Problem 1. In stereographic coordinates with respect to the north pole, the immersion ι of the unit 2dimensional sphere S^2 in \mathbb{R}^3 is given by

$$\iota(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right) = (x, y, z).$$

Let $g = dx \otimes dx + dy \otimes dy + dz \otimes dz$ be the Euclidean metric on \mathbb{R}^3 . Prove that

$$\iota^* g = \frac{4}{(u^2 + v^2 + 1)^2} \left(du \otimes du + dv \otimes dv \right)$$

Problem 2. On a Riemannian manifold (M, g), we consider a C^1 curve $\gamma : [a, b] \to (M, g)$. We denote by $L_g(\gamma)$ the length of γ with respect to the metric g. Show that L_g is invariant under reparametrization.

Problem 3 Suppose that $\phi : (M, g) \to (M, h)$ is an isometry where g, h are Riemannian metrics. We consider a C^1 curve $\gamma : [a, b] \to (M, g)$. We denote by $L_g(\gamma)$ the length of γ with respect to the metric g. Show that $L_g(\gamma) = L_h(\phi \circ \gamma)$.

Problem 4 Consider the hyperboloid model of the hyperbolic space

$$\mathbb{H}^{n} = \{ (x_{0}, x_{1}, \cdots, x_{n}) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n-1} x_{i}^{2} - x_{n}^{2} = -1, \ x_{n} > 0 \}.$$

Consider the Riemannian metric g on \mathbb{H}^n given by $dx_0^2 + \cdots + dx_{n-1}^2 - dx_n^2$ restricted to \mathbb{H}^n . Let $s = (0, 0, \cdots, 0, -1)$ and define

$$f(x) = s - 2\frac{(x-s)}{\langle x-s, x-s \rangle},$$

where $\langle x, y \rangle = \sum_{i=0}^{n-1} x_i y_i - x_n y_n$, here $x = (x_0, \dots, x_n)$ and $y = (y_0, \dots, y_n)$.

Show that f is a diffeomorphism from \mathbb{H}^n onto the unit disk= $\{x = (x_0, \cdots, x_{n-1}) \in \mathbb{R}^n \mid \sum_{i=0}^{n-1} x_i^2 < 1\}$ and that

$$(f^{-1})^*(g) = \frac{4}{\left(1 - \sum_{j=0}^{n-1} x_j^2\right)^2} \sum_{i=0}^{n-1} dx_i^2.$$

Problem 5 Show that the Riemannian circles (S^1, g) and (S^1, h) are isometric if and only they have the same length. Here g and h are Riemannian metrics.

Problem 6 Let (M, g) be a 1-dimensional Riemannian manifold. Show that LOCALLY the metric g can be expressed as $g = ds \otimes ds$, where s is the arc-length parameter.