
MTH 42, Fall 2024

Nikos Apostolakis

Fourth Set of homework
The answers

1. Let A be an m× k matrix and B a k × n matrix. Prove that

kerB ⊆ kerAB.

Solution. We have

x ∈ kerB =⇒ B x = 0

=⇒ A (B x) = 0

=⇒ (AB)x = 0

=⇒ x ∈ ker (AB) .

Therefore,
kerB ⊆ kerAB.

2. Let A be a 4×3 matrix and B a 3×4 so that AB is a square 4×4 matrix. Prove that AB is not invertible.

Solution. We will prove that
ker (AB) 6= {0} ,

and so AB is not injective. To do that we will prove that kerB 6= {0} and the result follows from
Question 1.

By the Rank-Nullity Theorem (see Theorem 3.2.4 in the notes) we have

rankB + nullB = 4,

which gives
nullB = 4− rankB. (1)

But rankB ≤ 3 and therefore Equation (1) gives

nullB ≥ 1,

that is
dim (kerB) ≥ 1.

It follows that
kerB 6= {0} .



3. Find a basis and the dimension of the solution set of the following homogeneous system:



















x1 − 3x2 + x4 + x5 = 0

2x1 − 6x2 + 2x3 + 4x4 + 2x5 = 0

−3x1 + 4x2 + x5 = 0

x2 + x3 + x4 = 0

Answer. We get the reduced echelon form of the matrix of the system:

A =









1 −3 0 1 1
2 −6 2 4 2
−3 4 0 0 1
0 1 1 1 0









∼









1 0 0 0 −1/3
0 1 0 0 0
0 0 1 0 −4/3
0 0 0 1 4/3









The solution set is therefore












x1

x2

x3

x4

x5













= t













1/3
0
4/3
−4/3
1













.

Thus the solution set is the linear span 〈(1/3, 0, 4/3,−4/3, 1)〉, and therefore has dimension 1.

4. For each of the following two transpose matrices:

A =









1 2 3 1 2
2 1 2 3 1
3 3 5 4 3
1 −1 −1 2 −1









, A∗ =













1 2 3 1
2 1 3 −1
3 2 5 −1
1 3 4 2
2 1 3 −1













.

(a) Find a basis for their ranges and state their rank.

Answer. We have

A ∼









1 0 1/3 5/3 0
0 1 4/3 −1/3 1
0 0 0 0 0
0 0 0 0 0









.

Thus a basis for R(A) is {(1, 2, 3, 1), (2, 1, 3,−1)} and so rankA = 2.

For A∗ we have

A∗ ∼













1 0 1 −1
0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0













.

Thus a basis for R (A∗) is {(1, 2, 3, 1, 2), (2, 1, 2, 3, 1)}, and so rankA∗ = 2.

(b) Find a basis for their kernels and state their nullity.
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Answer. From the reduced echelon forms in Part (a) we have that a basis for the kernel of A is

{(−1/3,−4/3, 1, 0, 0), (−5/3, 1/3, 0, 1, 0), (0, 1, 0, 0, 1)} .

Thus nullA = 3.

Similarly, a basis for the kernel of A∗ is

{(−1,−1, 1, 0), (1,−1, 0, 1)} .

Thus nullA∗ = 2.

5. Find the inverse of each of the following matrices:

A =





1 2 −1
2 2 4
1 3 −3



 , B =









1 2 1 0
0 1 −1 1
1 3 1 −2
1 4 −2 4









, C =









1 2 0 −2
0 2 1 4
0 0 3 0
0 0 0 −8









.

Answer. We have




1 2 −1 1 0 0
2 2 4 0 1 0
1 3 −3 0 0 1



 ∼





1 0 0 9 −3/2 −5
0 1 0 − 5 1 3
0 0 1 − 2 1/2 1



 .

Therefore,

A−1 =





9 −3/2 −5
−5 1 3
−2 1/2 1



 .

Similarly,

B−1 =









−10 −20 4 7
3 6 −1 −2
5 8 −2 −3
2 3 −1 −1









, C−1 =









1 −1 1/3 −3/4
0 1/2 −1/6 1/4
0 0 1/3 0
0 0 0 −1/8









.

6. Let C be the following set of 2× 2 matrices.

C =

{(

a −b
b a

)

: a, b ∈ R

}

.

Prove the following:

(a) C is closed under matrix addition. That is,

A,B ∈ C =⇒ A+ B ∈ C.

(b) C is closed under scalar multiplication. That is,

λ ∈ R, A ∈ C =⇒ λA ∈ C.

In particular,
A ∈ C =⇒ −A ∈ C.
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(c) C is closed under matrix multiplication. That is,

A,B ∈ C =⇒ AB ∈ C.

(d) All non-zero elements of C are invertible, and

A ∈ C, A 6= O =⇒ A−1 ∈ C.

(e) Any two elements of C commute. That is,

A,B ∈ C =⇒ AB = BA.

(f) Let

J =

(

0 −1
1 0

)

Verify that

J2 = −I.

(g) what is J503?

(h) Every element of C can be uniquely expressed as a linear combination of I and J . In other words,
if A ∈ C then there exist two unique real numbers a, b such that

A = a I + b J.

(i) Let A ∈ C with A = a I + b J with at least one of a, b non-zero. Express A−1 as a linear combination
of I and J .

(j) Prove that every non-zero element of C has exactly two square roots. That is, prove that if A 6= O is
an element of C then there are exactly two elements B ∈ C such that B2 = A.

(k) Prove the that every quadratic equation

AX2 +BX + C = O

where A,B,C ∈ C and A 6= 0, has two solutions (that may coincide) in C.

Answer. Parts (a) through (e) are straightforward calculations, very similar to Example 52 in the notes.
Let

A1 =

(

a1 −b1
b1 a1

)

, A2 =

(

a2 −b2
b2 a2

)

,

be two elements of C and λ ∈ R. We have

(a)

A1 + A2 =

(

a1 + a2 −b1 − b2
b1 + b2 a1 + a2

)

=

(

a1 + a2 −(b1 + b2)
b1 + b2 a1 + a2

)

∈ C.

(b)

λA1 =

(

λ a1 λ (−b1)
λ b1 λ a1

)

=

(

λ a1 −(λ b1)
λ b1 λ a1

)

∈ C.
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(c)

A1A2 =

(

a1 a2 + b1 b2 − (a1 b2 + a2 b1)
a1 b2 + a2 b1 a1 a2 + b1 b2

)

∈ C.

(d) Using the result of Example 43, we need to prove that if A1 ∈ C is non-zero then the determinant
of A is non-zero. But the determinant of A1 is

a1 a1 − (−b1) b1 = a21 + b21.

But if A1 6= O then at least one of a1, b1 is non-zero and therefore the determinant a21 + b21 6= 0 and
thus A1 is invertible.

Then using Equation (3.9) we have

A−1

1 =
1

a21 + b21

(

a1 b1
−b1 a1

)

.

Now
(

a1 b1
−b1 a1

)

=

(

a1 −(−b1)
−b1 a1

)

∈ C

and therefore by Part (b) it follows that A−1 in C.

(e) This is a straightforward calculation.

(f) Again this is a straightforward calculation.

(g) Since J2 = −I we have J3 = −J and J4 = I . It follows then that for k, ℓ ∈ Z we have

J4 k+ℓ =
(

J4
)k

J ℓ = Ik J ℓ = J ℓ.

Now 503 = 4 · 125 + 3 and therefore

J503 = J3 = −J =

(

0 1
−1 0

)

.

(h) We have
(

a −b
b a

)

. = a

(

1 0
0 1

)

+ b

(

0 −1
1 0

)

= a I + b J.

This representation is unique because

a1 I + b1 J = a2 I + b2 J =⇒
(

a1 −b1
b1 a1

)

=

(

a2 −b2
b2 a2

)

,

and so a1 = a2 and b1 = b2.

(i) From the calculation in Part (d) we have

(a I + b J)−1 =
a

a2 + b2
I − b

a2 + b2
J.

(j) Following the hint assume that

B =

(

x −y
y x

)

∈ C
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satisfies B2 = A.

Now

B2 =

(

x2 − y2 −2 x y
2 x y x2 − y2

)

and so if B2 = A we have the system1

{

x2 − y2 = a
2 x y = b

. (2)

Now we consider two cases:

• Case I: b 6= 0. Then the second equation gives that x 6= 0 and y 6= 0 and

y =
b

2 x
. (3)

Substituting in the first equation then gives

x2 − b2

4 x2
= a ⇐⇒ 4 x4 − 4 a x2 − b2 = 0.

Using the quadratic formula we have

x2 =
4 a±

√
16 a2 + 16 b2

8
=

a±
√
a2 + b2

2

and since a2 + b2 > a2 we have
√
a2 + b2 > a and therefore the

a−
√
a2 + b2

2
< 0.

Since x is a real number, x2 ≥ 0 and therefore only the solution

x2 =
a +

√
a2 + b2

2

is acceptable. Thus we have

x = ±

√

a+
√
a2 + b2

2
.

Substituting into Equation (3) we get

y = ± b
√

a+
√
a2 + b2

.

Thus the System (2) has two solutions and therefore A has two square roots.

• Case II: b = 0. Then from the second equation we get x = 0 or y = 0. Since A 6= O we have
a 6= 0 and from the first equation of System (2) we have that exactly one of the x, y is 0: If a > 0
then y = 0 and x 6= 0 and in that case we get solutions

x = ±
√
a, y = 0.

If a < 0 then x = 0 and y 6= 0 and in that case we get solutions

x = 0, y = ±
√
−a.

1Notice that this is not a linear system.
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Remark 0.0.1. When b = 0, A = a I a scalar matrix. Our conclusion is that for a > 0 the scalar matrix
has two square roots ±√

a I , while if a < 0 then we have the square roots ±√
a J .

(k) For Z ∈ C let us denote by ±
√
Z the two square roots of Z whose existence was proven in Part (j).

Then I claim that the equation
AX2 +BX + C = O

has the solutions

X =
1

2

(

−B ±
√
B2 − 4AC

)

A−1.

Indeed, since by Part (e) any two elements of C commute we have

X2 =
1

4

(

B2 ∓ 2B
√
B2 − 4AC +B2 − 4AC

)

A−2.

Now we calculate:

AX2 +BX = A

(

1

4

(

B2 ∓ 2B
√
B2 − 4AC +B2 − 4AC

)

A−2

)

+B

(

1

2

(

−B ±
√
B2 − 4AC

)

A−1

)

=
1

2
A−1

(

B2 ∓ B
√
B2 − 4AC − 2AC

)

+
1

2
A−1

(

B2 ± B
√
B2 − 4AC

)

=
1

2
A−1 (−2AC)

= −C.

7. For each of the following permutation matrices P :





1 0 0
0 1 0
0 0 1



 ,





1 0 0
0 0 1
0 1 0



 ,





0 1 0
1 0 0
0 0 1



 ,





0 1 0
1 0 0
0 0 1



 ,





0 1 0
0 0 1
1 0 0



 ,





0 0 1
0 1 0
1 0 0



 .

Compute P A and AP , where

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 .

Answer. The first matrix is the identity matrix and so P A = AP = A.

If

P =





1 0 0
0 0 1
0 1 0




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then

P A =





a11 a12 a13
a31 a32 a33
a21 a22 a23



 , AP =





a11 a13 a12
a21 a23 a22
a31 a33 a32



 .

If

P =





0 1 0
1 0 0
0 0 1





then

P A =





a21 a22 a23
a11 a12 a13
a31 a32 a33



 , AP =





a12 a11 a13
a22 a21 a23
a32 a31 a33



 .

If

P =





0 0 1
1 0 0
0 1 0



 ,

then

P A =





a31 a32 a33
a11 a12 a13
a21 a22 a23



 , AP =





a12 a13 a11
a22 a23 a21
a32 a33 a31



 .

If

P =





0 1 0
0 0 1
1 0 0



 ,

then

P A =





a21 a22 a23
a31 a32 a33
a11 a12 a13



 , AP =





a13 a12 a11
a23 a22 a21
a33 a32 a31



 .

Finally, if

P =





0 0 1
0 1 0
1 0 0



 ,

then

P A =





a31 a32 a33
a21 a22 a23
a11 a12 a13



 , AP =





a13 a12 a11
a23 a22 a21
a33 a32 a31



 .
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8. Let

X =





1 0 0
0 −2 0
0 0 1



 , Y =





1 0 3
0 1 0
0 0 1



 ,

and let A be as in the previous question. Compute X A, AX , Y A, and AY .

Answer. We have

X A =





a11 a12 a13
−2 a21 −2 a22 −2 a23
a31 a32 a33



 , AX =





a11 −2 a12 a13
a21 −2 a22 a23
a31 −2 a32 a33



 .

And,

Y A =





a11 + 3 a31 a12 + 3 a32 a13 + 3 a33
a21 a22 a23
a31 a32 a33



 , A Y =





a11 a12 a11 + 3 a13
a21 a22 a23 + 3 a21
a31 a32 a33 + 3 a31



 .

9. Let A =

(

1 1
0 1

)

.

(a) Compute An for n = 0, 1, 2, 3, 4.

(b) what pattern do you observe? Conjecture a formula for An based on that pattern.

(c) Prove your conjecture.

Answer. (a) We have

A0 =

(

1 0
0 1

)

, A1 =

(

1 1
0 1

)

, A2 =

(

1 2
0 1

)

, A3 =

(

1 3
0 1

)

, A4 =

(

1 4
0 1

)

.

(b) We conjecture that

An =

(

1 n
0 1

)

.

(c) We proceed by induction. For n = 0 our conjecture is true. Assume then that

An =

(

1 n
0 1

)

.

Then,

An+1 =

(

1 n
0 1

) (

1 1
0 1

)

=

(

1 · 1 + n · 0 1 · 1 + n · 1
0 · 1 + 1 · 0 0 · 1 + 1 · 1

)

=

(

1 n+ 1
0 1

)

,

and we established that our conjecture holds for n+ 1 as well. By induction then, our conjecture is
true for all n ∈ N.

10. Let

A =





2 −2 −4
−1 3 4
1 −2 −3



 , B =





1 1 3
5 2 6
−2 −1 −3



 .
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(a) Find A42.

Answer. We calculate:

A2 =





2 −2 −4
−1 3 4
1 −2 −3



 = A.

It follows that An = A for all n ≥ 1. Therefore

A42 = A =





2 −2 −4
−1 3 4
1 −2 −3



 .

(b) Find B101.

Answer. We calculate:

B2 =





0 0 0
3 3 9
−1 −1 −3



 , B3 =





0 0 0
0 0 0
0 0 0



 = O.

It follows that Bn = O for n ≥ 3. Therefore

B101 = O.

11. Let p(x) = x3 − 3 x2 + x− 3 and let

A =





5 0 13
1 3 14
−2 0 −5



 .

Evaluate p (A).

Answer. We have

p(A) =





−9 2 1
7 −12 −2
5 −5 −8



 .

12. Let A =

(

5 2
0 a

)

. Find the real number a if A is a root of the polynomial p(x) = x2 − 7 x+ 10.

Answer. We have

A2 =

(

25 2 a+ 10
0 a2

)

,
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and so

p(A) = A2 − 7A+ 10 I

=

(

25 2 a+ 10
0 a2

)

− 7

(

5 2
0 a

)

+ 10

(

1 0
0 1

)

=

(

25 2 a+ 10
0 a2

)

+

(

−35 −14
0 −7 a

)

+

(

10 0
0 10

)

=

(

0 2 a− 4
0 a2 − 7 a+ 10

)

.

So if A is a root of p(x) we have
(

0 2 a− 4
0 a2 − 7 a+ 10

)

=

(

0 0
0 0

)

.

So we must have
2 a− 4 = 0, and a2 − 7 a+ 10 = 0.

Thus a = 2.

13. Let

A =





1 1 0
2 0 −1
3 −1 1



 ,

and let p(x) = x3 − 2 x2 − 2 x+ 6.

(a) Verify that A is a root of p(x).

(b) Express A−1 as a polynomial in A.

(c) Use Part (b) to find A−1.

Answer. (a) We calculate

A2 =





3 1 −1
−1 3 −1
4 2 2



 , A3 =





2 4 −2
2 0 −4
14 2 0



 .

And then with straightforward calculations we verify that

A3 − 2A2 − 2A+ 6 I = O.

(b) We have

A3 − 2A2 − 2A+ 6 I = O =⇒ A3 − 2A2 − 2A = −6 I

=⇒ A
(

A2 − 2A− 2 I
)

= −6 I

=⇒ A

(

−1

6

(

A2 − 2A− 2 I
)

)

= I.

Therefore,

A−1 = −1

6

(

A2 − 2A− 2 I
)

.
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(c) We have

A−1 = −1

6

(

A2 − 2A− 2 I
)

= −1

6









3 1 −1
−1 3 −1
4 2 2



− 2





1 1 0
2 0 −1
3 −1 1



− 2





1 0 0
0 1 0
0 0 1









= −1

6





−1 −1 −1
−5 1 1
−2 2 −2





=
1

6





1 1 1
5 −1 −1
2 −2 2



 .

14. Find all 2× 2 matrices A =

(

a b
c d

)

that commute with B =

(

1 2
0 1

)

.

Solution. We have

AB =

(

a 2 a+ b
c 2 c+ d

)

, B A =

(

a+ 2 c b+ 2 d
c d

)

.

So we have the system


















a = a + 2c

2a+ b = b+ 2d

c = c

2c+ d = d

.

The first equation gives c = 0 and the second a = d. Thus the centralizer of B is

{(

a b
0 a

)

: a, b ∈ R

}

.

15. Let A and B be two symmetric n × n matrices. Prove that AB is symmetric if and only if A and B
commute.

Solution. Since A and B are symmetric we have A∗ = A and B∗ = B and so

(AB)∗ = B∗A∗ = BA.

Thus
(AB)∗ = AB ⇐⇒ BA = AB.

In words, AB is symmetric if and only if A and B commute.

16. Let A ∈ Mn. Prove that A+ A∗ is symmetric, where A∗ is the transpose of A.
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Solution. We have
(A+ A∗)∗ = A∗ + (A∗)∗ = A∗ + A = A+ A∗.

17. A square matrix A is called nilpotent if Ak = O for some positive integer k. Prove that if A is nilpotent
then A is not invertible.

Solution. Assume,to get a contradiction, that A is invertible. Then Ak is also invertible and = (A−1)
k
.

But then

Ak = O =⇒ Ak
(

Ak
)

−1
= O

(

Ak
)

−1

=⇒ I = O,

a contradiction. Therefore A is not invertible.

18. A square matrix A is called idempotent if A2 = A. Find all the matrices that are both idempotent and
invertible.

Solution. If we multiply both sides of the equation

A2 = A

with A−1 we get
A = I.

Thus the only idempotent and invertible matrix is the identity matrix I .

19. A square matrix is said to be antisymmetric if A∗ = −A, in other words if for all i, j we have

aji = −aij .

Prove that if A and B are symmetric matrices then AB −BA is antisymmetric.

Solution. We have
(AB −BA)∗ = (AB)∗ − (BA)∗ = B∗A∗ − A∗B∗.

Now if A and B are symmetric we have

B∗ A∗ − A∗B∗ = BA− AB = − (AB −BA) .

So if A and B are symmetric matrices then

(AB − BA)∗ = − (AB − BA) ,

and so AB − BA is antisymmetric.

20. Prove that all permutation matrices in Question 7 are orthogonal.

Solution. Let P be any permutation matrix. Then the columns of P are obtained from the standard basis
of R3 by applying a permutation. Now for the standard basis of R3 we have

ei · ej = δij, i, j = 1, 2, 3.

Therefore, if pi, i = 1, 2, 3 are the columns of P we have

pi · pj = δij , i, j = 1, 2, 3.

By Proposition (8) we have then that P is orthogonal.
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