
MTH 42, Fall 2024

Nikos Apostolakis

Final Exam

1. Let L : R
4 → R

3 be defined by

L(x, y, z, t) = (x− y + z + t, x+ 2 z − t, x+ y + 3 z − 3 t).

(a) Prove that L is linear.

(b) Find a basis for the range of L.

(c) Find a basis for the kernel of L.

2. Find A−1 where

A =









1 4 2 0
4 2 0 3
3 1 6 1
0 4 4 5









is a matrix in Z/7.

3. Find all complex numbers z so that the vectors

v1 = (z, 0, 1), v1 = (0, 1, z3), v3 = (1, 1, 1 + z)

do not form a basis of C3.

4. Consider C as a vector space over R. For an arbitrary z ∈ C define

Lz : C → C, Lz(w) = z w.

(a) Prove that Lz is a linear map.

(b) Find the matrix of Lz with respect to the basis {1, i} of C.

5. Let M2 be the vector space of real matrices and let A =

(

1 2
3 4

)

. Consider the function L : M2 → M2 given by

L(X) = AX −X A.

(a) Prove that L is linear map.

(b) Find the matrix of L with respect to the standard basis of M2.

(c) Find a basis for the kernel of L.

6. Let B =
{

42, 3x − 2, 5x2 + x− 3, x3 − 4x
}

. Prove that B is a basis of P3, the vector space of real polynomials of
degree at most 3.

Hint. Consider the isomorphism L : P3 → R
4 that sends the standard basis of P3 to the standard basis of R4, and

work with L(B).

7. Compute the following determinants.

A.

∣

∣

∣

∣

∣

∣

2 3 4
5 6 7
8 9 1

∣

∣

∣

∣

∣

∣

B.

∣

∣

∣

∣

∣

∣

1 2 3
1 4 9
1 8 27

∣

∣

∣

∣

∣

∣

C.

∣

∣

∣

∣

∣

∣

∣

∣

1 −2 3 4
4 1 −2 3
3 4 1 −2
−2 3 4 1

∣

∣

∣

∣

∣

∣

∣

∣

D.

∣

∣

∣

∣

∣

∣

∣

∣

5 4 2 1
2 3 1 −2
−5 −7 −3 9
1 −2 −1 4

∣

∣

∣

∣

∣

∣

∣

∣

E.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6 2 1 0 5
2 2 1 −2 1
1 1 2 −2 3
3 0 2 3 −1
−1 −1 −3 4 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



8. Let x1, x2, . . . , xn be scalars, and consider the Vandermonde matrix:

V (x1, . . . , xn) =















1 1 1 · · · 1
x1 x2 x3 · · · xn
x21 x22 x23 · · · x2n
...

...
...

. . .
...

xn−1
1

xn−1
2

xn−1
3

· · · xn−1
n















.

Prove that
detV (x1, . . . , xn) =

∏

1≤i<j≤n

(xj − xi).

Hint. For n = 2 the formula says
∣

∣

∣

∣

1 1
x1 x2

∣

∣

∣

∣

= x2 − x1

and it is clearly true.

For n = 3 the formula says
∣

∣

∣

∣

∣

∣

1 1 1
x1 x2 x3
x21 x22 x23

∣

∣

∣

∣

∣

∣

= (x3 − x2)(x3 − x1)(x2 − x1).

To see this, subtract x3 times the second row from the third, and x3 times the first row from the second, and then
expand along the third column

∣

∣

∣

∣

∣

∣

1 1 1
x1 x2 x3
x21 x22 x23

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 1
x1 − x3 x2 − x3 0

x21 − x1 x3 x22 − x3 x2 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 1
x1 − x3 x2 − x3 0

x1 (x1 − x3) x2 (x2 − x3) 0

∣

∣

∣

∣

∣

∣

= .

∣

∣

∣

∣

x1 − x3 x2 − x3
x1 (x1 − x3) x2 (x2 − x3)

∣

∣

∣

∣

= .(x1 − x3) (x2 − x3)

∣

∣

∣

∣

1 1
x1 x2

∣

∣

∣

∣

= (x3 − x1) (x3 − x2) (x2 − x1).

In the last line we changed x1 − x3 and x2 − x3 to x3 − x1 and x3 − x2 respectively. Since we changed the sign of
two factors the product is the same.

Now for n = 4 we can proceed similarly. Subtracting x4 times the i-th row from the (i + 1)-row for i = 3, 2, 1 we
get

detV (x1, x2, x3, x4) =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
x1 − x4 x2 − x4 x3 − x4 0

x1 (x1 − x4) x2 (x2 − x4) x3 (x3 − x4) 0
x21 (x1 − x4) x22 (x2 − x4) x23 (x3 − x4) 0

∣

∣

∣

∣

∣

∣

∣

∣
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Expanding along the last column we get

detV (x1, x2, x3, x4) = −

∣

∣

∣

∣

∣

∣

x1 − x4 x2 − x4 x3 − x4
x1 (x1 − x4) x2 (x2 − x4) x3 (x3 − x4)
x21 (x1 − x4) x22 (x2 − x4) x23 (x3 − x4)

∣

∣

∣

∣

∣

∣

= −(x1 − x4) (x2 − x4) (x3 − x4)

∣

∣

∣

∣

∣

∣

1 1 1
x1 x2 x3
x21 x22 x23

∣

∣

∣

∣

∣

∣

= (x4 − x1) (x4 − x2) (x4 − x3) detV (x1, x2, x3).

and the result follows from the n = 3 case. Notice that in the last line we have changed the sign of three factors,
and thus we get an overall factor of −1 that cancels the negative sign from the expansion.

Prove the general case by induction. For the inductive step proceed as above and show that

detV (x1, . . . , xn+1) = (xn+1 − x1) · · · (xn+1 − xn) detV (x1, . . . , xn).

9. For a positive integer n, let x1, . . . , xn be pairwise distinct1 real numbers, and let y1, . . . , yn be any real numbers.
Prove that there is a unique polynomial p(x) of degree at most n − 1 such that p(xi) = yi for i = 1, . . . , n. That is
prove that there exist unique real numbers c0, c1, . . . , cn−1 such that for i = 1, . . . , n we have

c0 + c1 xi + c2 x
2
i + . . .+ cn−1 x

n−1

i = yi.

Hint. The coefficients of the polynomial satisfy a system of linear equations whose matrix is the transpose of the
Vandermonde matrix of Question 8. Use the formula in that question to prove that the determinant of the matrix
is non-zero.

10. Prove that a square matrix A is invertible if and only if 0 is not an eigenvalue of A.

11. Consider the matrix

A =





1 6 −2
−3 2 0
0 3 −4



 .

(a) Find chA(x), the characteristic polynomial of A.

(b) Verify that chA(A) = O.

(c) Use Part (b) to find A−1.
Note. You have to use Part (b), if you find A−1 using a different method you won’t receive any credit for this
part of the question.

12. Consider the matrix

X =









1 2 3 4
0 2 8 −6
0 0 3 −5
0 0 0 4









.

(a) Find a matrix P such that P−1X P is diagonal.

(b) Use Part (a) to compute X−1.

1i.e. xi 6= xj for i 6= j.
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