
MTH 42, Fall 2024

Nikos Apostolakis

Answers and solutions to Homework Sets I and II

1 First Homework

1. Solve each of the following systems:

(a)










x+ 2y + 3z = 0

3x+ y + 2z = 0

2x+ 3y + z = 0

.

Answer. This is a homogeneous system. A row echelon form of the coefficient matrix is

A





1 0 11
0 1 5
0 0 18



 .

Since there are no free columns we conclude that the system has only the trivial solution. The
solution set is therefore {(0, 0, 0)}.

(b)










x− y + z = 0

−x+ 3y + z = 5

3x+ y + 7z = 2

.

Answer. The system is inconsistent. The solutions set is ∅.

(c)


















x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

.

Answer. The reduced echelon form (after discarding a zero row) of the augmented matrix is




1 3 0 4 2 0
0 0 1 2 0 0
0 0 0 0 0 1

∣

∣

∣

∣

∣

∣

0
0
1/3



 .

So the solution is

x1 = −3 s− 4 t− 2w, x2 = s, x3 = −2 t, x4 = t, x5 = w, x6 =
1

3
.



2. Find the real number k so that the following system is consistent










x− 2y + 3z = 2

x+ y + z = k

2x− y + 4z = k2

.

Solution. We proceed to reducing the augmented matrix to echelon form.





1 −2 3
1 1 1
2 −1 4

∣

∣

∣

∣

∣

∣

2
k
k2



 ∼





1 −2 3
0 3 −2
0 3 −2

∣

∣

∣

∣

∣

∣

2
k − 2
k2 − 4



 ∼





1 −2 3
0 3 −2
0 0 0

∣

∣

∣

∣

∣

∣

2
k − 2

k2 − k − 2





From the last row we see that the system is consistent if and only if

k2 − k − 2 = 0 ⇐⇒ k = −1 or k = 2.

Thus the system is consistent only if k = −1 or k = 2.

3. Find conditions on the real numbers a, b, c, if any, so that the system














x + y = 0
y + z = 0

x − z = 0
ax + by + cz = 0

(a) is inconsistent.

(b) Has a unique solution.

(c) Has more than one solution.

Answer. We can immediately answer the first part. This is a homogeneous system and is therefore
consistent. Thus there exists no conditions on a, b, c that the system is inconsistent.

To answer parts (b) and (c) we proceed to reduce the matrix of the system to an echelon form.









1 1 0
0 1 1
1 0 −1
a b c









∼









1 1 0
0 1 1
0 −1 −1
0 b− a c









∼





1 1 0
0 1 1
0 b− a c



 ∼





1 1 0
0 0 1
0 b− a c



 ∼





1 1 0
0 b− a c
0 0 1



 .

If b 6= a then the system has a unique solution. If b = a then the second column is free and thus the
system has more than one solutions.

4. Consider the 2× 2 matrix

A =

(

a b
c d

)

where a, b, c, d ∈ R.

(a) Prove that if ad− bc 6= 0 then the reduced row echelon form of A is
(

1 0
0 1

)
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(b) Prove that if ad− bc 6= 0 then the system

{

ax+ by = k
cx+ dy = l

has a unique solution, for all real numbers k, l.

Answer. Look at Section 3 of the notes.

5. Prove that there is a unique line passing through any two distinct points of the plane.

Solution. A line is a set of points in R
2 whose coordinates (x, y)satisfy a linear equation of the form

a x+ b y + c = 0 (1)

where a, b, c ∈ R and at least one of a, b is non-zero. A non-zero multiple of Equation (1) defines the
same line.

Let (x1, y1) and (x2, y2) two points, to find all lines that pass through these two points we solve the
system

{

a x1 + b y1 + c = 0
a x2 + b y2 + c = 0

for a, b, c.

Set ∆x = x2 − x1, and ∆y = y2 − y1. Since the points are distinct at least one of ∆x, ∆y is non-zero.
Without loss of generality we assume that ∆x 6= 0. Subtracting the two equations we get

a∆x+ b∆y = 0 =⇒ a = −
∆y

∆x
b.

Substituting in the first equation we get

−
x1 ∆y

∆x
b+ y1 b+ c = 0 =⇒ c =

(

x1(y2 − y1)− y1(x2 − x1)

x2 − x1

)

b =⇒ c =
x1y2 − x2y1
x2 − x1

b

So the solution is





a
b
c



 = t













x1 y2 − x2 y1
x2 − x1

1

y2 − y1
x2 − x1













, t ∈ R.

Thus all equations of the form (1) that are satisfied by the coordinates of both points are multiples of
the same equation and therefore determine the same line.

6. Find the cubic polynomial

p(x) = a x3 + b x2 + c x+ d

given that p(1) = 0, p(2) = 3, p(−1) = −6, and p(−2) = −21.
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Answer. Substituting the given values we get the system



















a + b+ c+ d = 0

8a+ 4b+ 2c+ d = 3

−a + b− c+ d = −6

−8a + 4b− 2c+ d = −21

.

Passing to the augmented matrix we have









1 1 1 1
8 4 2 1
−1 1 −1 1
−8 4 −2 1

∣

∣

∣

∣

∣

∣

∣

∣

0
3
−6
−21









∼









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

1
−2
2
−1









.

Therefore the polynomial is
p(x) = x3 − 2x2 + 2x− 1.

7. Look at Examples 1.9 and 1.10, there is a geometric reason why in Example 1.10 the polynomial we got
was not quadratic. The graph of a quadratic polynomial is a parabola so in these examples we were
trying to find a parabola that passes through three distinct points. But the points in Example 1.10 are
colinear and so there is no parabola that passes through all three of them.

(a) Prove that given any three distinct real numbers x1, x2, x3 and any three real numbers y1, y2, y3 we
can always find a polynomial p(x) = a x2 + b x+ c such that p(x1) = y1, p(x2) = y2, and p(x3) = y3.

Solution. Let a, b, c ∈ R be the coefficients of p. Then (a, b, c) is a solution of the system







c+ x1 b+ x2

1
a = y1

c+ x2 b+ x2

2
a = y2

c+ x3 b+ x2

3
a = y3

The augmented matrix of the system is





1 x1 x2

1

1 x2 x2

2

1 x3 x2

3

∣

∣

∣

∣

∣

∣

y1
y2
y3



 .

Subtracting the first row from the other two we get





1 x1 x2

1

0 x2 − x1 x2

2
− x2

1

0 x3 − x1 x2

3
− x2

1

∣

∣

∣

∣

∣

∣

y1
y2 − y1
y3 − y1



 .

Since x1, x2 and x3 are distinct, x2 − x1 and x3 − x1 are non-zero. We can also assume that x1 6= 0,
for if it is zero then x2 is non-zero and we just rename our numbers. So we can divide each row by
its leading entry to get1

1Remember “Difference of Squares”?
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1 1 x1

0 1 x2 + x1

0 1 x3 + x1

∣

∣

∣

∣

∣

∣

y1/x1

(y2 − y1)/(x2 − x1)
(y3 − y1)/(x3 − x1)



 .

Now subtract the second row from the third to get





1 1 x1

0 1 x2 + x1

0 0 x3 − x2

∣

∣

∣

∣

∣

∣

y1/x1

(y2− y1)/(x2 − x1)
(y3 − y1)/(x3 − x1)− (y2 − y1)/(x2 − x1)



 .

Since, x3 − x2 6= 0 we conclude that the system has a unique solution.

(b) The polynomial in part (a) is quadratic (i.e. a 6= 0) if and only if the points (x1, y1), (x2, y2), and
(x3, y3) are not colinear.

Solution. From the echelon form from part one we see that a = 0 if and only if

y3 − y1
x3 − x1

=
y2 − y1
x2 − x1

. (2)

The fraction on the LHS of Equation (2) is the slope of the line through the points (x1, y1) and
(x3, y3) and the one on the RHS is the slope of the line through (x1, y1) and (x2, y2). Since these lines
share the point (x1, y1) they are the same line if and only if they have the same slope. Now (x1, y2),
(x2, y2), and (x3, y3) are colinear if and only if these lines are the same line, and we conclude that
a = 0 if and only if the three points are colinear.

2 Second Homework

1. Solve the system






2x− 5y + 2z − 4s+ 2t = 4
3x− 7y + 2z − 5s+ 4t = 9
5x− 10y − 5z − 4s+ 7t = 22

by first solving the corresponding homogeneous system and then finding a particular solution. Refer
to Example 1.35 in Section 1.3.2 of the current set of notes.

Answer. The corresponding homogeneous system is







2x− 5y + 2z − 4s+ 2t = 0
3x− 7y + 2z − 5s+ 4t = 0
5x− 10y − 5z − 4s+ 7t = 0

We find the reduced echelon for of its matrix:





2 −5 2 −4 2
3 −7 2 −5 4
5 −10 −5 −4 7



 ∼

















1 0 0
11

5

42

5

0 1 0
8

5

16

5

0 0 1 −
1

5

3

5

















.
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The general solution of the homogeneous system is therefore













x
y
z
s
t













=
a

5













11
8
−1
5
0













+
b

5













42
16
3
0
5













.

To find a particular solution of the original system we try to guess: we substitute values to some of the
variables and solve for the others until we find a solution that works. If we put z = s = 0 and t = 1 we
find that x = 11 and y = 4 works for all equations. So (11, 4, 0, 1, 0) is a particular solution and so the
general solution of the original system is













x
y
z
s
t













=
a

5













11
8
−1
5
0













+
b

5













42
16
3
0
5













+













11
4
0
1
0













.

2. Express the vector c = 3 e1 − 2 e2 − e3 as a linear combination of the vectors

v1 = e1 + 2 e2 + 3 e3

v2 = 2 e1 + 3 e2 + e3

v3 = 3 e1 + e2 + 2 e3.

Answer. The coefficients x, y, z will be solutions of the system











x+ 2y + 3z = 3

2x+ 3y + z = −2

3x+ y + 2z = −1

.

Working with the augmented matrix we get





1 2 3
2 3 1
3 1 2

∣

∣

∣

∣

∣

∣

3
−2
−1



 ∼

















1 0 0

0 1 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
4

3

−
1

3
5

3

















.

So,

c = −
4

3
v1 −

1

3
v2 +

5

3
v3.
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3. Express the vector c = 5 e1 − e2 + 3 e3 as a linear combination of the vectors

v1 = e1 − 2 e2 + 3 e3

v2 = 4 e1 + e2

v3 = e1 − 11 e2 + 15 e3,

in three different ways.

Answer. The augmented matrix of the system we get reduces to

(

1 0 5
0 1 −1

∣

∣

∣

∣

1
1

)

.

and the solution is

(x, y, z) = t (−5, 1, 1) + (1, 1, 0).

Setting arbitrarily, t = 0,±1, we get three different solutions:

c = v1 + v2

= −4v1 + 2v2 + v3

= 6v1 − v3.

4. Find a vector c that cannot be expressed as a linear combination of the vectors v1, v2, and v3 of the
previous exercise.

Solution. From the previous question we know that reduced echelon form of the matrix A with columns
v1, v2, and v3 has a zero row. If c is such that the matrix A augmented by c has at that point transformed
to a matrix that has a non-zero entry in that row, the system is inconsistent and therefore c cannot be
expressed as a linear combination of v1, v2, and v3.

Let’s apply the Gauss-Jordan procedure then until we get the zero row.





1 4 1
−2 1 −11
3 0 15



 ∼





1 4 1
0 9 −9
0 −12 12



 ∼





1 4 1
0 1 −1
0 −1 1



 ∼





1 4 1
0 1 −1
0 0 0



 .

We applied, in order, the following row operations:

1. Added 2 times the first row to the second.

2. Added −3 times the first row to the third.

3. Divided the second row by 3.

4. Divided the third row by 4.

5. Added the second row to the third.
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If we start with any vector c′ with non-zero third coordinate and apply the reverse of the above opera-
tions, in reverse order, we will get a vector c that is not in the span of {v1,v2,v3}. For example starting
with c

′ = (1, 3,−2) we get

(1, 3,−2) ∼ (1, 3,−5) ∼

(

1, 3,−
5

4

)

∼

(

1, 1,−
5

4

)

∼

(

1, 1,
7

4

)

∼

(

1,−1,
7

4

)

.

So, one such c is

c = e1 − e2 +
7

4
e3.

Remark 2.0.1. In the above solution I chose a random vector to illustrate the idea. However there is a
much easier choice, I could have chosen c

′ = (0, 0, 4). Then only the fourth of the operations affect c′

and as a result I would get c = e3.

Note that since {v1,v2,v3} is not spanning we know that at least one vector from the standard basis (or
any basis) of R3 is not in 〈v1,v2,v3〉

2.

5. Let

A =

(

a11 a12
a21 a22

)

, B =

(

b11 b12
b21 b22

)

, x =

(

x1

x2

)

.

Let y = B x. Find the vector z = Ay.

Solution. We first find y:

y =

(

b11 b12
b21 b22

) (

x1

x2

)

=

(

b11 x1 + b12 x2

b21 x1 + b22 x2

)

.

Now z:

z =

(

a11 a12
a21 a22

) (

b11 x1 + b12 x2

b21 x1 + b22 x2

)

=

(

a11 (b11 x1 + b12 x2) + a12 (b21 x1 + b22 x2)
a21 (b11 x1 + b12 x2) + a22 (b21 x1 + b22 x2)

)

.

We now factor x1 and x2 to get

z =

(

(a11 b11 + a12 b21) x1 + (a11 b12 + a12 b22) x2

(a21 b11 + a22 b21) x1 + (a21 b12 + a22 b22) x2

)

.

6. Find a 2× 2 matrix A that interchanges e1 and e2, in other words such that

A e1 = e2 and A e2 = e1.

Solution. If A =

(

a b
c d

)

then

A e1 =

(

a b
c d

) (

1
0

)

=

(

a · 1 + b · 0
c · 1 + d · 0

)

=

(

a
c

)

,

2Why?
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and

A e1 =

(

a b
c d

) (

0
1

)

=

(

a · 0 + b · 1
c · 0 + d · 1

)

=

(

b
d

)

.

So we have the following two vector equations

(

a
c

)

=

(

0
1

)

and

(

b
d

)

=

(

1
0

)

.

Thus the matrix is

A =

(

0 1
1 0

)

.

7. Prove that if
a1 b2 − a1 b3 + a2 b3 − a3 b2 + a3 b1 − a2 b1 6= 0

then the system






x+ a1y + b1z = c1
x+ a2y + b2z = c2
x+ a3y + b3z = c3

has a unique solution for all real numbers c1, c2, c3.

Answer. We proceed to get an echelon form of the augmented matrix of the system.





1 a1 b1
1 a2 b2
1 a3 b3

∣

∣

∣

∣

∣

∣

c1
c2
c3



 ∼





1 a1 b1
0 a2 − a1 b2 − b1
0 a3 − a1 b3 − b1

∣

∣

∣

∣

∣

∣

c1
c2 − c1
c3 − c1



 .

Now notice that the condition given implies that at least one of a2 − a1, a3 − a1 is non-zero. For, if both
were zero then we would have a1 = a2 = a3 and the LHS of the condition would be zero. Assume then
that a2 − a1 6= 0 so we can divide the second row by it. Do that and then add (a1 − a3) times the second
row to the third. The second entry of the third row will then be 0 while the third is

b3 − b1 +
(a1 − a3)(b2 − b1)

a2 − a1
.

Combining and expanding this will give a fraction with numerator the LHS of the given inequality.
Thus the third entry of the third row is non-zero. It follows that the system has a unique solution.
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