MTH 42, Fall 2024

Nikos Apostolakis

Fourth Set of homework

1. Let A be an $m \times k$ matrix and B a $k \times n$ matrix. Prove that

 $ker B ⊂ ker AB$.

- 2. Let A be a 3×4 matrix and B a 4×3 so that A B is a square 3×3 matrix. Prove that A B is not invertible. **Hint.** You might want to use Question 1.
- 3. Find a basis and the dimension of the solution set of the following homogeneous system:

$$
\begin{cases}\n x_1 - 3x_2 + x_4 + x_5 = 0 \\
2x_1 - 6x_2 + 2x_3 + 4x_4 + 2x_5 = 0 \\
-3x_1 + 4x_2 + x_5 = 0 \\
x_2 + x_3 + x_4 = 0\n\end{cases}
$$

4. For each of the following two "transpose" matrices:

$$
A = \begin{pmatrix} 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & 2 & 3 & 1 \\ 3 & 3 & 5 & 4 & 3 \\ 1 & -1 & -1 & 2 & -1 \end{pmatrix}, \quad A^* = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & 3 & -1 \\ 3 & 2 & 5 & -1 \\ 1 & 3 & 4 & 2 \\ 2 & 1 & 3 & -1 \end{pmatrix}.
$$

- (a) Find a basis for their ranges and state their rank.
- (b) Find a basis for their kernels and state their nullity.
- 5. Find the inverse of each of the following matrices:

$$
A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & 3 & 1 & -2 \\ 1 & 4 & -2 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 0 & -2 \\ 0 & 2 & 1 & 4 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -8 \end{pmatrix}.
$$

6. Let C be the following set of 2×2 matrices.

$$
\mathbf{C} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}.
$$

Prove the following:

(a) C is closed under matrix addition. That is,

$$
A, B \in \mathbf{C} \implies A + B \in \mathbf{C}.
$$

(b) C is closed under scalar multiplication. That is,

 $\lambda \in \mathbb{R}, A \in \mathbf{C} \implies \lambda A \in \mathbf{C}.$

In particular,

 $A \in \mathbf{C} \implies -A \in \mathbf{C}$.

(c) C is closed under matrix multiplication. That is,

$$
A, B \in \mathbf{C} \implies AB \in \mathbf{C}.
$$

(d) All non-zero elements of C are invertible, and

$$
A \in \mathbf{C}, \ A \neq O \implies A^{-1} \in \mathbf{C}.
$$

(e) Any two elements of C commute. That is,

$$
A, B \in \mathbf{C} \implies AB = BA.
$$

(f) Let

$$
J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
$$

Verify that

$$
J^2 = -I.
$$

- (g) what is J^{503} ?
- (h) Every element of C can be uniquely expressed as a linear combination of I and J . In other words, if $A \in \mathbb{C}$ then there exist two unique real numbers a, b such that

$$
A = a I + b J.
$$

- (i) Let $A \in \mathbb{C}$ with $A = a I + b J$ with at least one of a, b non-zero. Express A^{-1} as a linear combination of I and J.
- (j) Prove that every non-zero element of C has exactly two *square roots*. That is, prove that if $A \neq O$ is an element of C then there are exactly two elements $B \in \mathbb{C}$ such that $B^2 = A$.

Hint. Set $B = \begin{pmatrix} x & -y \ y & x \end{pmatrix}$ and see what $B^2 = A$ says for x, y .

(k) Prove the that every quadratic equation

$$
A X^2 + B X + C = O
$$

where $A, B, C \in \mathbb{C}$ has two solutions (that may coincide) in C. **Hint.** Think about the quadratic formula.

7. For each of the following *permutation matrices* P:

$$
\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 & 1 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix}.
$$

Compute $P A$ and $A P$, where

$$
A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.
$$

8. Let

$$
X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad Y = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
$$

and let A be as in the previous question. Compute X A, A X , Y A, and AY .

9. Let
$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$
.

- (a) Compute A^n for $n = 0, 1, 2, 3, 4$.
- (b) what pattern do you observe? Conjecture a formula for $Aⁿ$ based on that pattern.
- (c) Prove your conjecture.

10. Let

$$
A = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix}.
$$

(a) Find
$$
A^{42}
$$
.

(b) Find B^{101} .

Hint. It's not as hard as it may appear. For both matrices a simple pattern appears after you calculate the first few powers.

11. Let $p(x) = x^3 - 3x^2 + x - 3$ and let

$$
A = \begin{pmatrix} 5 & 0 & 13 \\ 1 & 3 & 14 \\ -2 & 0 & -5 \end{pmatrix}.
$$

Evaluate $p(A)$.

12. Let $A = \begin{pmatrix} 5 & 2 \\ 0 & 2 \end{pmatrix}$ $0 \quad a$). Find the real number a if A is a root of the polynomial $p(x) = x^2 - 7x + 10$.

13. Let

$$
A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & -1 \\ 3 & -1 & 1 \end{pmatrix},
$$

and let $p(x) = x^3 - 2x^2 - 2x + 6$.

(a) Verify that *A* is a root of $p(x)$.

- (b) Express A^{-1} as a polynomial in A.
- (c) Use Part (b) to find A^{-1} .
- 14. Find all 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ that commute with $B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.
- 15. Let A and B be two symmetric $n \times n$ matrices. Prove that A B is symmetric if and only if A and B commute.
- 16. Let $A \in \mathbf{M}_n$. Prove that $A + A^*$ is symmetric, where A^* is the transpose of A.
- 17. A square matrix A is called *nilpotent* if $A^k = O$ for some positive integer k. Prove that if A is nilpotent then A is not invertible.
- 18. A square matrix A is called *idempotent* if $A^2 = A$. Find all the matrices that are both idempotent and invertible.
- 19. A square matrix is said to be *antisymmetric* if A[∗] = −A, in other words if for all i, j we have

$$
a_{ji} = -a_{ij}.
$$

Prove that if A and B are symmetric matrices then $AB - BA$ is antisymmetric.

20. Prove that all permutation matrices in Question [7](#page-2-0) are orthogonal.