Problem 1. We consider the surface of revolution the paraboloid in \mathbb{R}^3 given by the parametrrization

$$\iota(u, v) = (u\cos(v), u\sin(v), u^2) = (x, y, z).$$

Let $g = dx \otimes dx + dy \otimes dy + dz \otimes dz$ be the Euclidean metric on \mathbb{R}^3 . Compute $\iota^* g$.

Problem 2. Let $B = \{x^2 + y^2 < 1\}$ be the unit disk. Compute the volume of B with respect to the spherical metric

$$g = \frac{4}{(1+x^2+y^2)^2} \left(dx \otimes dx + dy \otimes dy \right).$$

Problem 3 Consider the upper half plane $\{(x, y) \in \mathbb{R}^2 | y > 0\}$ with the group operation :

$$(a,b)(c,d) = (a+bc,bd).$$

The identity element is (0, 1).

Compute the right-invariant metric if we declare $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ to be orthonormal at (0, 1) and show that it's isometric to the left-invariant one.

Problem 4 Consider the metric

$$g = x^2 dx \otimes dx + \frac{1}{\sqrt{2}} xy \left(dx \otimes dy + dy \otimes dx \right) + y^2 dy \otimes dy$$

Compute $(\frac{\partial}{\partial x})^{\flat}$ and $(dy)^{\sharp}$ where \flat and \sharp are the musical isomorphism induced by g. Compute g(dx, dy) and $g(dx \wedge dy, dx \wedge dy)$

Problem 5 We introduce in \mathbb{R}^3 , with the usual Euclidean metric the connection ∇ defined in Cartesian coordinates $\{x_1, x_2, x_3\}$ by

$$\Gamma_{jk}^{i} = \omega \epsilon_{ijk},$$

where $\omega : \mathbb{R}^{3} \to \mathbb{R}$ is a smooth function and $\epsilon_{ijk} = \begin{cases} +1 \text{ if } (i, j, k) \text{ is an even permutation of } (1, 2, 3) \\ -1 \text{ if } (i, j, k) \text{ is an odd permutation of } (1, 2, 3) \\ 0 \text{ otherwise} \end{cases}$

- Show that ∇ is compatible with the Euclidean metric.
- The geodesics of ∇ are straight lines.
- The torsion of ∇ is not zero in all points where $\omega \neq 0$ (therefore ∇ is not the Levi-Civita connection unless $\omega \equiv 0.$)

Problem 6 Let $f: (M,g) \to (N,h)$ be an isometry between Riemannian manifolds. Show that if $\gamma: I \to M$ is a geodesic with respect to the Levi-Civita connection then $f \circ \gamma: I \to N$ is also a geodesic (Hint: prove first that $f_*(D_X^g Y) = D_{f_*X}^h f_* Y$, for X, Y vector fields on M.)

Problem 7 Let g be the round metric on S^2 induced by the Euclidean metric

$$g = d\theta \otimes d\theta + \sin^2(\theta) d\alpha \otimes d\alpha$$

- Compute the Christoffel symbols for the Levi-Civita connection.
- Show that the equator is the image of a geodesic.
- Show that any rotation about any axis through the origin in \mathbb{R}^3 induces an isometry of S^2

Problem 8 Consider the hyperbolic metric on the upper half plane $\mathbb{H} = \{(x, y) | y > 0\}$

$$g = \frac{1}{y^2} \left(dx \otimes dx + dy \otimes dy \right).$$

- Compute the Christoffel symbols for the Levi-Civita connection.
- Show that the curves $\alpha, \beta : \mathbb{R} \to \mathbb{H}$

$$\alpha(t) = (0, e^t)$$
$$\beta(t) = \left(\tanh t, \frac{1}{\cosh t}\right)$$

are geodesics. What are the sets $\alpha(\mathbb{R}), \beta(\mathbb{R})$?