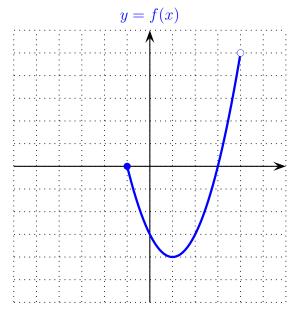
BRONX COMMUNITY COLLEGE of the City University of New York

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE MTH30 Review Sheet

1. Given the functions f and g described by the graphs below:



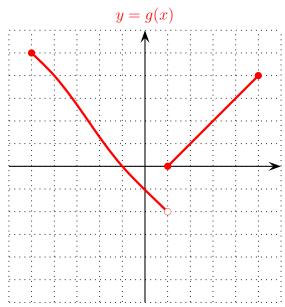
- (a) Find:
 - i. The domain of f
 - ii. The range of f
 - iii. An interval on which f is increasing
 - iv. An interval on which f is decreasing
 - v. The domain of g
 - vi. The range of \boldsymbol{g}
 - vii. An interval on which g is one-to-one
- (b) Evaluate the following, if they exist:

i.
$$g(1)$$

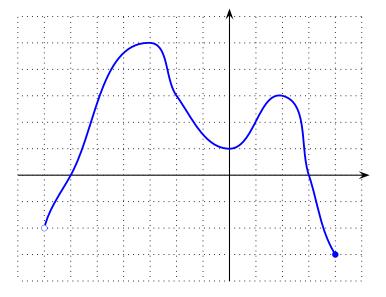
ii. $(f + g)(1)$
iii. $(f - g)(4)$
iv. $\left(\frac{g}{f}\right)(-1)$
v. $(f \circ g)(1)$
vi. $(g \circ g)(-5)$
vii. $(f \circ f)(3)$

2. Let
$$f(x) = \sqrt{x^2 + 4x + 4}$$
 and $g(x) = \frac{x^2 - 1}{\sqrt{1 - x}}$.

(a) Find the domains of f and g. Give your answer using interval notation.



- (b) Evaluate, if defined: $f(g(0)); g(f(0)); (f \cdot g)(0)$
- 3. Given the graph of y = f(x), answer the following questions.



- (a) Find the domain of f
- (b) Find the range of f
- (c) Over which intervals is f increasing?
- (d) Over which intervals is f decreasing?
- (e) Find f(-3) and f(4)
- (f) Find all solutions to the equation f(x) = 3
- (g) Find the zeros of the function.
- (h) Does f have an inverse function? Explain.
- 4. For each of the functions f given below:

A. $f(x) = \frac{x}{x+1}$ B. $f(x) = e^{2x-1}$ C. $f(x) = \log_2(3-x)$

- (a) Find the inverse function f^{-1} .
- (b) Verify that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$
- (c) Sketch a graph of y = f(x) and $y = f^{-1}(x)$ on the same set of coordinates.
- 5. Consider the functions: $f(x) = e^{x^2}$ and $g(x) = \sqrt{\ln x}$. Are f and g a pair of inverse functions? Justify your answer.
- 6. For each pair of functions f and g given below find $f \circ g$ and $g \circ f$.

(a)
$$f(x) = 2x^2 - 3x + 5; g(x) = 5 - 2x.$$

(b)
$$f(x) = \frac{2x}{x-5}; g(x) = \frac{5x}{x-2}$$

(c) $f(x) = x^2 - 4; g(x) = \sqrt{x+5}$

- 7. The graph of a parabola y = f(x) has axis of symmetry x = -1, vertex (-1, 5), and f(0) = 3.
 - (a) Write the equation of the parabola in standard form.
 - (b) State the domain and the range of f.

- (c) Sketch a graph of y = f(x).
- 8. For each of the the following polynomials p(x):

A. $p(x) = x^3 - 3x^2 + 4$ B. $p(x) = -x^3 + 4x^2 - x - 6$ C. $p(x) = 2x^4 + 7x^3 + 6x^2 - x - 2$

- (a) List all possible rational roots of p(x), according to the Rational Zeros Theorem.
- (b) Factor p(x) completely.
- (c) Find all roots of the equation p(x) = 0.
- (d) Determine the end behavior of the graph of y = p(x).
- (e) Determine the *y*-intercept of the graph of y = p(x)
- (f) Determine the *x*-intercepts of the graph y = p(x)
- (g) Determine the local behavior of y = p(x) near the x-intercepts.
- (h) Use the above information to sketch a graph of y = p(x).
- 9. Find the remainder of the division of $x^{122} 20x^{51} + 60x^{34} + 1$ when divided by x 1.
- 10. For each of the following rational functions f

A.
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - x - 2}$$
 B. $f(x) = \frac{x^2 + 2x - 3}{x^2 - 2x - 3}$ C. $f(x) = \frac{x^2 - 9}{x^2 - x - 2}$ D. $f(x) = \frac{2 - x}{x^2 + x - 2}$
E. $f(x) = \frac{x^2}{x^2 + 1}$

- (a) Factor numerator and denominator and simplify if possible.
- (b) Find the x and y intercepts of the graph of y = f(x) if they exist.
- (c) Find any vertical or horizontal asymptotes.
- (d) Determine how the sign of f(x) changes.
- (e) Use the above information to sketch a graph of y = f(x).
- 11. Solve the following inequalities. Express your answer using interval notation.

A.
$$x^4 + x^3 - 7x^2 - x + 6 \ge 0$$
 B. $\frac{x+4}{2x-1} > 3$ C. $\frac{x^2 - 3x + 2}{x^3 - 6x^2 + 9x} \le 0$

12. Evaluate the following expressions. Give exact values whenever possible:

(a)
$$\log_2 \frac{1}{64}$$

(b) $\log_9 \frac{\sqrt{3}}{3}$
(c) $\log_b x^3 y$, given that $\log_b x = 2$ and $\log_b y = 36$
(d) e^{x-y} given that $e^x = 3$ and $e^y = 4$
(e) $\log_a \left(\frac{x}{y}\right)$ given that $\log_a(x) = 12$ and $\log_a(y) = 4$
(f) $\ln e^{\sqrt{2}}$
(g) $\log 1000$
(h) $\log_7 31$, rounded to the nearest hundredth
(i) $\sin^{-1} \left(\sin \frac{\pi}{6}\right)$
(j) $\cos^{-1} \left(\cos \frac{4\pi}{3}\right)$

(1)
$$\sin(a+b)$$
, if $\sin a = \frac{1}{3}$, $\cos b = \frac{3}{5}$ and $0 < a, b < \frac{\pi}{2}$

13. Find θ if

(a)
$$\cos \theta = \frac{\sqrt{3}}{2}$$
, and $\frac{3\pi}{2} < \theta < 2\pi$.
(b) $\sin \theta = -\frac{1}{2}$, and $\pi < \theta < \frac{3\pi}{2}$.
(c) $\sin \theta = \frac{\sqrt{2}}{2}$, and $\frac{\pi}{2} < \theta < \pi$
-Q14

14. Solve the following equations:

- (a) $\log_2 x \log_2(x-1) = 1$
- (b) $7^{x+2} = 49$
- (c) $\sin^2 x = \frac{3}{4}$, where x is in the interval $[0, 2\pi)$
- (d) $2\cos^2 x + 3\cos x + 1 = 0$, where x is in the interval $[0, 2\pi)$

15. Verify the following identities:

(a)
$$\tan^2 x + 1 = \sec^2 x$$

- (b) $\csc x \sin x = \cot x \cos x$
- (c) $\csc x \cos x \cot x = \sin x$

(d)
$$\cos^2 x - \sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

16. For each of the following functions

A.
$$f(x) = -\sin(4x - \pi)$$
 B. $f(x) = -3\cos(2x + \pi)$
C. $f(x) = 2\sin(3x - \frac{\pi}{2})$ D. $f(x) = \frac{1}{2}\cos\left(\frac{x}{2} - \frac{\pi}{2}\right)$

- (a) Find the period of this function.
- (b) Find the amplitude of the graph of y = f(x)
- (c) Find the phase shift of the graph of y = f(x)
- (d) Sketch two complete cycles of the graph of y = f(x)

The answers

- 1. (a) i. [-1,4), ii. [-4,5), iii. [1,4), iv. [-1,1], v. [-5,5], vi. (-2,5], vii. [-5,1) or [1,5]
 (b) i. 0, ii. -4, iii. undefined, iv. indeterminate, v. -3, vi 4, vii -3
- 2. (a) Domain of f is (-∞, ∞), domain of g is (-∞, 1)
 (b) f (g(0)) = 1; g (f(0)) is undefined; (f ⋅ g) (0) = -2
- 3. A. (-7,4] B. [-3,5] C. (-7,-3] and [0,2] D. [-3,0] and [2,4] E. f(-3) = 5; f(4) = -3 F. $\{-5,-2,2\}$ G. -6, 3 H. No. It is not one-to-one.
- 4. For the graphs see Figure 1. A. $f^{-1}(x) = \frac{x}{1-x}$ B. $f^{1}(x) = \frac{\ln x + 1}{2}$ C. $f^{-1}(x) = 3 2^{x}$
- 5. They are not a pair of inverse functions: f is not one-to-one and thus it doesn't have an inverse function.

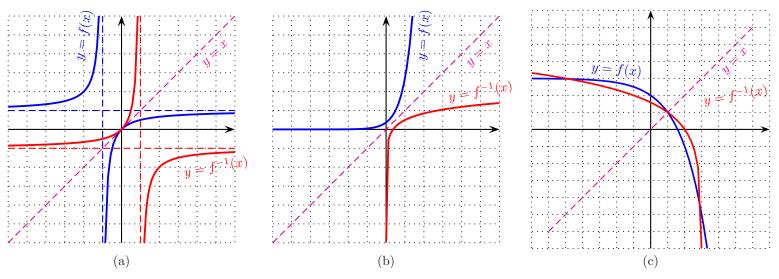


Figure 1: The graphs of Question 4

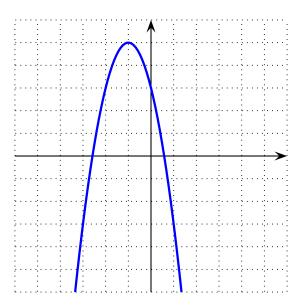


Figure 2: The parabola of Question 7

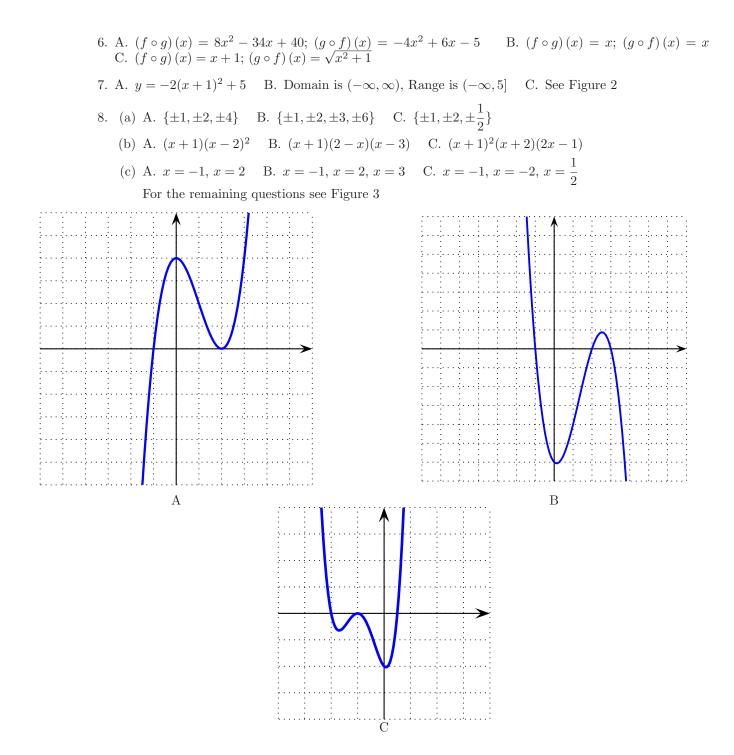


Figure 3: The graphs in Question 8

- 9. By the Remainder Theorem the answer is 42.
- 10. The first four graphs are shown in Figure 4. The fifth is shown in Figure 5.

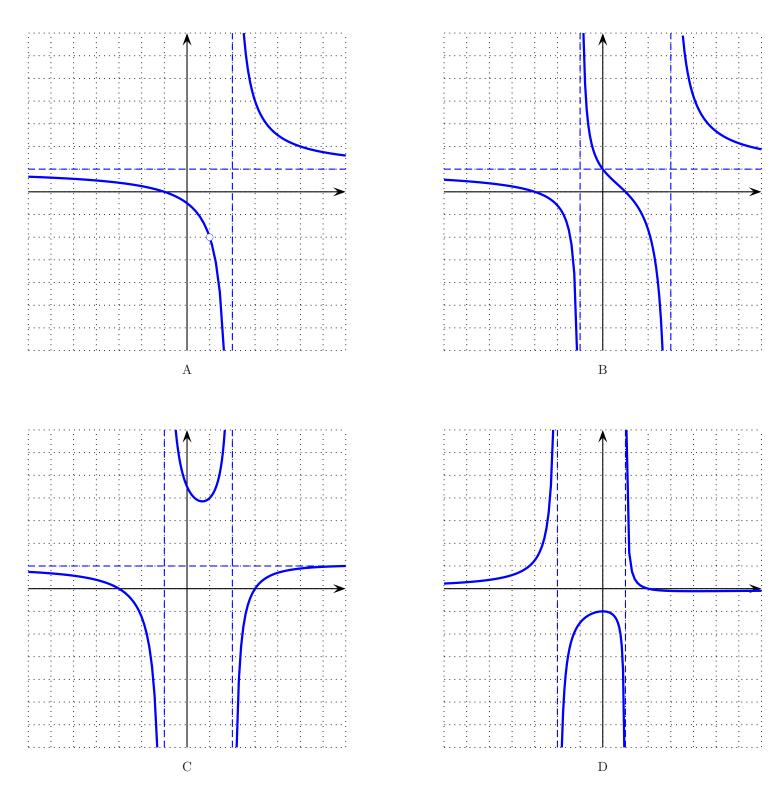


Figure 4: The first four graphs of Question 10

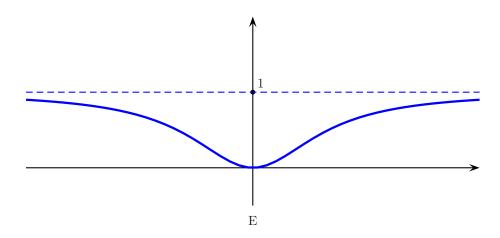
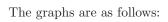


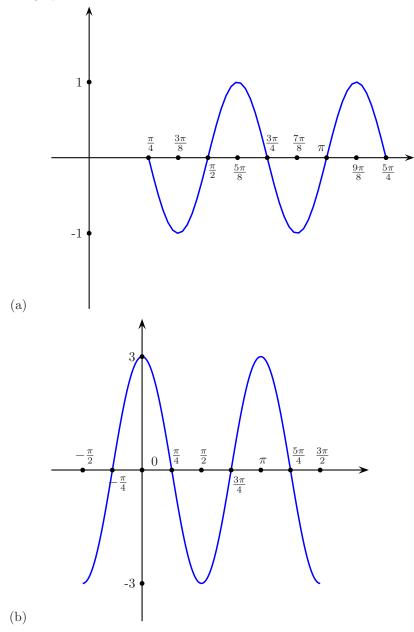
Figure 5: The fifth graph of Question 10

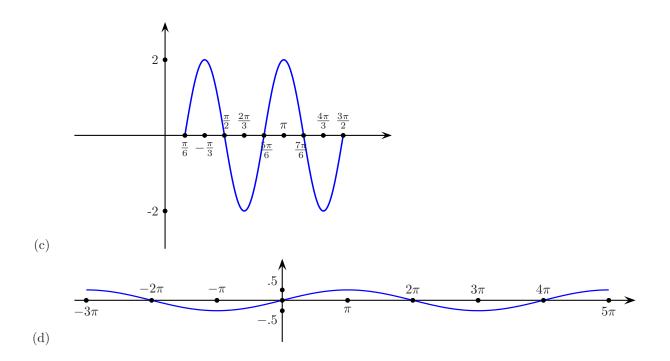
11. A.
$$(-\infty, -3] \cup [-1, 1] \cup [2, \infty)$$
 B. $\left(\frac{1}{2}, \frac{7}{5}\right]$ C. $(-\infty, 0) \cup [1, 2]$
12. A. -6 B. $-\frac{1}{4}$ C. 42 D. $\frac{3}{4}$ E. 8 F. $\sqrt{2}$ G. 3 H. 1.76 I. $\frac{\pi}{6}$ J. $\frac{2\pi}{3}$ K. 0
L. $\frac{3+8\sqrt{2}}{15}$
13. A. $\frac{11\pi}{6}$ B. $\frac{7\pi}{6}$ C. $\frac{3\pi}{4}$
14. A. $x = 2$ B. $x = 0$ C. $x = \frac{\pi}{3}, x = \frac{2\pi}{3}, x = \frac{4\pi}{3}, x = \frac{5\pi}{3}$ D. $x = \pi, x = \frac{2\pi}{3}, x = \frac{4\pi}{3}$
15. To prove these identities, use algebra and the basic identities

$$\csc \theta = \frac{1}{\sin \theta}$$
$$\sec \theta = \frac{1}{\cos \theta}$$
$$\cot \theta = \frac{1}{\tan \theta}$$
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$\cos^2 \theta + \sin^2 \theta = 1$$

16. (a) A.
$$\frac{\pi}{2}$$
 B. π C. $\frac{2\pi}{3}$ D. 4π
(b) A. 1 B. 3 C. 2 D. $\frac{1}{2}$
(c) A. $\frac{\pi}{4}$ B. $-\frac{\pi}{2}$ C. $\frac{\pi}{6}$ D. π







NEA, TK May 2011