BRONX COMMUNITY COLLEGE
of the City University of New York
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
SYLLABUS: MTH33 – Calculus and Analytical Geometry III (5 Credits – 5 Hours per week)
Prerequisite: MTH32 – Calculus and Analytical Geometry II
TEXT: Calculus (Fifth Edition) by James Stewart, Publisher: Brooks/ Cole
_______________________________________________________________________________
SECTION TOPIC SUGGESTED EXERCISES
Infinite Sequences and Series
12.1 Sequences 747/ 13 – 49 odd
12.2 Series 756/ 1-5, 7, 8, 9, 15-19, 37 – 41 odd
12.3 The Integral Test 765/ 1 – 23 odd
12.4 The Comparison Tests 770/ 15 – 29 odd, 41, 43, 45
12.5 Alternating Series 775/ 1, 3, 7, 9, 11, 15, 17, 19, 21
12.6 Absolute Convergence and the Ratio
and Root tests 782/ 7 – 37
12.7 Strategy for Testing Series 784/ 1, 2, 3, 4, 7, 11, 13, 21 – 37 odd
12.8 Power Series 789/ 1 – 31 odd
12.9 Representation of Functions as Power
Series 795/ 7 – 39 odd
12. 10 Taylor and Maclaurin Series 806/ 1 – 27 odd
12.11 The Binomial Series 811/ 1 – 19 odd
12.12 Applications of Taylor Polynomials 819/ 1 – 25 odd
Review 823/ 1 – 43 odd
Vectors and the Geometry of Space
13.1 Three- Dimensional Coordinate Systems 833/ 1–11 odd, 17, 19, 21, 23-33 odd
13. 2 Vectors 841/ 5 - 29 odd
13.3 The Dot Product 848/ 3 – 47 odd
13. 4 The Cross Product 856/ 1- 39 odd
13. 5 Equations of Lines and Planes 866/ 7 – 43 odd
(OVER)
Vector Functions
14.1 Vector Functions and Space Curves 891/ 1 – 25 odd
14.2 Derivatives and Integrals of Vector
Functions 897/ 1 – 29 odd
14.3 Arc Length and Curvature 904/ 1 – 37 odd
Review 918/ 1 – 5 odd, 9 – 13 odd
Partial Derivatives
15.1 Functions of Several Variables 934/ 3 – 19 odd
15.2 Limits and Continuity 944/ 1 – 33 odd
15.3 Partial Derivatives 956/ 9 – 29 odd, 43 – 69 odd
15.4 Tangent Planes and Linear
Approximations 966/ 1 – 21 odd
15.5 The Chain Rule 974/ 1 – 35 odd
15.6 Directional Derivatives and the Gradient
Vector 987/ 7 – 33 odd
15.7 Maximum and Minimum Values 997/ 5 – 17 odd, 27 – 33 odd
Review 1012/ 1 – 45 odd
Multiple Integrals
16.1 Double Integrals over Rectangles 1024/ 1 – 15 odd
16.2 Iterated Integrals 1030/ 3 – 29 odd
16.3 Double Integrals over General Regions 1038/ 1, 3, 7, 15, 17, 19, 25, 27
16.4 Double Integrals in Polar Coordinates 1044/ 1, 5, 9 – 27 odd
16.7 Triple Integrals 1066/ 1, 3, 7, 11- 19 odd
Review 1086/ 3, 7, 9, 11, 15 – 27 odd
8/ 26/ 04 (MM)