Bronx Community College of the City University of New York Department of Mathematics and Computer Science

 Syllabus: MTH 34 Differential Equations (4 credits-4 hours) Prerequisite: MTH 33 - Calculus III Text: Differential Equations, 4th Ed. P. Blanchard, R. L. Devaney, G. R. Hall Cengage Learning 2011, ISBN: 978-1133109037 		
Section	Торіс	Suggested Exercises
1. 1.1 1.2 1.3 1.4 1.5 1.6 1.8	First-Order Differential Equations Modeling via Differential Equations Analytic Technique: Separation of Variables Qualitative Technique: Slope Fields Numerical Technique: Euler's method Existence and Uniqueness of Solutions Equilibria and the Phase Line Linear Equations	 p.14: 1, 2, 3, 5, 7, 11, 13–15, 17, 19, 21–23 p.33: 1–19 odd, 4, 10, 20, 27–30, 36, 39, 41, 42 p.47: 1, 3, 6, 7, 9, 11–14, 16–18, 22 p.61: 1, 2, 5, 6, 7, 11, 14, 16 p.71: 1, 3, 5–7, 11, 12, 14, 16 p.89: 1, 3, 4, 5, 7, 13, 15, 17, 18, 23, 25, 29, 37, 43, 44 p.121: 1, 3, 5, 7, 11, 13, 17, 18, 21, 23, 29
1.9	Integrating Factors for Linear Equations Review Exercises for Chapter 1	p.133: 1, 3, 5, 9, 11, 20, 21, 23, 24 p.136: 1–9, 11–20, 21-43 odd, 44, 46–48, 51–55
$2. \\ 2.1 \\ 2.2 \\ 2.3^{1} \\ 2.4 \\ 2.5 \\ 2.6$	First-Order Systems Modeling via Systems The Geometry of Systems The Damped Harmonic Oscillator Additional Analytic Methods for Special Systems Euler's Method for Systems Existence and Uniqueness for Systems Review Exercises for Chapter 2	 p.161: 1-8,11-15,19-24 p.178: 1-5,7,9,11,12,13,15, 18,19, 21, 23-27 p.187: 1,5, 9, 10 p.194: 1-7 odd, 10, 13 p.202: 1, 4, 5, 7 p.208: 3, 8, 9, 11 p.224: 1-28, 29-33 odd, 37
3. 3.1 3.2 3.3 3.4 3.5 3.6 3.7	Linear Systems Properties of Linear Systems Straight-Line Solutions Phase Planes (Real Eigenvalues) Complex Eigenvalues Repeated and Zero Eigenvalues Second-order Linear Equations The Trace-Determinant Plane Review Exercises for Chapter 3	p.258: 4, 5–11 odd, 14–17, 19, 24, 25, 27, 28, $31-35^2$ p.277: 1–7 odd, 11, 13, 15–19, 21, 23 p.293: 1–11 odd, 15, 19, 21, 27 p.310: 1-15 odd, 17, 19, 23-26 p.327: 1-7 odd, 11–15 odd, 16, 18, 21–23 p.342: 1–15 odd, 21, 23,26, 29, 34, 40 p.358: 1, 2, 3, 5, 9, 11, 12 p.376: 1–18, 19–32 odd
4. 4.1 4.2 4.3 App. B	Forcing and Resonance Forced Harmonic Oscillators Sinusoidal Forcing Undamped Forcing and Resonance Power Series Method Review Exercises for Chapter 4	 p.399: 1, 5, 7, 11, 15, 18–20, 25, 27, 31, 34–37, 40 p.412: 1, 5, 9, 11, 13, 15–19, 23 p.424: 1, 5, 6, 7, 10, 13–17 odd, 21 p.748: 1–17 odd p.449: 1–14, 15–27 odd
5. 5.1 5.2	Nonlinear Systems Equilibrium Point Analysis Qualitative Analysis	p.472: 1, 3, 5–7, 11, 17 p.487: 1–11 odd
6. 6.1 6.2 6.3 6.4	Laplace Transforms Laplace Transforms ³ Discontinuous Functions Second-Order Equations Delta Functions and Impulse Forcing Review Exercises for Chapter 6	p.577: 1–3, 5–9, 12, 13, 15, 20, 24, 27 p.585: 1, 2, 3–9 odd, 13, 17, 19 p.599: 1, 3, 5, 15, 17, 19–21, 27, 29, 31, 33, 34 p.608: 1–9 p.627: 1–17, 19-30 odd

 $\frac{2012}{08/2014}$ (GP) $\frac{1000}{1000}$

 1 This section may be deferred until the topic harmonic oscillator is considered in more detail in chapter 4.

 2 Problem 35 is worth emphasizing; the Wronskian is introduced and Abel's Theorem can be discussed here.

³Fourier Transforms can be briefly mentioned. We focus on Laplace Transforms.