BRONX COMMUNITY COLLEGE of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

MATH 23 Nikos Apostolakis	Exam 2 May 12, 2025
Name:ANSWE	25
Directions: Write yo <i>must</i> show all your wor indicate your final answ	ur answers in the provided space. To get full credit you k. Simplify your answers whenever possible. Be certain to ver clearly.
 75% of the residents of Pleasantvi (a) How many of those selected 	lle like banana splits. If we randomly select 20 people from Pleasantville: we expect to like banana splits?
X = number of people there like bouque split.	$E(X) = n \cdot p = 20 \times 0.75$
X binomial $n=20$ p=0.75 q=0.25	We expect is people to lite banna
(b) What is the standard deviation	on of the number of those selected that like banana splits?
$\sigma_{\chi} = \sqrt{u.p.q} = \sqrt{15\chi}$	025
= \3.	ñ <i>s</i>
≈ 1.94	() is a second s
(c) What is the probability that	exactly 15 of the selected people like banana splits?
P(X = 15) = 0.2023	
(d) What is the probability that	more than 13 but at most 18 of the selected people like banana splits?
$P(13 < X \le 18) = P(X \le 18)$	$) - P(\chi \le 13)$
= 0.9757	- 0.2142
= 0.7615	7

- 2. Let X be a random variable that represents the length of time it takes a student to complete an exam. It was found that x has an approximately normal distribution with mean $\mu = 2.4$ hours and standard deviation $\sigma = 0.8$ hours.
 - (a) What is the probability that a randomly selected student finishes the exam within the allocated time of 3 hours?

$$\chi = 3 => 2 = \frac{3 - 2.4}{0.8} = \frac{0.6}{0.8} = 0.75$$

$$P(X \le 3) = P(Z \le 0.75)$$

=0.77337

(b) Suppose 25 students are selected at random. What is the probability that \bar{x} , the mean time of completing the exam for these 25 students, is not more than 2 hours?

Since X is m.d.	$\bar{X} = 2 \implies \bar{z} = \frac{2-2-4}{0.16}$
X is m.d. with	= - 2.5
$\frac{\psi_{\bar{X}}}{\nabla_{\bar{x}}} = \frac{\psi_{X}}{2.4}$ $\frac{\psi_{\bar{X}}}{\nabla_{\bar{x}}} = \frac{0.8}{\sqrt{25}}$	$P(\bar{X} \leq 2) = P(Z \leq -2.5)$
= 0.16	= 0.00621

4. Colette is self-employed, selling cosmetics at home parties. She wants to estimate the average amount a client spends per year at these parties. A random sample of 16 receipts had a mean of $\bar{x} = 340.70 with a standard deviation of s = \$60.15. Find a 90% confidence interval for the mean amount μ spent by all clients. Assume x has an approximately normal distribution.

We have a small sample
$$(n=16)$$
 drawn from
 a m.d. population. So we use t -distribution with
 $r = 16 - 1 = 15$ degrees of freedom, with $c = 0.90$
From the tables we have $t_{0.90} = 1.753$
The error is then
 $E = t_{0.90} \frac{60.15}{VT_6}$
 $= 1.753 \frac{60.15}{4}$
 $= 1.753 \cdot 15.0375$
 ≈ 26.36
So the 90% confidence interval is

$$240.70 - 26.36 \le 4 \le 340.70 + 20.50$$

that is

$$314.34 \leq \mu \leq 367.06$$

5. Jorge lives in Pleasantville and hates banana splits. He can't believe that 75% of his fellow residents like that stuff. He decides to test the hypothesis H_0 : p = 0.75 with alternative hypothesis H_a : p < 0.75. In a random sample of 100 residents he finds that 73 like banana splits.

Is this sufficient evidence to reject H_0 at the level of significance $\alpha = 0.05$?

P

S

20

We have
$$\hat{p} = \frac{73}{100} = 0.73$$
, and $\hat{q} = \frac{27}{100} = 0.27$.
Since $n \cdot \hat{p} = 73$ and $n \cdot \hat{q} = 27$ both larger than 5 this
sample is sufficiently large.
We have $\sigma_{\hat{p}} = \sqrt{\frac{p \cdot q}{n}} = \sqrt{\frac{0.75 \cdot 0.25}{100}} \approx 0.0433$ and so the
test statistic is $2 = \frac{0.73 - 0.75}{0.0433}$

Two alternative ways of proceeding:
P-value

$$P(z = -0.46) = 0.32997$$

Since p-value > d = 0.05
there is not enough
evidence to reject Ho
There is not enough evidence
to reject Ho