BRONX COMMUNITY COLLEGE

of the City University of New York

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SYLLABUS: MTH33 – Calculus and Analytical Geometry III (5 Credits – 5 Hours per week)

Prerequisite: MTH32 – Calculus and Analytical Geometry II

TEXT: Calculus (Fifth Edition) by James Stewart, Publisher: Brooks/ Cole

_______________________________________________________________________________

SECTION TOPIC SUGGESTED EXERCISES

Infinite Sequences and Series

12.1 Sequences 747/ 13 – 49 odd

12.2 Series 756/ 1-5, 7, 8, 9, 15-19, 37 – 41 odd

12.3 The Integral Test 765/ 1 – 23 odd

12.4 The Comparison Tests 770/ 15 – 29 odd, 41, 43, 45

12.5 Alternating Series 775/ 1, 3, 7, 9, 11, 15, 17, 19, 21

12.6 Absolute Convergence and the Ratio

and Root tests 782/ 7 – 37

12.7 Strategy for Testing Series 784/ 1, 2, 3, 4, 7, 11, 13, 21 – 37 odd

12.8 Power Series 789/ 1 – 31 odd

12.9 Representation of Functions as Power

Series 795/ 7 – 39 odd

12. 10 Taylor and Maclaurin Series 806/ 1 – 27 odd

12.11 The Binomial Series 811/ 1 – 19 odd

12.12 Applications of Taylor Polynomials 819/ 1 – 25 odd

Review 823/ 1 – 43 odd

Vectors and the Geometry of Space

13.1 Three- Dimensional Coordinate Systems 833/ 1–11 odd, 17, 19, 21, 23-33 odd

13. 2 Vectors 841/ 5 - 29 odd

13.3 The Dot Product 848/ 3 – 47 odd

13. 4 The Cross Product 856/ 1- 39 odd

13. 5 Equations of Lines and Planes 866/ 7 – 43 odd

(OVER)

Review 881/ 1 – 13 odd

Vector Functions

14.1 Vector Functions and Space Curves 891/ 1 – 25 odd

14.2 Derivatives and Integrals of Vector

Functions 897/ 1 – 29 odd

14.3 Arc Length and Curvature 904/ 1 – 37 odd

Review 918/ 1 – 5 odd, 9 – 13 odd

Partial Derivatives

15.1 Functions of Several Variables 934/ 3 – 19 odd

15.2 Limits and Continuity 944/ 1 – 33 odd

15.3 Partial Derivatives 956/ 9 – 29 odd, 43 – 69 odd

15.4 Tangent Planes and Linear

Approximations 966/ 1 – 21 odd

15.5 The Chain Rule 974/ 1 – 35 odd

15.6 Directional Derivatives and the Gradient

Vector 987/ 7 – 33 odd

15.7 Maximum and Minimum Values 997/ 5 – 17 odd, 27 – 33 odd

Review 1012/ 1 – 45 odd

Multiple Integrals

16.1 Double Integrals over Rectangles 1024/ 1 – 15 odd

16.2 Iterated Integrals 1030/ 3 – 29 odd

16.3 Double Integrals over General Regions 1038/ 1, 3, 7, 15, 17, 19, 25, 27

16.4 Double Integrals in Polar Coordinates 1044/ 1, 5, 9 – 27 odd

16.7 Triple Integrals 1066/ 1, 3, 7, 11- 19 odd

Review 1086/ 3, 7, 9, 11, 15 – 27 odd

8/ 26/ 04 (MM)