MTH 42, Fall 2024

Nikos Apostolakis

Third Set of homework

- 1. Let S_1 and S_2 be two subsets of \mathbb{R}^n with $S_1 \subseteq S_2$. Prove
 - (a) If S_1 is spanning then S_2 is also spanning.
 - (b) If S_1 is linearly dependent then S_2 is also linearly dependent.
 - (c) If S_2 is linearly independent then S_1 is also linearly independent.
- 2. Decide whether each of the following subsets are vector subspace of the given standard real vector space.
 - (a) $\{(x, 3x + y, 0, y z) : x, y, z \in \mathbb{R}\} \subseteq \mathbb{R}^4$.
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : x, y, z \in \mathbb{R} \text{ and } 3x 4y = 11z\}.$
 - (c) The set of points in \mathbb{R}^2 that lie in the parabola $y = x^2$.
 - (d) The set of points in \mathbb{R}^3 that lie in the plane with equation 2x 3y + 4z = 0.
 - (e) The set of points in \mathbb{R}^3 that lie in the plane with equation 2x 3y + 4z = 8.
 - (f) $\{(x, 2, 3x + 4y, y z) : x, y, z \in \mathbb{R}\} \subseteq \mathbb{R}^4$.
 - (g) $\{(3w, 2z 5t, x 4y + 5t, -2x + z 3t + 4w) : x, y, z, w, t \in \mathbb{R}\} \subseteq \mathbb{R}^4$.
- 3. Prove that

 $\{(1, 1, 1, 1, 1), (0, 1, 1, 1, 1), (0, 0, 1, 1, 1), (0, 0, 0, 1, 1), (0, 0, 0, 0, 1)\}$

form a basis of \mathbb{R}^5 .

- 4. Express each of the vectors of the standard basis of \mathbb{R}^5 as a linear combination of the elements of the basis in the previous Question.
- 5. Which of the following subsets of \mathbb{R}^3 are a basis?
 - (a) $\{(1,2,3),(3,2,1)\}.$
 - (b) $\{(1,1,2), (1,-2,0), (2,0,1)\}$
 - (c) $\{(1,2,3), (3,1,2), (2,3,1)\}.$
 - (d) $\{(1,2,3), (1,1,0), (0,3,1), (1,0,0)\}.$
- 6. For those subsets in Question 2 that are subspaces find a basis and the dimension.