Problem 1. Show that any constant Riemannian metric on \mathbb{R}^2 i.e. a metric of the form

$$g = a \, dx \otimes dx + 2b \, dx \odot dy + c \, dy \otimes dy,$$

where a, b, c are real numbers such that a > 0 and $ac - b^2 > 0$, is isometric to the Euclidean metric.

Problem 2. Let $B = \{x^2 + y^2 < 1\}$ be the unit disk. Compute the volume of B with respect to the hyperbolic metric

$$g = \frac{4}{(1-x^2-y^2)^2} \left(dx \otimes dx + dy \otimes dy \right).$$

Problem 3 Using the spherical coordinates in \mathbb{R}^3 , identify $\mathbb{R}^3 \setminus \{0\}$ as a warped product of $\mathbb{R}_+ \times S^2$.

Problem 4 Prove that the antipodal mapping $A: S^2 \to S^2$ given by A(p) = -p is an isometry of S^2 with the round metric.

Problem 5 Consider the upper half plane $\{(x, y) \in \mathbb{R}^2 | y > 0\}$ with the group operation :

$$(a,b)(c,d) = (a+bc,bd).$$

The identity element is (0, 1).

Prove that the left-invariant metric, which at the identity element coincides with the Euclidean metric, is given by

$$g = \frac{1}{y^2} \left(dx \otimes dx + dy \otimes dy \right).$$

Putting $z = x + \sqrt{-1}y$. Prove that the transformation

$$z \to \frac{az+b}{cz+d},$$

where ad - bc = 1 and $a, b, c, d \in \mathbb{R}$ is an isometry.

Problem 6 Consider the round metric induced by the Euclidean metric on S^2 :

$$g = d\theta \otimes d\theta + \sin^2(\theta) \, d\alpha \otimes d\alpha.$$

Compute $(\frac{\partial}{\partial \alpha})^{\flat}$ and $(d\theta)^{\sharp}$ where \flat and \sharp are the musical isomorphism induced by g.

Compute $g(d\theta, d\theta)$ and $g(d\theta \wedge d\alpha, d\theta \wedge d\alpha)$