynomials are defined as func-
tions. For example a polynomial with real coefficients is defined as a function

P ∶ R→ R, P (x) = n

∑
k=0

ak x
k

with ak ∈ R. This is fine when we work in a field like Q, R, or C because in such fields5 two
polynomials are equal if and only if the functions they define are equal.

THEOREM C.1.2. Let P,Q∶ R→ R be defined via

P (x) = n

∑
k=0

ak x
k, Q(x) = n

∑
k=0

bk x
k,

where ak, bk ∈ R. Then P = Q if and only if, ak = bk for all k = 0, . . . n.

The proof follows from the following lemma from Calculus.

LEMMA 4. The function

P ∶ R→ R, P (x) = n

∑
k=0

ak x
k

has derivatives of all orders and for k = 1, . . . , n

an =
P (n)(0)

n!
.

PROOF. For n = 0 the lemma says that a0 = P (0)which is true. Now we have

p′(x) = nan xn−1 +⋯ + 3a3 x2 + 2a2 x + a1.
Evaluating at x = 0 then gives

P ′(0) = a1.
Differentiating again gives

P ′′(x) = n (n − 1)xn−2 +⋯+ 6a3x + 2a2.
Evaluating at x = 0 then gives

P ′′(0) = 2a2 Ô⇒ a2 =
f ′′(0)
2

.

Continuing in the same manner we get

P (3)(x) = n (n − 1) (n − 2)xn−2 +⋯+ 24a4 x + 6a3,
and so

a3 =
P (3)(0)

6
.

In general we can prove by induction that for 0 ≤ k ≤ n we have

P (k)(x) = n (n − 1)⋯ (n − k + 1)xn−k +⋯+ k!ak,
and the lemma follows by evaluating at x = 0. �

PROOF OF THEOREM C.1.2. Clearly, if for all ak = bk for all k then P = Q. Conversely, if
P = Q then all the derivatives of P and Q are equal and therefore, by Lemma 4, for all k we
have ak = bk. �

5These are fields of characteristic 0. Explaining what this means would take us far afield.
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By considering real and imaginary parts of a polynomial we can see that Theorem C.1.2
holds for complex polynomials as well6. But in other fields we may have different polyno-
mials (in the sense that they have different coefficients) that define the same function. For
example in Z/5 the polynomial x5 − x defines the same function as the zero polynomial, see
Claim 3. Here is another example.

EXAMPLE 122. The polynomials p(x) = x2 − x and 0 both induce the same function Z/2 →
Z/2, namely the zero function.

However, p(x) does not induce the zero function M2(Z/2)→M2(Z/2). Indeed for

A = (0 1

1 0
)

we have

A2 = I

and therefore

p(A) = A2 −A = (1 1

1 1
) .

C.1.2. Euclidean Division, Factors, roots. In what follows, unless we explicitly say oth-
erwise, we assume that K is a field and that polynomials have coefficients in K.

In general, division of polynomials

p(x) ÷ d(x)
is not defined, in the sense that there is no polynomial q(x) such that p(x) = d(x) q(x). How-
ever there is an analogue of Euclidean division (see Proposition 13) for polynomials.

EXAMPLE 123. Let’s try to divide p(x) = 3x4 − 14x3 + 9x2 − 11x + 70 by d(x) = x − 4, i.e. to
perform the division

3x4 − 14x3 + 9x2 − 11x + 70
x − 4 .

Thus we want to find a polynomial q(x) such that

p(x) = d(x) q(x).
We won’t succeed because no such polynomial exists, but we’ll try our best. The leading term
of p(x) (3x4) has to be the leading term of d(x) (x) times the leading term of q(x). Thus the
leading term of q(x) has to be 3x3. So we have

p(x) = d(x) (3x3 + q1(x))
where q1(x) is to be determined.

Now

p(x) = d(x) (3x3 + q1(x)) ⇐⇒ p(x) − 3x3 d(x) = d(x) q1(x),
or, setting p1(x) = p(x) − 3x3 d(x)

p1(x) = d(x) q1(x).
Thus q1(x) is the quotient of a division with the same denominator but as we’ll see shortly
numerator of smaller degree. Indeed we calculate

6Can you prove this?
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p1(x) = p(x) − 3x3 d(x)
= 3x4 − 14x3 + 9x2 − 11x + 70 − 3x3 (x − 4)
= 3x4 − 14x3 + 9x2 − 11x + 70 − 3x4 + 12x3

= −2x3 + 9x2 − 11x + 70.
Thus, as before we have that −2x3, the leading term of p1(x), has to be the product of x,

the leading term of d(x), and the leading term of q1(x). Thus the leading term of q1(x) is −2x2.
So at the second step we have

p(x) = d(x) (3x3−2x2 + q2(x))
where q2(x) is to be determined. As before, we have that q2 is the quotient of the division

p2(x) = d(x) q2(x),
where

p2(x) = p1(x) + 2x2 d(x) = x2 − 11x + 70.
So the leading term of q2(x) is x and we have

p(x) = d(x) (3x3−2x2 + x + q3(x))
with q3(x) is a constant to be determined. Now,

p2(x) − (x − 4)x = −7x + 70
forcing q3(x) = −7. So q(x) has been determined:

q(x) = 3x3−2x2 + x−7.
But this doesn’t quite work, because

d(x) q(x) = (x − 4) (3x3 − 2x2 + x − 7) = 3x4 − 14x3 + 9x2 − 11x + 28 ≠ p(x).
Still we got the first four terms of p(x) right, and that’s the best we can do. For, as the above
calculations demonstrate, if the first four coefficients are correct then the constant term has to
be 28.

3x4 − 14x3 + 9x2 − 11x + 70 = (x − 4) (3x3 − 2x2 + x − 7) + 42.
Euclidean division algorithm for polynomials

The input is two polynomials p(x), d(x) ∈K[x] with d(x) ≠ 0 and deg d(x) < deg p(x).
Let bm xm be the leading term of d(x). Set

q(x) ∶= 0.
While deg d(x) ≤ deg p(x):

(a) Set an xn to be the leading term of p(x).
(b) Set c(x) ∶= an

bm
xn−m.

(c) Set q(x) ∶= q(x) + c(x).
(d) Set p(x) ∶= p(x) − c(x)d(x).

Return q(x) as the quotient and p(x) as the remainder.



C.1. THE ALGEBRA OF POLYNOMIALS 183

EXAMPLE 124. Let’s also divide two polynomials in Z/11. Perform the division

(x4 + 5x3 + 8x2 + 5) ÷ (5x2 + 10x + 2),
in F11[x].

We have

x4 + 5x3 + 8x2 + 5 = (5x2 + 10x + 2) (9x2 + 5x + 10) + 7
−x4 − 2x3 − 7x2

3x3 + x2 + 5
−3x3 − 6x2 − 10x

6x2 + x + 5
−6x2 − x − 9

7

In the first step of the algorithm we divided the leading term of p(x) by the leading term
of d(x)

x4

5x2
=
1

5
x2 = 9x2

because in Z/11 we have 5−1 = 9. Indeed in Z we have 5 ⋅ 9 = 45 and 45 leaves remainder 1

when divided by 11 since 45 = 11 ⋅ 4 + 1.
Then we multiplied 9x2 with d(x) and subtracted it from p(x). So we first calculated

−(9x2 d(x)) = −(9x2 (5x2 + 10x + 2)) = −(x4 + 2x3 + 7x2) = −x4 − 2x3 − 7x2

and so
p1(x) = p(x) − 9x2 d(x) = 3x3 + x2 + 5.

Since still d(x) has lower degree than p1(x) we have q(x) = 9x2 and repeat the procedure,
with p(x) replaced by p1(x). The leading term of p1(x) is 3x3 and

3x3

5x2
=
3

5
x = 5x

because in Z/11 we have 5−1 = 9 and 3 ⋅ 9 = 5. Indeed in Z we have 3 ⋅ 9 = 27 and 27 = 2 ⋅ 11 + 5.
Then

− (5xd(x)) = −(3x3 + 6x2 + 10x) = −3x3 − 6x2 − 10x
and so

p2(x) = 6x2 + 6x + 5
and the quotient is updated to

q(x) = 9x2 + 5x.
We still have deg d(x) ≤ deg p(x) and so we continue.

6x2

5x2
=
6

5
= 10.

Then
− (10d(x)) = −6x2 − x − 9

and so
p3 = 5 − 9 = 7

and the quotient is updated to
q(x) = 9x2 + 5x + 10.
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Since deg p3(x) < deg d(x) we stop and return q(x) as the quotient and p3(x) = 7 as the
remainder.

We have then the following theorem.

THEOREM C.1.3 (Long division). Let p(x) ∈ K[x] and d(x) ∈ K[x] with d(x) ≠ 0 and
deg d(x) < deg p(x). Then there exist unique polynomials q(x), r(x) ∈K[x]with deg r(x) < deg d(x)
such that

(C.6) p(x) = d(x) q(x) + r(x).
PROOF. The existence of the quotient and the remainder are guarantied by the algorithm

we just described. Division is defined in any field so the steps can be performed at every
field. The algorithm eventually terminates because the degree of p(x) decreases strictly at
every step and so eventually it will become less than the degree of d(x).

To see that the quotient and remainder are uniquely defined notice that Equation (C.6)
implies that the leading term of q(x) is the quotient of leading term of p(x) by the leading
term of d(x). Let q1(x) stand for the lower degree terms of q(x) so that

p(x) = d(x) (an
bm

xn−m + q1(x)) + r(x).
Therefore, in analogy with the calculations in Example 123 we have

p(x) − d(x) an
bm

xn−m = d(x) q1(x) + r(x),
and so q1(x) is the quotient of

p1(x) = p(x) − d(x) an
bm

xn−m

by d(x). Thus the leading term of q1(x) is unique. Inductively, all the terms of q(x) are unique.
But then

r(x) = p(x) − d(x)d(x),
and so the remainder is also uniquely determined. �

A particularly interesting case is when we divide by a linear polynomial of the form x − a,
as in Example 123. We have deg (x − a) = 1 and therefore the remainder has degree 0 or is the
zero polynomial, and so r(x) is a constant c. In other words, we have

(C.7) p(x) = (x − a) q(x) + c.
Now substituting x = a in Equation (C.7) we get

p(a) = (a − a) q(a) + c = 0 q(a) + c = 0 + c = c.
Thus the reminder is the value of p(x) at a.

We have then proved the following theorem.

THEOREM C.1.4 (The remainder theorem). Let a ∈ K and p(x) ∈ K[x]. Then the remainder
of the division p(x) ÷ (x − a) is p(a).

REMARK 23. Theorem C.1.4 provides an efficient way to evaluate polynomials. Dividing
by x−a can be done much more efficiently than actually evaluating p(a) by actually plugging
it in.

An immediate corollary is the following important theorems.

THEOREM C.1.5 (Root-Factor correspondence). Let a ∈ K and p(x) ∈ K[x]. Then a is a root
of p(x) if and only if x − a is a factor of p(x).
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PROOF. x − a is a factor of p(x) if and only if the remainder of the division p(x) ÷ (x − a) is
0, if and only if p(a) = 0. �

COROLLARY 6 (The number of roots does not exceed the degree). Let p(x) ∈ K[x]. Then
p(x) has at most deg p(x) roots.

PROOF. A product of k factors of the form x−a has leading term xk. So if p(x) has k roots,
it has a factor of degree k, and therefore k ≤ deg p(x). �

DEFINITION 56 (Multiplicity of roots). Let a ∈ K be a root of the polynomial p(x). If(x − a)m is a factor of p(x) but (x − a)m+1 is not, we say that a is a root of multiplicity m.

For example the polynomial p(x) = x6 + 3x5 − 4x3 factors like this

x6 + 3x5 − 4x3 = x3 (x + 3) (x − 1)2.
Therefore, 0 is a root of multiplicity 3, −3 a root of multiplicity 1, and 1 a root of multiplicity
2. We say then that p(x) has six roots, counting with multiplicity.

C.1.3. Roots of real and complex polynomials. We end this appendix by mentioning
some important results regarding roots of real and complex polynomials.

THEOREM C.1.6. If p(x) ∈ R[x] has odd degree then p(x) has at least one real root.

PROOF. p(x) → ±∞ as x → ±∞ and thus p(x) takes both negative and positive values. The
result follows from Intermediate Value Theorem. �

Of course, there are real polynomials of even degree that have no real roots. For example

p(x) = x2 + 1
has no real roots, because for all x ∈ R, we have x2 ≥ 0 and thus x2 + 1 > 0.

THEOREM C.1.7 (Fundamental Theorem of Algebra). Every p(x) ∈ C[x] has at least one
root.

But, if p(a) = 0 then x − a is a factor of p(x) and the quotient q(x) = p(x)/(x − a) is also a
complex polynomial. Therefore, if deg q(x) > 0 then q(x) has a root, and this root will also be
a root of p(x). Continuing this way we see that p(x) has d roots, where d = deg p(x).

COROLLARY 7. Let p(x) ∈ C[x] be a degree d polynomial. Then p(x) has exactly d linear factors.

PROPOSITION 16. Let p(x) ∈ R[x]. If z ∈ C is a root of p then so is its complex conjugate z.

C.2. Useful polynomial identities

● Binomial Theorem (a + b)n = n

∑
k=0

(n
k
)ak bn−k.

● Difference of powers

an − bn = (a − b) n−1∑
k=0

ak bn−k.

● Sum of odd powers If n is odd then for all real numbers a, b we have

an + bn = (a + b) n−1

∑
k=0

(−1)k ak bn−k.





APPENDIX D

On Bases

Let V be a vector space, how can we find a basis for V ? We can proceed as in the proof of
Theorem 2.2.6: we build the basis one vector at the time.

If V = {0} is a trivial vector space then by convention we have that the empty set is a basis
and we are done. In other words we start with

B0 = ∅
and check if ⟨B0⟩ = V . If this is the case we are done, and ⟨B0⟩ = {0}we know that in that case
V is the zero vector space.

If not, then there is a non-zero vector v1 ∈ V , so we add it to B0 and get

B1 = B0 ∪ {v1} = {v1} .
Notice that B1 is linearly independent so if ⟨B1⟩ = V we are again done, B1 is a basis. If

not, then there are vectors in V that are not multiples of v1, so we choose one of them, say v2
and we add it to B1 to obtain

B2 = B1 ∪ {v2} = {v1, v2} .
Notice that B2 is linearly independent, because

(D.1) λ1 v1 + λ2 v2 = 0,

cannot hold unless λ1 = λ2 = 0. To see this note that if λ2 ≠ 0 then the Equation (D.1) gives

v2 = −λ1

λ2

v1,

a contradiction because v2 ∉ ⟨v2⟩.
Thus λ2 = 0 and then Equation (D.1) becomes

λ1 v1 = 0

and since v1 ≠ 0 we conclude that λ1 = 0.
We now check whether V = ⟨B2⟩. If yes then B2 is a basis and we are done. If not, we

choose v3 ∉ ⟨B2⟩ and we add it to B2 to obtain

B3 = B2 ∪ {v3} = {v1, v2, v3} .
Again it’s easy to see that B3 is linearly independent, for, if

(D.2) λ1 v1 + λ2 v2 + λ3 v3 = 0,

we cannot have λ3 ≠ 0 otherwise

λ1 v1 + λ2 v2 = 0,

impossible since v3 ∉ ⟨B2⟩. Thus λ3 = 0 and Equation (D.2) together with the fact that B2 is
linearly independent gives that λ1 = λ2 = 0.

And we continue as before: if V = ⟨B3⟩ we are done, . . .
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Thus we have a procedure that for every natural number n, either gives a basis Bn or
produces a linear independent set Bn+1 ⊇ Bn by choosing vn+1 ∉ ⟨Bn⟩ and defining

Bn+1 = Bn ∪ {vn+1} = {v1, v2, . . . , vn, vn+1} .
In the case where V is a subspace of Rn, this procedure will stop at some step k ≤ n because

we can’t chose n + 1 linearly independent vectors. However there is no guarantee that it will
for a general vector space. For example if V =K[x], the space of polynomials with coefficients
in K, we could at every stage choose vk = xk and then we get an infinite sequence of linearly
independent sets

Bn = {xk ∶ k = 0,1, . . . , n}
without ever stopping.

But we don’t have to stop either. We can take the union of all the Bn and call it Bω

Bω = ⋃
n∈N

Bn

and notice that Bω is linearly independent. To see this notice that, the sequence Bn is an
increasing sequence of sets, i.e.

k < ℓ Ô⇒ Bk ⊊ Bℓ,

because, by the way we constructed these sets we have

(D.3) B0 ⊊ B1 ⊊ B2 ⊊ ⋯ ⊊ Bn ⊊ Bn+1 ⊊ ⋯.
Now consider a linear dependency in Bω

λ1 vn1
+ λ2 vn2

+⋯+ λnk
vnk
= 0

where n1 < n2 < ⋯ < nk. Then by Equation (D.3) we have that

vn1
, . . . , vnk

∈ Bnk

and we have a linear dependency relation in Bnk
a contradiction.

So we can ask whether ⟨Bω⟩ = V . If so, as it happens in the case of polynomials, we
conclude that Bω is a basis and we are done.

If not we start again, we choose vω+1 ∉ ⟨Bω⟩ and set

Bω+1 = Bω ∪ {vω+1} = {v1, v2, . . . , vn, . . . , vω+1} .
If Bω+1 is a basis we are done. Otherwise we have Bω+2, . . . and so on and so forth. If some

Bω+n is a basis we stop. Otherwise we define Bω+ω and check whether that is a basis. If not
we continue . . .

The claim is then that eventually1 this process will stop and we have our basis.
For example let’s reexamine the process of finding a basis for K[x]. Aw we indicated

above if at the k step we chose vk = xk then we get the standard basis of K[x] as Bω. But we
could have made other choices, for example we could chose v1 = x2, v2 = x4, and so on: at the
k step we choose vk = x2k, then we would get

Bω = {x2k ∶ k ∈ N}
and Bω is not a basis.

We could then proceed and choose vω+k = x2k+1 and then we would obtain the standard
basis as Bω+ω.

“But”, I hear you ask, “how do we know that this process will really stop?” “Well”, I
answer smugly, “it’s because we put this as an axiom.” You see, so far we have been dealing
with sets in a naive way, as if their properties are obvious. However this is dangerous and if

1This may really take loooooong, looooong time!



D. ON BASES 189

we are not careful it leads to contradictions. Mathematicians had to deal with such issues at
the beginning of the previous century. This a rather long story, which I would love to go into
but alas, that would take us far afield. So I’m only giving you the moral: “in order to avoid
paradoxes we have to work within an axiomatic set theory”.

There is a (more or less) universally accepted set of axioms that sets are supposed to satisfy.
One of those axioms, the so called Axiom of Choice guarantees that the above procedure will
eventually terminate thus producing a basis of V 2.

The inductive procedure that we outlined above is an informal application of transfinite
induction, a generalization of the ordinary induction over the set of natural numbers.

One final remark, the existence of basis is usually given as an application of the so called
Zorn’s Lemma, a statement equivalent to the axiom of choice. Roughly speaking, Zorn’s
Lemma guarantees that if we have a class of sets C that is closed under unions of increas-
ing families, then there is a maximal element in that class, i.e. a set that is not a subset of
any other set in C. If we take C to be the set of all linearly independent subsets of V , then
C is closed under unions of increasing families and so there is a maximal element in C, i.e.
there exists a maximal linearly independent subset of V . But by Item (d) of Theorem 4.3.2, a
maximal linearly independent subset is a basis.

A quick note on dimension. We note that Theorem 2.2.3 does not hold in general. If V is
infinite dimensional with basis B, and B′ is a linearly independent subset of V with ∣B′ ∣ = ∣B′ ∣
it does not follow that B′ is a basis. For example,

B′ = {x2k ∶ k ∈ N} ⊆K[x]
is linearly independent and has the same cardinality as the standard basis of K[x] but clearly3

B′ is not a basis.
Dealing seriously with the cardinality of infinite sets is beyond the scope of these notes, as

it requires a deeper excursion into the wild world of set theory. However, Lemma 2, holds for
all vector spaces and this allow us to prove that if B and B′ are two bases of the vector space
V then ∣B′ ∣ ≤ ∣B ∣ .
Indeed, each v ∈ B′ can replace some element of B and to give us a new basis B′′ that has the
same cardinality as as B and B′ ⊆ B′′.

But similarly, ∣B ∣ ≤ ∣B′ ∣ ,
and therefore ∣B′ ∣ = ∣B′ ∣ .

We remark, that in the case of infinite sets the seemingly “obvious” statement

∣B′ ∣ ≤ ∣B ∣ and ∣B ∣ ≤ ∣B′ ∣ Ô⇒ ∣B′ ∣ = ∣B′ ∣ ,
is called the Cantor–Bernstein Theorem4 and is rather subtle, not obvious by any means.

In any case, even though we haven’t really rigorously proved Theorem 4.3.3 in the case of
infinitely dimensional spaces, I hope that the discussion in this Appendix gives you enough
confidence to believe that a proof does indeed exist.

2Actually, given the other axioms of set theory, the axiom of choice is equivalent to the statement that every
vector space has a basis.

3Is it clear to you?
4The name Cantor–Schröder–Bernstein Theorem is also often used.





APPENDIX E

Homework

In this appendix we collect the assigned homework and provide solutions and answers.

E.1. Homework Set 1

Exercise E.1 Solve each of the following systems:
(a) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x + 2y + 3z = 0
3x + y + 2z = 0
2x + 3y + z = 0

.

ANSWER. This is a homogeneous system. A row echelon form of the coefficient ma-
trix is

A
⎛⎜⎝
1 0 11

0 1 5

0 0 18

⎞⎟⎠ .
Since there are no free columns we conclude that the system has only the trivial solution.
The solution set is therefore {(0,0,0)}. �

(b) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x − y + z = 0

−x + 3y + z = 5

3x + y + 7z = 2
.

ANSWER. The system is inconsistent. The solutions set is ∅. �

(c) ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1
5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

.

ANSWER. The reduced echelon form (after discarding a zero row) of the augmented
matrix is ⎛⎜⎝

1 3 0 4 2 0

0 0 1 2 0 0

0 0 0 0 0 1

RRRRRRRRRRRRR
0

0

1/3
⎞⎟⎠ .

So the solution is

x1 = −3 s − 4 t − 2w, x2 = s, x3 = −2 t, x4 = t, x5 = w, x6 =
1

3
.

�
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Exercise E.2 Find conditions on the real numbers a, b, c, if any, so that the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x + y = 0

y + z = 0

x − z = 0

ax + by + cz = 0

(a) is inconsistent.
(b) Has a unique solution.
(c) Has more than one solution.

ANSWER. We can immediately answer the first part. This is a homogeneous system and is
therefore consistent. Thus there exists no conditions on a, b, c that the system is inconsistent.

To answer parts (b) and (c) we proceed to reduce the matrix of the system to an echelon
form.

⎛⎜⎜⎜⎝
1 1 0

0 1 1

1 0 −1
a b c

⎞⎟⎟⎟⎠ ∼
⎛⎜⎜⎜⎝
1 1 0

0 1 1

0 −1 −1
0 b − a c

⎞⎟⎟⎟⎠ ∼
⎛⎜⎝
1 1 0

0 1 1

0 b − a c

⎞⎟⎠ ∼
⎛⎜⎝
1 1 0

0 0 1

0 b − a c

⎞⎟⎠ ∼
⎛⎜⎝
1 1 0

0 b − a c

0 0 1

⎞⎟⎠ .
If b ≠ a then the system has a unique solution. If b = a then the second column is free and

thus the system has more than one solutions. �

Exercise E.3 Consider the 2 × 2 matrix

A = (a b

c d
)

where a, b, c, d ∈ R.
(a) Prove that if ad − b c ≠ 0 then the reduced row echelon form of A is

(1 0

0 1
)

SOLUTION. Set D = ad − b c. We are given D ≠ 0. We distinguish two cases:

Case I: a = 0. Then we interchange the rows and we get

A = (0 b

c d
) ∼ (c d

0 b
) .

Since, D ≠ 0 we have b c ≠ 0 and therefore b ≠ 0 and c ≠ 0. So we divide the second
row by b, and the first row by c and we have

A ∼ (1 d/c
0 1

) .
Finally we add −d/c times the second row to the first and we get

A ∼ (1 0

0 1
)

.
Case II: a ≠ 0. We first divide the first row by a, then add −c times the first row to the

second, and get

A ∼ (1 b/a
c d

) ∼ (1 b/a
0 d − (b c)/a) = (1 b/a

0 (ad − b c)/a) = (1 b/a
0 D/a) .
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Since D ≠ 0 we can multiply the second row by a/D, and then add −a/b times the
second row to the first:

A ∼ (1 b/a
c 1

) ∼ (1 0

0 1
) .

�

(b) Prove that if ad − b c ≠ 0 then the system

{ ax + by = k
cx + dy = l

has a unique solution, for all real numbers k, l.
SOLUTION. This follows from Part (a) and the second Item of Theorem 1.2.8. �

REMARK 24. In Section refsec:2x2 we treat 2 × 2 systems in detail.

Exercise E.4 Prove that there is a unique line passing through any two distinct points of the
plane.

SOLUTION. A line is a set of points in R2 whose coordinates (x, y)satisfy a linear equation
of the form

(E.1) ax + b y + c = 0
where a, b, c ∈ R and at least one of a, b is non-zero. A non-zero multiple of Equation (E.1)
defines the same line.

Let (x1, y1) and (x2, y2) two points, to find all lines that pass through these two points we
solve the system

{ ax1 + b y1 + c = 0
ax2 + b y2 + c = 0

for a, b, c.
Set ∆x = x2 − x1, and ∆y = y2 − y1. Since the points are distinct at least one of ∆x, ∆y is

non-zero. Without loss of generality we assume that ∆x ≠ 0. Subtracting the two equations
we get

a∆x + b∆y = 0 Ô⇒ a = −∆y

∆x
b.

Substituting in the first equation we get

−x1∆y

∆x
b + y1 b + c = 0 Ô⇒ c = (x1(y2 − y1) − y1(x2 − x1)

x2 − x1

) b Ô⇒ c =
x1y2 − x2y1

x2 − x1

b

So the solution is

⎛⎜⎝
a

b

c

⎞⎟⎠ = t
⎛⎜⎜⎜⎜⎜⎝

x1 y2 − x2 y1

x2 − x1

1

y2 − y1
x2 − x1

⎞⎟⎟⎟⎟⎟⎠
, t ∈ R.

Thus all equations of the form (E.1) that are satisfied by the coordinates of both points are
multiples of the same equation and therefore determine the same line. �

Exercise E.5 Find the cubic polynomial

p(x) = ax3 + bx2 + cx + d
given that p(1) = 0, p(2) = 3, p(−1) = −6, and p(−2) = −21.
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ANSWER. Substituting the given values we get the system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a + b + c + d = 0
8a + 4b + 2c + d = 3
−a + b − c + d = −6
−8a + 4b − 2c + d = −21

.

Passing to the augmented matrix we have

⎛⎜⎜⎜⎝
1 1 1 1

8 4 2 1

−1 1 −1 1

−8 4 −2 1

RRRRRRRRRRRRRRRRRR

0

3

−6
−21

⎞⎟⎟⎟⎠ ∼
⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

RRRRRRRRRRRRRRRRRR

1

−2
2

−1

⎞⎟⎟⎟⎠ .
Therefore the polynomial is

p(x) = x3 − 2x2 + 2x − 1.
�

Exercise E.6 Look at Examples 5 and 6. There is a geometric reason why in Example 6 the
polynomial we got was not quadratic. The graph of a quadratic polynomial is a parabola so
in these examples we were trying to find a parabola that passes through three distinct points.
But the points of Example 6 are colinear and so there is no parabola that passes through all
three of them.
(a) Prove that given any three distinct real numbers x1, x2, x3 and any three real numbers

y1, y2, y3 we can always find a polynomial p(x) = ax2+bx+c such that p(x1) = y1, p(x2) = y2,
and p(x3) = y3.

SOLUTION. Let a, b, c ∈ R be the coefficients of p. Then (a, b, c) is a solution of the
system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c + x1 b + x2

1 a = y1
c + x2 b + x2

2 a = y2
c + x3 b + x2

3 a = y3

The augmented matrix of the system is

⎛⎜⎝
1 x1 x2

1

1 x2 x2
2

1 x3 x2
3

RRRRRRRRRRRRR
y1
y2
y3

⎞⎟⎠ .
Subtracting the first row from the other two we get

⎛⎜⎝
1 x1 x2

1

0 x2 − x1 x2
2 − x2

1

0 x3 − x1 x2
3 − x2

1

RRRRRRRRRRRRR
y1

y2 − y1
y3 − y1

⎞⎟⎠ .
Since x1, x2 and x3 are distinct, x2 − x1 and x3 − x1 are non-zero. We can also assume that
x1 ≠ 0, for if it is zero then x2 is non-zero and we just rename our numbers. So we can
divide each row by its leading entry to get1

⎛⎜⎝
1 1 x1

0 1 x2 + x1

0 1 x3 + x1

RRRRRRRRRRRRR
y1/x1(y2 − y1)/(x2 − x1)(y3 − y1)/(x3 − x1)

⎞⎟⎠ .
Now subtract the second row from the third to get

1Remember “Difference of Squares”?
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⎛⎜⎝
1 1 x1

0 1 x2 + x1

0 0 x3 − x2

RRRRRRRRRRRRR
y1/x1(y2 − y1)/(x2 − x1)(y3 − y1)/(x3 − x1) − (y2 − y1)/(x2 − x1)

⎞⎟⎠ .
Since, x3 − x2 ≠ 0 we conclude that the system has a unique solution. �

(b) The polynomial in part (a) is quadratic (i.e. a ≠ 0) if and only if the points (x1, y1), (x2, y2),
and (x3, y3) are not colinear.

SOLUTION. From the echelon form from part one we see that a = 0 if and only if

(E.2)
y3 − y1
x3 − x1

=
y2 − y1
x2 − x1

.

The fraction on the LHS of Equation (E.2) is the slope of the line through the points (x1, y1)
and (x3, y3) and the one on the RHS is the slope of the line through (x1, y1) and (x2, y2).
Since these lines share the point (x1, y1) they are the same line if and only if they have the
same slope. Now (x1, y2), (x2, y2), and (x3, y3) are colinear if and only if these lines are
the same line, and we conclude that a = 0 if and only if the three points are colinear. �

E.2. Second Homework

Exercise E.1 Solve the system ⎧⎪⎪⎪⎨⎪⎪⎪⎩
2x − 5y + 2z − 4s + 2t = 4
3x − 7y + 2z − 5s + 4t = 9
5x − 10y − 5z − 4s + 7t = 22

by first solving the corresponding homogeneous system and then finding a particular solu-
tion. Refer to Example 13 in Section 1.2.3.

ANSWER. The corresponding homogeneous system is⎧⎪⎪⎪⎨⎪⎪⎪⎩
2x − 5y + 2z − 4s + 2t = 0
3x − 7y + 2z − 5s + 4t = 0
5x − 10y − 5z − 4s + 7t = 0

We find the reduced echelon for of its matrix:

⎛⎜⎝
2 −5 2 −4 2

3 −7 2 −5 4

5 −10 −5 −4 7

⎞⎟⎠ ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
11

5

42

5

0 1 0
8

5

16

5

0 0 1 −1
5

3

5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The general solution of the homogeneous system is therefore

⎛⎜⎜⎜⎜⎜⎝

x

y

z

s

t

⎞⎟⎟⎟⎟⎟⎠
=
a

5

⎛⎜⎜⎜⎜⎜⎝

11

8

−1
5

0

⎞⎟⎟⎟⎟⎟⎠
+ b

5

⎛⎜⎜⎜⎜⎜⎝

42

16

3

0

5

⎞⎟⎟⎟⎟⎟⎠
.

To find a particular solution of the original system we try to guess: we substitute values
to some of the variables and solve for the others until we find a solution that works. If we put
z = s = 0 and t = 1 we find that x = 11 and y = 4 works for all equations. So (11,4,0,1,0) is a
particular solution and so the general solution of the original system is
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⎛⎜⎜⎜⎜⎜⎝

x

y

z

s

t

⎞⎟⎟⎟⎟⎟⎠
=
a

5

⎛⎜⎜⎜⎜⎜⎝

11

8

−1
5

0

⎞⎟⎟⎟⎟⎟⎠
+ b

5

⎛⎜⎜⎜⎜⎜⎝

42

16

3

0

5

⎞⎟⎟⎟⎟⎟⎠
+
⎛⎜⎜⎜⎜⎜⎝

11

4

0

1

0

⎞⎟⎟⎟⎟⎟⎠
.

�

Exercise E.2 Express the vector c = 3e1 − 2e2 − e3 as a linear combination of the vectors

v1 = e1 + 2e2 + 3e3
v2 = 2e1 + 3e2 + e3
v3 = 3e1 + e2 + 2e3.

ANSWER. The coefficients x, y, z will be solutions of the system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x + 2y + 3z = 3
2x + 3y + z = −2
3x + y + 2z = −1

.

Working with the augmented matrix we get

⎛⎜⎝
1 2 3

2 3 1

3 1 2

RRRRRRRRRRRRR
3

−2
−1
⎞⎟⎠ ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRRRRRRRRRRRRRRRR

−4
3

−1
3
5

3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

So,

c = −4
3
v1 − 1

3
v2 + 5

3
v3.

�

Exercise E.3 Express the vector c = 5e1 − e2 + 3e3 as a linear combination of the vectors

v1 = e1 − 2e2 + 3e3
v2 = 4e1 + e2
v3 = e1 − 11e2 + 15e3,

in three different ways.

ANSWER. The augmented matrix of the system we get reduces to

(1 0 5

0 1 −1 ∣ 11) .
and the solution is

(x, y, z) = t (−5,1,1) + (1,1,0).
Setting arbitrarily, t = 0,±1, we get three different solutions:
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c = v1 + v2

= −4v1 + 2v2 + v3

= 6v1 − v3.

�

Exercise E.4 Find a vector c that cannot be expressed as a linear combination of the vectors
v1, v2, and v3 of the previous exercise.

SOLUTION. From the previous question we know that reduced echelon form of the matrix
A with columns v1, v2, and v3 has a zero row. If c is such that the matrix A augmented by c

has at that point transformed to a matrix that has a non-zero entry in that row, the system is
inconsistent and therefore c cannot be expressed as a linear combination of v1, v2, and v3.

Let’s apply the Gauss-Jordan procedure then until we get the zero row.

⎛⎜⎝
1 4 1

−2 1 −11
3 0 15

⎞⎟⎠ ∼
⎛⎜⎝
1 4 1

0 9 −9
0 −12 12

⎞⎟⎠ ∼
⎛⎜⎝
1 4 1

0 1 −1
0 −1 1

⎞⎟⎠ ∼
⎛⎜⎝
1 4 1

0 1 −1
0 0 0

⎞⎟⎠ .
We applied, in order, the following row operations:

(a) Added 2 times the first row to the second.
(b) Added −3 times the first row to the third.
(c) Divided the second row by 3.
(d) Divided the third row by 4.
(e) Added the second row to the third.

If we start with any vector c′ with non-zero third coordinate and apply the reverse of the
above operations, in reverse order, we will get a vector c that is not in the span of {v1,v2,v3}.
For example starting with c′ = (1,3,−2) we get

(1,3,−2) ∼ (1,3,−5) ∼ (1,3,−5
4
) ∼ (1,1,−5

4
) ∼ (1,1, 7

4
) ∼ (1,−1, 7

4
) .

So, one such c is

c = e1 − e2 + 7

4
e3.

�

REMARK 25. In the above solution I chose a random vector to illustrate the idea. However
there is a much easier choice, I could have chosen c′ = (0,0,4). Then only the fourth of the
operations affect c′ and as a result I would get c = e3.

Note that since {v1,v2,v3} is not spanning we know that at least one vector from the
standard basis (or any basis) of R3 is not in ⟨v1,v2,v3⟩2.
Exercise E.5 Let

A = (a11 a12
a21 a22

) , B = (b11 b12
b21 b22

) , x = (x1

x2
) .

Let y = B x. Find the vector z = Ay.

SOLUTION. We first find y:

y = (b11 b12
b21 b22

) (x1

x2
) = (b11 x1 + b12 x2

b21 x1 + b22 x2
) .

2Why?
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Now z:

z = (a11 a12
a21 a22

) (b11 x1 + b12 x2

b21 x1 + b22 x2
) = (a11 (b11 x1 + b12 x2) + a12 (b21 x1 + b22 x2)

a21 (b11 x1 + b12 x2) + a22 (b21 x1 + b22 x2)) .
We now factor x1 and x2 to get

z = ((a11 b11 + a12 b21) x1 + (a11 b12 + a12 b22) x2(a21 b11 + a22 b21) x1 + (a21 b12 + a22 b22) x2
) .

�

Exercise E.6 Find a 2 × 2 matrix A that interchanges e1 and e2, in other words such that

Ae1 = e2 and Ae2 = e1.

SOLUTION. If A = (a b

c d
) then

Ae1 = (a b

c d
) (1

0
) = (a ⋅ 1 + b ⋅ 0

c ⋅ 1 + d ⋅ 0) = (ac) ,
and

Ae1 = (a b

c d
) (0

1
) = (a ⋅ 0 + b ⋅ 1

c ⋅ 0 + d ⋅ 1) = (bd) .
So we have the following two vector equations

(a
c
) = (0

1
) and (b

d
) = (1

0
) .

Thus the matrix is

A = (0 1

1 0
) .

�

Exercise E.7 Prove that if

a1 b2 − a1 b3 + a2 b3 − a3 b2 + a3 b1 − a2 b1 ≠ 0
then the system ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x + a1y + b1z = c1
x + a2y + b2z = c2
x + a3y + b3z = c3

has a unique solution for all real numbers c1, c2, c3.

ANSWER. We proceed to get an echelon form of the augmented matrix of the system.

⎛⎜⎝
1 a1 b1
1 a2 b2
1 a3 b3

RRRRRRRRRRRRR
c1
c2
c3

⎞⎟⎠ ∼
⎛⎜⎝
1 a1 b1
0 a2 − a1 b2 − b1
0 a3 − a1 b3 − b1

RRRRRRRRRRRRR
c1

c2 − c1
c3 − c1

⎞⎟⎠ .
Now notice that the condition given implies that at least one of a2 − a1, a3 − a1 is non-zero.

For, if both were zero then we would have a1 = a2 = a3 and the LHS of the condition would
be zero. Assume then that a2 − a1 ≠ 0 so we can divide the second row by it. Do that and then
add (a1 −a3) times the second row to the third. The second entry of the third row will then be
0 while the third is
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b3 − b1 + (a1 − a3)(b2 − b1)
a2 − a1 .

Combining and expanding this will give a fraction with numerator the LHS of the given
inequality. Thus the third entry of the third row is non-zero. It follows that the system has a
unique solution. �

E.3. Homework 3

Exercise E.1 Let S1 and S2 be two subsets of Rn with S1 ⊆ S2. Prove
(a) If S1 is spanning then S2 is also spanning.
(b) If S1 is linearly dependent then S2 is also linearly dependent.
(c) If S2 is linearly independent then S1 is also linearly independent.

SOLUTION. Note that (b) and (c) are logically equivalent: (c) is the contrapositive of (b).
So we’ll prove (a) and (b). Both follow from the fact that a linear combination of elements of
S1 is also a linear combination of elements of S2.
(a) If S1 is spanning then every vector v ∈ Rn can be expressed as a linear combination of

elements of S1, and hence as a linear combination of elements of S2. Therefore S2 is
spanning.

(b) If S1 is linearly dependent then 0 can be expressed as a non-trivial linear combination of
elements of S1, and hence as a non-trivial linear combination of elements of S2. Therefore
S2 is linearly dependent.

�

Exercise E.2 Decide whether each of the following subsets is a vector subspace of the given
standard real vector space.
(a) {(x,3x + y,0, y − z) ∶ x, y, z ∈ R} ⊆ R4.
(b) {(x, y, z) ∈ R3 ∶ x, y, z ∈ R and 3x − 4 y = 11 z}.
(c) The set of points in R2 that lie in the parabola y = x2.
(d) The set of points in R3 that lie in the plane with equation 2x − 3y + 4z = 0.
(e) The set of points in R3 that lie in the plane with equation 2x − 3y + 4z = 8.
(f) {(x,2,3x + 4y, y − z) ∶ x, y, z ∈ R} ⊆ R4.
(g) {(3w,2 z − 5 t, x − 4 y + 5 t,−2x + z − 3t + 4w) ∶ x, y, z,w, t ∈ R} ⊆ R4.

ANSWER. (a) Yes, this is a vector subspace of R4. It is nonempty since it contains the zero
vector. Simple calculations show that

λ (x1,3x1 + y1,0, y1 − z1) + µ (x2,3x2 + y2,0, y2 − z2)
= (λx1 + µx2,3 (λx1 + µx2) + (y1 + y2),0, (y1 + y2) − (z1 + z2))

So both conditions of Theorem 4.5 hold.
Alternatively we can show that this subset is the linear span of the vectors

(1,3,0,0), (0,1,0,1), (0,0,0,−1).
(b) Yes, this subset is a vector subspace of R3. Perhaps the easiest way to see this is to note

that this subset is the solution set of the homogeneous linear equation 3x − 4 y − 11 z = 0.
(c) No this is not a vector subspace. For example it contains v = (1,1) but not 2v = (2,2).
(d) Yes, it’s the solution set of a homogeneous linear equation.
(e) No. This subset does not contain the zero vector.
(f) No. This subset does not contain the zero vector.
(g) Yes. We can either use Theorem 4.5 or note that this subset is the linear span of the vectors

(0,0,1,−2), (0,0,−4,0), (0,2,0,1), (0,−5, 5,4), (3,0, 0,4).
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�

Exercise E.3 For those subsets in Question E.2 that are subspaces find a basis and the dimen-
sion.

ANSWER. For (a) we have the spanning set

S = {(1,3,0,0), (0,1,0,1), (0,0,0,−1).} .
The reduced echelon form is:

⎛⎜⎜⎜⎝
1 0 0

3 1 0

0 0 0

0 1 −1

⎞⎟⎟⎟⎠ ∼
⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

0 0 0

⎞⎟⎟⎟⎠ .
There are no free columns so these vectors are linearly independent, and form a basis.

Therefore the dimension is 3.

For (b) we first find a spanning set. We have that the solution is

(x, y, z) = (1
3
(4t + 11s) , t, s) = t (4

3
,1,0) + s (11

3
,0,1).

The set {(4
3
,1,0), (11

3
,0,1)} is thus spanning and since it’s linear independent if forms a

basis. The dimension is therefore 2.

(d) is similar to (c). There are two free variables, y, z, and we again get a 2-dimensional
subspace. A basis is

{(3
2
,1,0) , (2,0,1)} .

(g) is similar to (a). The basic columns are the first, second, third, and fifth. So a basis is

{(0,0,1,−2), (0,0,−4,0), (0,2,0,1), (3,0,0, 4)} ,
and the dimension is 4. �

Exercise E.4 Which of the following subsets of R3 are a basis?
(a) {(1,2,3), (3,2,1)}.
(b) {(1,1,2), (1,−2,0), (2,0,1)}
(c) {(1,2,3), (3,1,2), (2,3,1)}.
(d) {(1,2,3), (1,1,0), (0,3,1), (1,0,0)}.

ANSWER. A basis of R3 contains exactly 3 vectors, so (a) and (d) are not bases. Both (b)
and (c) are bases since the reduced echelon form of the matrices with columns those vectors
is the identity matrix. �

Exercise E.5 Let

B = {(1,1,1,1,1), (0,1,1,1,1), (0,0,1,1,1), (0,0,0, 1,1), (0,0, 0,0,1)} .
(a) Prove that B is a basis of R5.
(b) Express the elements of the standard basis of R5 as linear combinations of elements of B.

ANSWER. As indicated in the hint, if we succeed in completing part (b), that is if we ex-
press every vector of the standard basis as a linear combination of elements of B then it fol-
lows that B is a basis3.

3Why?
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Let vi, i = 1, . . . ,5 be the elements of B in the order given. We augment the matrix with
columns the vectors of B with the five vectors of the standard basis and find its reduced
echelon form.

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

RRRRRRRRRRRRRRRRRRRRRR

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

RRRRRRRRRRRRRRRRRRRRRR

1 0 0 0 0

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎠
.

Therefore

e1 = v1 − v2

e2 = v2 − v3

e3 = v3 − v4

e4 = v4 − v5

e5 = v5.

�

Exercise E.6 Let T ∶ R3
→ R4 be defined by

T (x, y, z) = (x + 2 y + z, x + y, y − 3 z,4x − 3 y + 2 z).
(a) Prove that T is linear.
(b) Find the matrix of T .

ANSWER. (a) We need to check that for λi ∈ R and vi = (xi, yi, zi) ∈ R3, where i = 1,2 we
have:

T (λ1 v1 + λ2 v2) == λ1 T v1 + λ2 T v2.

This is a straightforward calculation.
(b) We have

T e1 = (1,1,0,4), T e2 = (2,1,−1,−3), T e3 = (1,0,−3,2).
So the matrix is

T =

⎛⎜⎜⎜⎝
1 2 1

1 1 0

0 −1 −3
4 −3 2

⎞⎟⎟⎟⎠ .
�

Exercise E.7 Let

A =
⎛⎜⎝
1 2 3

0 2 1

1 0 3

⎞⎟⎠ .
(a) Prove that the columns of A form a basis of R3.
(b) Express each of the vectors in the standard basis of R3 as linear combinations of the

columns of A.
(c) Let T be the linear function that sends the i-th column to the i-th row of A. That is if a1,

a2, and a3 are the columns of A then T is defined by

T a1 = (1,2,3), T a2 = (0,2,1), T a3 = (1,0,3).
Find the matrix of T .
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ANSWER. (a) The reduced echelon form of A is the identity matrix.
(b) We have

⎛⎜⎝
1 2 3

0 2 1

1 0 3

RRRRRRRRRRRRR
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0

0 1 0

0 0 1

RRRRRRRRRRRRR
3 −3 −2
1/2 0 −1/2
−1 1 1

⎞⎟⎠ .
And so, letting ai be the columns of A, we have:

e1 = 3a1 + 1
2
a2 − a3

e2 = −3a1 + a3

e3 = −2a1 − 1

2
a2 + a3.

(c) We need to find T ei for i = 1,2,3. We will use the linearity of T and the expressions of ei
as linear combinations of ai from Part (b).
We have:

T e1 = T (3a1 + 1

2
a2 − a3)

= 3T a1 + 1

2
T a2 − T a3

= (3,6,9) + (0,1, 1
2
) − (1,0,3)

= (2,7, 13
2
) .

Similarly,

T e2 = (−2,−6,−6), T e3 = (−1,−5,−7
2
) .

Thus T is induced by the matrix

T =

⎛⎜⎜⎜⎜⎝

2 −2 −1
7 −6 −5
13

2
−6 −7

2

⎞⎟⎟⎟⎟⎠
.

�

Exercise E.8 Find a polynomial of degree at most 4 that satisfies the following conditions

p(0) = −5, p(−1) = −10, p(1) = 0, p(2) = 29, p(−2) = −15.
PROOF. The polynomial is

p(x) = x4 + 2x3 − x2 + 3x − 5.
�

Exercise E.9 Let V be the subspace of R5 spanned by the vectors

v1 = (1,2,−1,3,4), v2 = (2,4,−2,6,8),
v3 = (1,3,2,2,6), v4 = (1,4,5,1,8),
v5 = (2,7,3,3,9), v6 = (4,9,−1,11,18).
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Find a basis and the dimension of V .

ANSWER. We have:

⎛⎜⎜⎜⎜⎜⎝

1 2 0 −1 0 3

0 0 1 2 0 1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
∼

⎛⎜⎜⎜⎜⎜⎝

1 2 0 −1 0 3

0 0 1 2 0 1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
So {v1,v3,v5} is a basis, and the dimension of the subspace is 3. �

;

E.4. Homework 4

Exercise E.1 Let A be an m × k matrix and B a k × n matrix. Prove that

kerB ⊆ kerAB.

SOLUTION. We have

x ∈ kerB Ô⇒ B x = 0

Ô⇒ A (B x) = 0
Ô⇒ (AB)x = 0
Ô⇒ x ∈ ker (AB) .

Therefore,

kerB ⊆ kerAB.

�

Exercise E.2 Let A be a 4 × 3 matrix and B a 3 × 4 so that AB is a square 4 × 4 matrix. Prove
that AB is not invertible.

SOLUTION. We will prove that

ker (AB) ≠ {0} ,
and so AB is not injective. To do that we will prove that kerB ≠ {0} and the result follows
from Question 1.

By the Rank-Nullity Theorem (see Theorem 3.2.4 in the notes) we have

rankB + nullB = 4,
which gives

(E.3) nullB = 4 − rankB.

But rankB ≤ 3 and therefore Equation (E.3) gives

nullB ≥ 1,

that is

dim (kerB) ≥ 1.
It follows that

kerB ≠ {0} .
�
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Exercise E.3 Find a basis and the dimension of the solution set of the following homogeneous
system: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1 − 3x2 + x4 + x5 = 0

2x1 − 6x2 + 2x3 + 4x4 + 2x5 = 0

−3x1 + 4x2 + x5 = 0

x2 + x3 + x4 = 0

ANSWER. We get the reduced echelon form of the matrix of the system:

A =

⎛⎜⎜⎜⎝
1 −3 0 1 1

2 −6 2 4 2

−3 4 0 0 1

0 1 1 1 0

⎞⎟⎟⎟⎠ ∼
⎛⎜⎜⎜⎝
1 0 0 0 −1/3
0 1 0 0 0

0 0 1 0 −4/3
0 0 0 1 4/3

⎞⎟⎟⎟⎠
The solution set is therefore ⎛⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎠
= t

⎛⎜⎜⎜⎜⎜⎝

1/3
0

4/3
−4/3
1

⎞⎟⎟⎟⎟⎟⎠
.

Thus the solution set is the linear span ⟨(1/3,0,4/3,−4/3,1)⟩, and has, therefore, dimension 1.
�

Exercise E.4 For each of the following two transpose matrices:

A =

⎛⎜⎜⎜⎝
1 2 3 1 2

2 1 2 3 1

3 3 5 4 3

1 −1 −1 2 −1

⎞⎟⎟⎟⎠ , A∗ =

⎛⎜⎜⎜⎜⎜⎝

1 2 3 1

2 1 3 −1
3 2 5 −1
1 3 4 2

2 1 3 −1

⎞⎟⎟⎟⎟⎟⎠
.

(a) Find a basis for their ranges and state their rank.
ANSWER. We have

A ∼

⎛⎜⎜⎜⎝
1 0 1/3 5/3 0

0 1 4/3 −1/3 1

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎠ .
Thus a basis for R(A) is {(1,2,3,1), (2,1,3,−1)} and so rankA = 2.
For A∗ we have

A∗ ∼

⎛⎜⎜⎜⎜⎜⎝

1 0 1 −1
0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
.

Thus a basis for R (A∗) is {(1,2,3,1,2), (2,1,2,3,1)}, and so rankA∗ = 2. �

(b) Find a basis for their kernels and state their nullity.
ANSWER. From the reduced echelon forms in Part (a) we have that a basis for the

kernel of A is

{(−1/3,−4/3,1,0,0), (−5/3,1/3,0,1,0), (0,1,0,0,1)} .
Thus nullA = 3.
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Similarly, a basis for the kernel of A∗ is

{(−1,−1,1,0), (1,−1,0,1)} .
Thus nullA∗ = 2. �

Exercise E.5 Find the inverse of each of the following matrices:

A =
⎛⎜⎝
1 2 −1
2 2 4

1 3 −3
⎞⎟⎠ , B =

⎛⎜⎜⎜⎝
1 2 1 0

0 1 −1 1

1 3 1 −2
1 4 −2 4

⎞⎟⎟⎟⎠ , C =

⎛⎜⎜⎜⎝
1 2 0 −2
0 2 1 4

0 0 3 0

0 0 0 −8

⎞⎟⎟⎟⎠ .
ANSWER. We have

⎛⎜⎝
1 2 −1 1 0 0

2 2 4 0 1 0

1 3 −3 0 0 1

⎞⎟⎠ ∼
⎛⎜⎝
1 0 0 9 −3/2 −5
0 1 0 − 5 1 3

0 0 1 − 2 1/2 1

⎞⎟⎠ .
Therefore,

A−1 =
⎛⎜⎝
9 −3/2 −5
−5 1 3

−2 1/2 1

⎞⎟⎠ .
Similarly,

B−1 =

⎛⎜⎜⎜⎝
−10 −20 4 7

3 6 −1 −2
5 8 −2 −3
2 3 −1 −1

⎞⎟⎟⎟⎠ , C−1 =

⎛⎜⎜⎜⎝
1 −1 1/3 −3/4
0 1/2 −1/6 1/4
0 0 1/3 0

0 0 0 −1/8
⎞⎟⎟⎟⎠ .

�

Exercise E.6 Let C be the following set of 2 × 2 matrices.

C = {(a −b
b a

) ∶ a, b ∈ R} .
Prove the following:
(a) C is closed under matrix addition. That is,

A,B ∈C Ô⇒ A +B ∈C.

(b) C is closed under scalar multiplication. That is,

λ ∈ R, A ∈ C Ô⇒ λA ∈C.

In particular,

A ∈C Ô⇒ −A ∈C.

(c) C is closed under matrix multiplication. That is,

A,B ∈C Ô⇒ AB ∈C.

(d) All non-zero elements of C are invertible, and

A ∈ C, A ≠ O Ô⇒ A−1 ∈C.

(e) Any two elements of C commute. That is,

A,B ∈ C Ô⇒ AB = BA.
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(f) Let

J = (0 −1
1 0

)
Verify that

J2 = −I.
(g) what is J503?
(h) Every element of C can be uniquely expressed as a linear combination of I and J . In

other words, if A ∈C then there exist two unique real numbers a, b such that

A = aI + bJ.
(i) Let A ∈ C with A = aI + bJ with at least one of a, b non-zero. Express A−1 as a linear

combination of I and J .
(j) Prove that every non-zero element of C has exactly two square roots. That is, prove that if

A ≠ O is an element of C then there are exactly two elements B ∈ C such that B2 = A.
(k) Prove the that every quadratic equation

AX2 +BX +C = O
where A,B,C ∈C and A ≠ 0, has two solutions (that may coincide) in C.

ANSWER. Parts (a) through (e) are straightforward calculations, very similar to Exam-
ple 52 in the notes. Let

A1 = (a1 −b1b1 a1
) , A2 = (a2 −b2b2 a2

) ,
be two elements of C and λ ∈ R. We have
(a)

A1 +A2 = (a1 + a2 −b1 − b2b1 + b2 a1 + a2 ) = (a1 + a2 −(b1 + b2)b1 + b2 a1 + a2 ) ∈ C.
(b)

λA1 = (λa1 λ (−b1)
λb1 λa1

) = (λa1 −(λb1)
λb1 λa1

) ∈C.

(c)

A1A2 = (a1 a2 + b1 b2 − (a1 b2 + a2 b1)a1 b2 + a2 b1 a1 a2 + b1 b2 ) ∈C.

(d) Using the result of Example 43, we need to prove that if A1 ∈ C is non-zero then the
determinant of A is non-zero. But the determinant of A1 is

a1 a1 − (−b1) b1 = a21 + b21.
But if A1 ≠ O then at least one of a1, b1 is non-zero and therefore the determinant a21+b21 ≠ 0
and thus A1 is invertible.
Then using Equation (3.9) we have

A−11 =
1

a21 + b21
( a1 b1
−b1 a1

) .
Now

( a1 b1
−b1 a1

) = ( a1 −(−b1)
−b1 a1

) ∈C
and therefore by Part (b) it follows that A−1 in C.
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(e) This is a straightforward calculation.
(f) Again this is a straightforward calculation.
(g) Since J2 = −I we have J3 = −J and J4 = I . It follows then that for k, ℓ ∈ Z we have

J4k+ℓ = (J4)k J ℓ = Ik J ℓ = J ℓ.

Now 503 = 4 ⋅ 125 + 3 and therefore

J503 = J3 = −J = ( 0 1

−1 0
) .

(h) We have

(a −b
b a

) . = a (1 0

0 1
) + b (0 −1

1 0
) = aI + bJ.

This representation is unique because

a1 I + b1 J = a2 I + b2 J Ô⇒ (a1 −b1b1 a1
) = (a2 −b2

b2 a2
) ,

and so a1 = a2 and b1 = b2.
(i) From the calculation in Part (d) we have

(aI + bJ)−1 = a

a2 + b2 I −
b

a2 + b2 J.
(j) Following the hint assume that

B = (x −y
y x

) ∈ C
satisfies B2 = A.
Now

B2 = (x2 − y2 −2xy
2xy x2 − y2)

and so if B2 = A we have the system4

(E.4) { x2 − y2 = a
2xy = b

.

Now we consider two cases:
● Case I: b ≠ 0. Then the second equation gives that x ≠ 0 and y ≠ 0 and

(E.5) y =
b

2x
.

Substituting in the first equation then gives

x2 − b2

4x2
= a ⇐⇒ 4x4 − 4ax2 − b2 = 0.

Using the quadratic formula we have

x2 =
4a ±√16a2 + 16 b2

8
=
a ±√a2 + b2

2

and since a2 + b2 > a2 we have
√
a2 + b2 > a and therefore the

a −√a2 + b2
2

< 0.

4Notice that this is not a linear system.
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Since x is a real number, x2 ≥ 0 and therefore only the solution

x2 =
a +√a2 + b2

2

is acceptable. Thus we have

x = ±
√

a +√a2 + b2
2

.

Substituting into Equation (E.5) we get

y = ± b√
a +√a2 + b2 .

Thus the System (E.4) has two solutions and therefore A has two square roots.

REMARK 26. Alternatively, we could substitute x2 into the first equation of the Sys-
tem (E.4) to get

a +√a2 + b2
2

− y2 = a Ô⇒ y2 =
−a +√a2 + b2

2
Ô⇒ y = ±

√
−a +√a2 + b2

2
.

The two square roots of A are then

√
A = ±

√
2

2

⎛⎜⎝
√
a +√a2 + b2 −

√
−a +√a2 + b2√

−a +√a2 + b2 √
a +√a2 + b2

⎞⎟⎠ .
● Case II: b = 0. Then from the second equation we get x = 0 or y = 0. Since A ≠ O we

have a ≠ 0 and from the first equation of System (E.4) we have that exactly one of
the x, y is 0: If a > 0 then y = 0 and x ≠ 0 and in that case we get solutions

x = ±√a, y = 0.

If a < 0 then x = 0 and y ≠ 0 and in that case we get solutions

x = 0, y = ±√−a.
REMARK 27. When b = 0, A = aI a scalar matrix. Our conclusion is that for a > 0 the scalar
matrix has two square roots ±√a I , while if a < 0 then we have the square roots ±√aJ .

(k) For Z ∈C let us denote by ±√Z the two square roots of Z whose existence was proven in
Part (j). Then I claim that the equation

AX2 +BX +C = O
has the solutions

X =
1

2
(−B ±√B2 − 4AC) A−1.

Indeed, since by Part (e) any two elements of C commute we have

X2 =
1

4
(B2 ∓ 2B√B2 − 4AC +B2 − 4AC) A−2.
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Now we calculate:

AX2 +BX = A (1
4
(B2 ∓ 2B√B2 − 4AC +B2 − 4AC) A−2)

+B (1
2
(−B ±√B2 − 4AC) A−1)

=
1

2
A−1 (B2 ∓B√B2 − 4AC − 2AC)

+ 1

2
A−1 (B2 ±B√B2 − 4AC)

=
1

2
A−1 (−2AC)

= −C.
�

Exercise E.7 For each of the following permutation matrices P :

⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
1 0 0

0 0 1

0 1 0

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎠ ,
⎛⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎠ ,
⎛⎜⎝
0 0 1

0 1 0

1 0 0

⎞⎟⎠ .
Compute P A and AP , where

A =
⎛⎜⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎟⎠ .
ANSWER. The first matrix is the identity matrix and so P A = AP = A.
If

P =
⎛⎜⎝
1 0 0

0 0 1

0 1 0

⎞⎟⎠
then

P A =
⎛⎜⎝
a11 a12 a13
a31 a32 a33
a21 a22 a23

⎞⎟⎠ , AP =
⎛⎜⎝
a11 a13 a12
a21 a23 a22
a31 a33 a32

⎞⎟⎠ .
If

P =
⎛⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎠
then

P A =
⎛⎜⎝
a21 a22 a23
a11 a12 a13
a31 a32 a33

⎞⎟⎠ , AP =
⎛⎜⎝
a12 a11 a13
a22 a21 a23
a32 a31 a33

⎞⎟⎠ .
If

P =
⎛⎜⎝
0 0 1

1 0 0

0 1 0

⎞⎟⎠ ,
then
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P A =
⎛⎜⎝
a31 a32 a33
a11 a12 a13
a21 a22 a23

⎞⎟⎠ , AP =
⎛⎜⎝
a12 a13 a11
a22 a23 a21
a32 a33 a31

⎞⎟⎠ .
If

P =
⎛⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎠ ,
then

P A =
⎛⎜⎝
a21 a22 a23
a31 a32 a33
a11 a12 a13

⎞⎟⎠ , AP =
⎛⎜⎝
a13 a12 a11
a23 a22 a21
a33 a32 a31

⎞⎟⎠ .
Finally, if

P =
⎛⎜⎝
0 0 1

0 1 0

1 0 0

⎞⎟⎠ ,
then

P A =
⎛⎜⎝
a31 a32 a33
a21 a22 a23
a11 a12 a13

⎞⎟⎠ , AP =
⎛⎜⎝
a13 a12 a11
a23 a22 a21
a33 a32 a31

⎞⎟⎠ .
�

Exercise E.8 Let

X =
⎛⎜⎝
1 0 0

0 −2 0

0 0 1

⎞⎟⎠ , Y =
⎛⎜⎝
1 0 3

0 1 0

0 0 1

⎞⎟⎠ ,
and let A be as in the previous question. Compute XA, AX , Y A, and AY .

ANSWER. We have

XA =
⎛⎜⎝

a11 a12 a13
−2a21 −2a22 −2a23
a31 a32 a33

⎞⎟⎠ , AX =
⎛⎜⎝
a11 −2a12 a13
a21 −2a22 a23
a31 −2a32 a33

⎞⎟⎠ .
And,

Y A =
⎛⎜⎝
a11 + 3a31 a12 + 3a32 a13 + 3a33

a21 a22 a23
a31 a32 a33

⎞⎟⎠ , AY =
⎛⎜⎝
a11 a12 a11 + 3a13
a21 a22 a23 + 3a21
a31 a32 a33 + 3a31

⎞⎟⎠ .
�

Exercise E.9 Let A = (1 1

0 1
) .

(a) Compute An for n = 0,1,2,3,4.
(b) what pattern do you observe? Conjecture a formula for An based on that pattern.
(c) Prove your conjecture.

ANSWER. (a) We have

A0 = (1 0

0 1
) , A1 = (1 1

0 1
) , A2 = (1 2

0 1
) , A3 = (1 3

0 1
) , A4 = (1 4

0 1
) .
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(b) We conjecture that

An = (1 n

0 1
) .

(c) We proceed by induction. For n = 0 our conjecture is true. Assume then that

An = (1 n

0 1
) .

Then,

An+1 = (1 n

0 1
) (1 1

0 1
) = (1 ⋅ 1 + n ⋅ 0 1 ⋅ 1 + n ⋅ 1

0 ⋅ 1 + 1 ⋅ 0 0 ⋅ 1 + 1 ⋅ 1) = (1 n + 1
0 1

) ,
and we established that our conjecture holds for n + 1 as well. By induction then, our
conjecture is true for all n ∈ N.

�

Exercise E.10 Let

A =
⎛⎜⎝
2 −2 −4
−1 3 4

1 −2 −3
⎞⎟⎠ , B =

⎛⎜⎝
1 1 3

5 2 6

−2 −1 −3
⎞⎟⎠ .

(a) Find A42.
ANSWER. We calculate:

A2 =
⎛⎜⎝
2 −2 −4
−1 3 4

1 −2 −3
⎞⎟⎠ = A.

It follows that An = A for all n ≥ 1. Therefore

A42 = A =
⎛⎜⎝
2 −2 −4
−1 3 4

1 −2 −3
⎞⎟⎠ .

�

(b) Find B101.
ANSWER. We calculate:

B2 =
⎛⎜⎝
0 0 0

3 3 9

−1 −1 −3
⎞⎟⎠ , B3 =

⎛⎜⎝
0 0 0

0 0 0

0 0 0

⎞⎟⎠ = O.

It follows that Bn = O for n ≥ 3. Therefore

B101 = O.

�

Exercise E.11 Let p(x) = x3 − 3x2 + x − 3 and let

A =
⎛⎜⎝
5 0 13

1 3 14

−2 0 −5
⎞⎟⎠ .

Evaluate p (A).
ANSWER. We have

p(A) = ⎛⎜⎝
−9 2 1

7 −12 −2
5 −5 −8

⎞⎟⎠ .
�
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Exercise E.12 Let A = (5 2

0 a
) . Find the real number a if A is a root of the polynomial p(x) =

x2 − 7x + 10.

ANSWER. We have

A2 = (25 2a + 10
0 a2

) ,
and so

p(A) = A2 − 7A + 10 I

= (25 2a + 10
0 a2

) − 7 (5 2

0 a
) + 10 (1 0

0 1
)

= (25 2a + 10
0 a2

) + (−35 −14
0 −7a) + (10 0

0 10
)

= (0 2a − 4
0 a2 − 7a + 10) .

So if A is a root of p(x) we have

(0 2a − 4
0 a2 − 7a + 10) = (0 0

0 0
) .

So we must have

2a − 4 = 0, and a2 − 7a + 10 = 0.
Thus a = 2. �

Exercise E.13 Let

A =
⎛⎜⎝
1 1 0

2 0 −1
3 −1 1

⎞⎟⎠ ,
and let p(x) = x3 − 2x2 − 2x + 6.
(a) Verify that A is a root of p(x).
(b) Express A−1 as a polynomial in A.
(c) Use Part (b) to find A−1.

ANSWER. (a) We calculate

A2 =
⎛⎜⎝
3 1 −1
−1 3 −1
4 2 2

⎞⎟⎠ , A3 =
⎛⎜⎝
2 4 −2
2 0 −4
14 2 0

⎞⎟⎠ .
And then with straightforward calculations we verify that

A3 − 2A2 − 2A + 6 I = O.

(b) We have

A3 − 2A2 − 2A + 6 I = O Ô⇒ A3 − 2A2 − 2A = −6 I
Ô⇒ A (A2 − 2A − 2 I) = −6 I
Ô⇒ A (−1

6
(A2 − 2A − 2 I)) = I.
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Therefore,

A−1 = −1
6
(A2 − 2A − 2 I) .

(c) We have

A−1 = −1
6
(A2 − 2A − 2 I)

= −1
6

⎛⎜⎝
⎛⎜⎝
3 1 −1
−1 3 −1
4 2 2

⎞⎟⎠ − 2
⎛⎜⎝
1 1 0

2 0 −1
3 −1 1

⎞⎟⎠ − 2
⎛⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎠
⎞⎟⎠

= −1
6

⎛⎜⎝
−1 −1 −1
−5 1 1

−2 2 −2
⎞⎟⎠

=
1

6

⎛⎜⎝
1 1 1

5 −1 −1
2 −2 2

⎞⎟⎠ .
�

Exercise E.14 Find all 2 × 2 matrices A = (a b

c d
) that commute with B = (1 2

0 1
) .

SOLUTION. We have

AB = (a 2a + b
c 2 c + d) , B A = (a + 2 c b + 2d

c d
) .

So we have the system ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a = a + 2c
2a + b = b + 2d

c = c

2c + d = d
.

The first equation gives c = 0 and the second a = d. Thus the centralizer of B is

{(a b

0 a
) ∶ a, b ∈ R} .

�

Exercise E.15 Let A and B be two symmetric n × n matrices. Prove that AB is symmetric if
and only if A and B commute.

SOLUTION. Since A and B are symmetric we have A∗ = A and B∗ = B and so

(AB)∗ = B∗A∗ = BA.

Thus (AB)∗ = AB ⇐⇒ BA = AB.

In words, AB is symmetric if and only if A and B commute. �

Exercise E.16 Let A ∈Mn. Prove that A +A∗ is symmetric, where A∗ is the transpose of A.

SOLUTION. We have

(A +A∗)∗ = A∗ + (A∗)∗ = A∗ +A = A +A∗.
�
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Exercise E.17 A square matrix A is called nilpotent if Ak = O for some positive integer k. Prove
that if A is nilpotent then A is not invertible.

SOLUTION. Assume,to get a contradiction, that A is invertible. Then Ak is also invertible

and = (A−1)k. But then

Ak = O Ô⇒ Ak (Ak)−1 = O (Ak)−1
Ô⇒ I = O,

a contradiction. Therefore A is not invertible. �

Exercise E.18 A square matrix A is called idempotent if A2 = A. Find all the matrices that are
both idempotent and invertible.

SOLUTION. If we multiply both sides of the equation

A2 = A

with A−1 we get

A = I.

Thus the only idempotent and invertible matrix is the identity matrix I . �

Exercise E.19 A square matrix is said to be antisymmetric if A∗ = −A, in other words if for all
i, j we have

aji = −aij .
Prove that if A and B are symmetric matrices then AB −BA is antisymmetric.

SOLUTION. We have

(AB −BA)∗ = (AB)∗ − (BA)∗ = B∗A∗ −A∗B∗.
Now if A and B are symmetric we have

B∗A∗ −A∗B∗ = BA −AB = − (AB −BA) .
So if A and B are symmetric matrices then

(AB −BA)∗ = − (AB −BA) ,
and so AB −BA is antisymmetric. �

Exercise E.20 Prove that all permutation matrices in Question E.7 are orthogonal.

SOLUTION. Let P be any permutation matrix. Then the columns of P are obtained from
the standard basis of R3 by applying a permutation. Now for the standard basis of R3 we
have

ei ⋅ ej = δij , i, j = 1,2,3.

Therefore, if pi, i = 1,2,3 are the columns of P we have

pi ⋅pj = δij, i, j = 1,2,3.

By Proposition (8) we have then that P is orthogonal. �
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E.5. Homework 5

Exercise E.1 Let

X =

⎛⎜⎜⎜⎝
x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

⎞⎟⎟⎟⎠ .
(a) Find a matrix A such that

A,X =

⎛⎜⎜⎜⎝
3x41 − 2x21 3x42 − 2x22 3x43 − 2x23 3x44 − 2x41

x31 x32 x33 x34

x11 x12 x13 x14

x21 x22 x23 x24

⎞⎟⎟⎟⎠ .
(b) Find a matrix B such that

XB =

⎛⎜⎜⎜⎝
x14 − 2x13 x12 x11 x14

x24 − 2x23 x22 x21 x24

x34 − 2x33 x32 x31 x34

x44 − 2x43 x42 x41 x44

⎞⎟⎟⎟⎠ .
Exercise E.2 Let

A =
⎛⎜⎝
2 −1 1

6 −3 4

3 −2 3

⎞⎟⎠ .
(a) Verify that A is a root of the polynomial

p(x) = x2 − 3x + 2.
(b) Find A−1.

Exercise E.3 Let

Q(√3) = {a + b√3 ∶ a, b ∈ Q} .
(a) Prove that Q(√3) is a subfield of the field of real numbers R.
(b) Give an explicit formula for (a + b√3)−1.

Exercise E.4 Consider the set F = {0,1, a, b} where a ≠ b. Define addition and multiplication
via the following tables

+ 0 1 a b

0 0 1 a b

1 1 2 b a

a a b 0 1

b b a 1 0

⋅ 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a
.

Prove that F is a field.
Exercise E.5 Consider R2 with the usual addition

(a, b) + (c, d) = (a + c, b + d),
and multiplication given by (a, b) (c, d) = (ac, b d).
Is R2 with these operations a field? Fully justify your answer.
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Exercise E.6 Consider the following matrices5 with complex entries

σx = (0 1

1 0
) , σy = (0 −ii 0

) , σz = (1 0

0 −1) .
Prove that these matrices satisfy the following relations:

(a) σ2
x = σ

2
y = σ

2
z = I .

(b) σx σy = i σz , σy σz = i σz , σz σx = i σy .

(c) σx σy = −σy σx, σx σz = −σz σx, σy σz = −σz σy.

Exercise E.7 Consider a 3 × 3 grid of squares, each either green or red. When we touch a
square its color and the color of its neighbors change, where the neighbors of a square are all
squares that share an edge with it.

1 2 3

4 5 6

7 8 9

Thus for example, if we touch the square numbered 1 the squares numbered 1, 2, and 4

change color, if we touch square 5 then all squares except 1, 3, 7, and 9 change color, and if we
touch 8 then 5, 7, 8, and 9 change colors.

We start with all squares green. Find, if possible, a sequence of squares to touch so that all
squares turn red.
Exercise E.8 Consider the following vectors in C4:

v1 = (1, i,0,−i) v2 = (2 + i,3 i, i,1 − 4 i)
v3 = (5 + i,2 + 6 i,1 + 2 i,7 − 9 i) v4 = (0,3 − i,1 + 1,0).

Find a basis and state the dimension of the linear span C ⟨v1,v2,v3,v4⟩.
Exercise E.9 Consider R as a vector space over Q. Prove that

{√2,√3,√5}
is linearly independent. You may consider Item (a) of Example 93 in the notes known.
Exercise E.10 Let Sn denote the set of n × n symmetric matrices over R (see Definition 29 in
the notes).
(a) Prove that Sn is a vector subspace of Mn.
(b) Find a basis and the dimension of Sn.

Exercise E.11 Consider the vector space R[x] of polynomials with real coefficients. Which of
the following subsets is a vector subspace of R[x]?
(a) V = {p(x) ∈ R[x] ∶ p(42) = 0}.
(b) U = {p(x) ∈ R[x] ∶ p(42) ≥ 0}.
(c) W = {p(x) ∈ R[x] ∶ p(42) = p(0)}.
(d) X = {p(x) ∈ R[x] ∶ deg p(x) = 8}.

Fully justify your answers.
Exercise E.12 Let P3 be the set of real polynomials of degree at most 3:

P3 = {p(x) ∈ R[x] ∶ deg p(x) ≤ 3} .
5These matrices are called Pauli spin matrices. They are used in Quantum Mechanics to compute the spin of

an electron.



E.5. HOMEWORK 5 217

Prove that
B = {1, x − 1, (x − 1)2, (x − 1)3} ,

is a basis of P3.
Exercise E.13 Let S = {A,B,C,D} ⊆M2 where

A = (1 1

0 0
) , B = (0 1

1 0
) , C = (0 0

1 1
) , D = (0 0

0 1
) .

(a) Prove that S is a basis of M2.

(b) Express X = (1 2

3 4
) as a linear combination of elements of S.

Exercise E.14 Find conditions on the complex number z so that the vectors

v1 = (z,0,1), v1 = (0,1, z3), v3 = (z,1,1 + z)
form a basis of C3.
Exercise E.15 Consider the vector space Mn of real n×n matrices, and let B be a basis of Mn.
Prove that

B∗ = {X∗ ∶ X ∈ B}
is also a basis of Mn, where X∗ stands for the transpose of a matrix X .
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