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Part I

Preparing for algebra

1





Chapter 1

Review of fractions

Vocabulary

• Whole numbers

• Integers

• Fraction

• Numerator

• Denominator

• Rational numbers

• Fractions in simplest form

• Equivalent fractions

• Reciprocal

1.1 Introduction to fractions

Growing up, the first numbers we encounter are whole numbers : 0, 1, 2, . . . .
These numbers (with the possible exception of zero) are as concrete as a number
can be. While I may not be able to picture a “three,” I have a clear idea of
what three books mean, three dollars are, three fingers, etc. The whole numbers,
together with their opposites (“negative whole numbers”) are called integers.

As soon as we start dividing whole numbers, though, we encounter the prob-
lem that the quotient of two whole numbers may not be a whole number.

A fraction is a symbolic way of writing a quotient, which is the result of
dividing two numbers. In this way, the operation of division is “built into” the
notion of a fraction.

3



4 CHAPTER 1. REVIEW OF FRACTIONS

For example,
1

2
is a symbol representing the number that results by per-

forming the operation 1÷ 2.
Some things to notice right away: A fraction is one symbol consisting of two

numbers separated by a bar (the bar representing the operation of division).
One number is written above the bar—it is called the numerator. The other
number, written below the bar, is called the denominator. The two numbers
play different roles. After all, division is not commutative: 1÷ 2 does not give

the same result as 2÷ 1. So
1

2
is not the same as

2

1
.

For the first few chapters of this book, most of the numbers we will encounter
will be rational numbers. A rational number is the result of dividing two inte-
gers. Said differently, a rational number is a number which can be written as a
fraction whose numerator and denominator are both integers. Remember that
since division by zero causes very fundamental problems, the denominator of a
fraction representing a rational number must not be zero.

1.2 Decimal representation

Fractions are not the only way to represent the result of a division. Using long
division, the quotient of two numbers can be expressed in decimal notation.
Here is a simple example:

2
0.5
)

1.0

Changing from fraction to decimal notation

To change a fraction to a number in decimal form, perform long division of
the numerator by the denominator.

Be sure to practice this, as there are several different ways of performing
long division depending on in which country you went to school!

One of the unfortunate features of decimal representations of numbers is
that they may not terminate nicely, as the previous simple example did. For

example, 1÷ 3 =
1

3
= 0.3 = 0.33333 . . ..

A basic fact of rational numbers, however, is that their decimal representa-
tion must either terminate or repeat.

1.2.1 Exercises

Convert the following fractions to decimals.
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1.
3

4

2.
5

11

3.
2

7

Throughout the text, starred exercises are those that might be slightly more
challenging, or explore a topic in greater depth.

4. (*) Write the number 0.123 in fraction notation.

(Hint: Represent the number 0.123 by the letter N . Since N has three
digits repeating, multiply N by 1000. What is 1000N? Using these values,
subtract 1000N −N = 999N . Then divide by 999 to “solve for N .”)

5. (*) Use the hint in the previous exercise to write the following repeating
decimals using fraction notation.

(a) 0.123456

(b) 3.14

1.3 Other conventions: Mixed numbers

You may recall that fractions whose numerator is smaller (in magnitude) than
the denominator is called a proper fraction. For this reason, a fraction whose
numerator is greater than or equal to the denominator is sometimes called an
improper fraction. However, there is nothing improper about improper fractions
at all—we will work with them routinely. In fact, in most circumstances, it is
better to work with improper factions than their alternative.

However, there is another common way of expressing improper fractions.
These are what are called mixed numbers. A mixed number has an integer part
and a proper fraction part.

To convert from an improper fraction to a mixed number, perform the indi-
cated division. The quotient will be the integer part of the mixed number. The
remainder will be the numerator of the proper fraction part; the denominator
is the same as the denominator of the original improper fraction.

Example 1.3.1. Convert 22
7 to a mixed number.

Answer. 22÷ 7 = 3 R 1. So

22

7
= 3

1

7
.

The answer is 3
1

7
.
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Notice that 3
1

7
actually means 3 +

1

7
. This is an unfortunate notation, since

normally the absence of a symbol for an operation between two numbers implies
multiplication. But at this point, the notation is a historical fact of life.

To convert from a (positive) mixed number to an improper fraction, multiply
the integer part by the denominator of the fraction part and add the numerator
of the fraction part; the result will be the numerator of the improper fraction.
The denominator of the improper fraction is the same as the denominator of
the fraction part of the mixed number.

Example 1.3.2. Convert 5
2

3
to an improper fraction.

Answer. To obtain the new numerator, first multiply the denominator by the
integer part: 3× 5 = 15. Then add the numerator of the fraction part: 15+2 =
17.

The denominator is the same as the denominator of the fraction part, in this
case 3.

The answer is
17

3
.

We will not insist that improper fractions be converted to mixed numbers!
In most cases, we will not work with mixed numbers at all.

1.3.1 Exercises

Change the following improper fractions to mixed numbers.

1.
19

5

2.
100

3

Change the following mixed numbers to improper fractions.

3. 4
1

8

4. 2
3

10

1.4 Graphical representation of fractions

You may remember from your youth seeing your math teacher drawing pictures
of pizzas on the board to illustrate a way to represent fractions. Throughout this
text, the most convenient way to represent numbers , including fractions, will
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be using a number line. In this representation, every number will correspond to
a geometrical point.

The key features of a number line are: (1) it extends infinitely in both direc-
tions; (2) one direction is designated the positive direction (to the right) while
the other is the negative direction (to the left); (3) there is one distinguished
point on the line, representing the number 0; and (4) there is a “unit distance”
with length one, which allows us to mark off all the points representing integers.

Proper fractions (at least the positive ones) are then represented by points
lying between those labeled 0 and 1. The denominator tells us how many units
to subdivide the segment between the points labeled 0 and 1; the numerator
tells us how many of these sub-units to count from 0.

Improper fractions are handled similarly. For these fractions, it is more
convenient to represent the number as a mixed number. Instead of dividing
the segment between the points representing 0 and 1, we divide the segment
starting at the point representing the integer part of the number and the next
point representing an integer away from the point representing 0. For example,
thinking of the improper fraction 22

7 as the mixed number 3 1
7 , we can represent

this number with a point 1
7 of a unit between 3 and 4:

| | | | | | | |

3 22
7

4

1.5 Equivalent fractions and fractions in sim-

plest form

One of the most important features of fractions is that two different-looking
fractions might represent the same number. When you think about it, this
shouldn’t be a big surprise. After all, there are many different division problems
that give the same result. For example, 9 ÷ 3 is the same as 6 ÷ 2—both are

3. That’s one way to see that the fractions
9

3
and

6

2
are different ways of

symbolizing the same number.
Two fractions are called equivalent if they represent the same number.
The basic principle we will need to keep in mind is the following: Mul-

tiplying or dividing both the numerator and the denominator of a
fraction by the same non-zero number gives an equivalent fraction.
In fact, this procedure amounts to multiplying a number by 1, which of course
does not change the number.
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There are two main reasons that we will be interested in equivalent fractions:
writing fractions with common denominators, and writing fractions in simplest
form.

1.5.1 Writing fractions with common denominators

As we will see below, there are many situations when we would like to write two
fractions in an equivalent way so that they have the same denominator.

Example 1.5.1. Write the fractions
3

10
and

7

15
with a common denominator.

Answer. There are two major steps in writing two fractions using a common
denominator.

Step 1. Find a common denominator.

We will find the least common multiple of the two denominators 10 and
15. That is, we will find the smallest whole number which is multiple of
both 10 and 15.

Multiples of 10: 10, 20, 30, 40, . . .

Multiples of 15: 15, 30, 45, 60, . . .

LCM(10, 15) = 30.

Step 2. For each of the fractions, decide what number is needed to multiply the
original denominator in order to obtain the new, common denominator.
Then multiply both the numerator and the denominator of the fractions by
this number to obtain the equivalent fraction with the common denomina-
tor.

For the fraction
3

10
, what number do we need to multiply the original

denominator 10 by to obtain the new common denominator 30? 30÷10 =
3. So:

3

10
=

3× 3

10× 3
=

9

30
.

Likewise, for the fraction
7

15
, what number do we need to multiply 15 by

to obtain 30? 30÷ 15 = 2. So:

7

15
=

7× 2

15× 2
=

14

30
.

The answer is
9

30
and

14

30
.
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1.5.2 Writing fractions in simplest form

A fraction is said to be in simplest form when the numerator and denominator
have no factors in common (except 1).

For example, the fraction
8

52
is not in simplest form, since 4 is a factor of 8

(since 8 = 4× 2) and 4 is also a factor of 52 (since 52 = 4× 13). When dealing
with large numbers as numerators and denominators, it is sometimes helpful to
see their prime factorizations. We will not emphasis that here; most of the time
we will be able to see common factors without much trouble.

Example 1.5.2. Write the fraction
8

52
in simplest form.

Answer. We saw above that the numerator and the denominator have a com-
mon factor of 4. To write the fraction in simplest form, we will apply the oppo-
site procedure we used above in writing fractions with a common denominator:
we will divide both the numerator and denominator by the common

factor.
8

52
=

8÷ 4

52÷ 4
=

2

13
.

Notice that 2 and 13 have no factors in common, so
2

13
is in simplest formand

equivalent to the original fraction
8

52
.

The answer is
2

13
.

To repeat, multiplying or dividing both the numerator and denominator by
the same nonzero number results in an equivalent fraction.

1.5.3 Exercises

Write the following fractions in simplest form.

1.
6

8

2.
20

25

3.
18

6

4.
118

177

5.
14

10
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1.6 Operations with fractions: Multiplying and

dividing

Now that we have reviewed the basic properties of fractions, we will review
the rules for performing arithmetic operations using this symbolism. We will
begin with multiplying and dividing. That might seem strange if you think that
adding and subtracting are “easier” operations to work with, but since fraction
notation is based on the operation of division, it should not be too hard to
believe that multiplying and diving are much more suited to the notation than
adding and subtracting.

1.6.1 Multiplying fractions

Multiplying whole numbers has a clear relationship to the operation of addition.
For example, 2×3 means the same as “three added together two times,” or 3+3.
However, if we want to extend the operation of multiplication to fractions, nega-
tive numbers, and other more exotic numbers, we have to make sure that certain
basic properties are preserved, like the commutative and associative properties
(which, in the case of whole number multiplication, are just easy consequences
of the corresponding properties for addition). In addition, multiplication and
addition must be related by the distributive property.

We will not review these properties here. We only mention them to indicate
that the rules for multiplying (and dividing) fractions are not arbitrary, but are
carefully constructed so that all our basic operations interact in the same way
we expect them to do based on our experience with whole numbers.

Multiplying fractions

The product of two fractions is a new fraction whose numerator is the
product of the two numerators and whose denominator is the product of
the two denominators.

Example 1.6.1. Multiply:
2

3
× 4

5
.

Answer.
2

3
× 4

5
2× 4

3× 5
8

15
.
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The answer is
8

15
.

Note that the answer is in simplest form. That doesn’t always happen, as
the next example shows.

Example 1.6.2. Multiply:
1

4
× 2

3
.

Answer. The two fractions we begin with are in simplest form. Multiplying,

1

4
× 2

3
1× 2

4× 3
2

12
(Note that the numerator and denominator have a common factor of 2)

2÷2

12÷2

1

6
.

The answer, in simplest form, is
1

6
.

We use one more example as a reminder that whole numbers can be thought
of as fractions, most easily as “itself divided by 1”.

Example 1.6.3. Multiply: 15× 4

7
.

Answer.

15× 4

7
15

1
× 4

7
15× 4

1× 7
60

7
.

The final answer, 60
7 , is in simplest form. According to our convention, we will

not bother to change it to a mixed number. (If you wanted to, it would be 8 4
7 .)

1.6.2 Dividing fractions

To divide fractions, we will take advantage of the fact that division is the “op-
posite of,” or more precisely the inverse operation of multiplication. In order
to take advantage of this fact, we recall the idea of the reciprocal of a number.

Two numbers are reciprocals if their product is 1.
In practice, to find the reciprocal of a number written as a fraction, we

interchange the numerator and the denominator.
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Example 1.6.4. The reciprocal of 2
3 is 3

2 .

After all,

2

3
· 3
2
=

6

6
= 1.

Example 1.6.5. The reciprocal of 4 (= 4
1) is 1

4 .

After all,

4

1
· 1
4
=

4

4
= 1.

Dividing fractions

The quotient of two fractions is the same as the product of the first fraction
by the reciprocal of the second fraction.

So, for example, we will rewrite
3

4
÷ 2

3
as

3

4
· 3
2
.

Example 1.6.6. Divide:
7

8
÷ 3

4
.

Answer.

7

8
÷ 3

4
7

8
· 4
3

Rewriting as a product

7× 4

8× 3
28

24
28÷4

24÷4

7

6
.

The answer is
7

6
.

Example 1.6.7. Divide: 15÷ 2

3
.
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Answer.

15÷ 2

3
15

1
÷ 2

3
Rewriting the whole number as a fraction

15

1
· 3
2

Rewriting as a product

15× 3

1× 2
45

2
.

The answer is
45

2
.

Example 1.6.8. Divide:
9

2
÷ 15.

Answer.

9

2
÷ 15

1
9

2
· 1

15
Rewriting as a product

9× 1

2× 15
9

30
9÷3

30÷3
Reducing

3

10
.

The answer is
3

10
.

Keep in find that division is also be indicated by the fraction bar, as the
following example illustrates.

Example 1.6.9. Divide:
5
4

12
.

Answer.

5

4
÷ 12

1
5

4
· 1

12
Rewriting as a product

5× 1

4× 12
5

48
.
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The answer is
5

48
.

1.6.3 Exercises

Perform the indicated operation.

1.
3

4
· 2
5

2.
2

3
÷ 4

5

3.
17

2
· 4
3

4. 15 · 1
5

5.
3

8
÷ 18

6.
7
12
14
3

1.7 Operations with fractions: Adding and sub-

tracting

Unlike multiplication and division, addition and subtraction does not follow
a rule that sounds like “do the operation to the top and bottom separately.”
Instead, they follow a rule of a different pattern, one which we will see many
times ahead. Adding and subtracting fractions requires that the fractions be
“of the same kind.” For example, we will have a way to understand adding
sixths to sixths, but adding sixths to fifths will require that we express them as
fractions “of the same kind.”.
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Adding and subtracting fractions

To add or subtract two fractions:

1. Write the two fractions, using equivalent fractions if necessary, with
a common denominator.

2. Add (or subtract) the numerators, while keeping the same (common)
denominator.

Example 1.7.1. Add:
3

4
+

3

8
.

Answer. The two fractions are not written with a common denominator. The
least common denominator is 8.

3

4
+

3

8
3×2

4×2
+

3×1

8×1
Rewrite using common denominator

6

8
+

3

8
6 + 3

8
9

8
.

The answer is
9

8
.

Example 1.7.2. Subtract: 2− 4

7
.

Answer. We will rewrite the whole number 2 as
2

1
. The least common denom-

inator for the two fractions is 7.
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2− 4

7
2

1
− 4

7
Rewrite the whole number as a fraction

2×7

1×7
− 4×1

7×1
Rewrite using common denominator

14

7
− 4

7
14− 4

7
10

7
.

The answer is
10

7
.

Example 1.7.3. Subtract:
5

6
− 1

8
.

Answer. The least common denominator of the two fractions is 24.

5

6
− 1

8
5×4

6×4
− 1×3

8×3
Rewrite using common denominator

20

24
− 3

24
20− 3

24
17

24
.

The answer is
17

24
.

1.7.1 Exercises

Perform the indicated operation.

1.
8

7
+

4

5

2.
5

6
− 2

3

3.
4

5
+

3

10
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4.
5

12
− 1

3

5. 5− 2

3

6. 1
2

3
− 3

4
.

1.8 Chapter summary

• A fraction is a way of representing the result of dividing two numbers.

• A fraction can be changed to the corresponding decimal representation by
performing long division.

• The only time we will use mixed numbers will be when we want to repre-
sent a fraction graphically.

• Multiplying or dividing BOTH the numerator AND the denominator of a
fraction by the same nonzero number will result in an equivalent fraction.

• Dividing two fractions is performed as multiplication of the first fraction
by the reciprocal of the second fraction.

• Adding and subtracting fractions (unlike multiplying and dividing) require
that both fractions have the same (common) denominator.

• Final answers involving fractions should always be expressed in simplest
form, but may be improper fractions.
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Chapter 2

Signed numbers

Vocabulary

• Magnitude

• Absolute value

• Positive

• Negative

• Opposite of a number

• Base (of an exponential expression)

2.1 Introduction

When a child learns to count, numbers only go in one direction—they “get
bigger.” In fact, for thousands of years, civilizations rose and fell using only
positive numbers. After all, numbers first arise in answer to the question, “How
many?” How many what? How many things—the things being things which
might be picked up, looked at, put on a shelf, etc.

Negative numbers are more complicated. It doesn’t make very much sense
to say, “I have −5 books.” Historically, negative numbers arose to take into
account losses or debt, and was undoubtedly connected to the emergence of
money or coin. In this way, there is a meaning to the sentence, “I have −5
dollars”—it simply means that I owe 5 dollars, instead of having 5 dollars. In
this context, “to owe” is the opposite of “to have,” and the negative numbers
will be the opposite of the the more familiar positive numbers, in a way that
will be made precise below.

For now, let’s say that every positive number has an opposite, and this
opposite (of a positive number) will be a negative number. Zero will be special,

19
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in that it is neither positive nor negative; it is “neutral,” and we will say that
zero “is its own opposite.”

Our goal in this chapter will be to describe how to perform the basic arith-
metic operations—adding, subtracting, multiplying, dividing—with these neg-
ative numbers.

As soon as we allow negative numbers, we will need to take into account
two aspects of every nonzero number: its sign, which can be either positive or
negative, and its magnitude, which is a positive numerical value. A positive
number is indicated by a “+” symbol along with a magnitude. For example,
the symbol +5 will represent the number whose sign is positive and whose
magnitude is 5. A negative number is indicated by a “−” symbol along with a
magnitude. For example, the symbol −5 will represent the number whose sign
is negative and whose magnitude is 5. Notice that the magnitude of a nonzero
number is always positive. Operations with signed numbers will have to take
both of these aspects into account.

(The magnitude of a number is represented symbolically by means of the
absolute value symbol | · |. For example, we can summarize the preceding
paragraph with |5| = 5 and | − 5| = 5.)

We have already seen that zero is a special number when it comes to signs.
In fact, the very idea of “opposite” that we have used to motivate the negative
numbers will be defined relative to the number zero. Along with the fact that the
number 0 will be neither positive nor negative, we will say that 0 has magnitude
zero.

Warning: Do not confuse the meaning of symbols for the sign of a
number with the meaning of the symbols for addition and subtraction.
It is an unfortunate fact of history that the symbols are in fact the same, but
the meanings are very different, as we will see below.

Convention: When a sign is not indicated for a number, it will be assumed
to be positive. For example, the symbol “5” will have the same meaning as
“+5.”

2.2 Graphical representation and comparison of

signed numbers

While there are several ways to understand negative numbers, the graphical
representation of numbers on a number line is particularly helpful. Recall that
a number line has three essential components: it extends infinitely (from left to
right), it has a special point representing zero, and it has a specified unit length.
In this representation, positive numbers will be those numbers represented by
points to the right of zero, while negative numbers will be those numbers rep-
resented by points to the left of zero.

When we represent a signed number on a number line, the number’s sign will
tell us on which side of zero it will be represented, while its magnitude will tell
us the distance (in terms of the specified unit length) from the representative
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point to the point representing zero. Thinking of the magnitude as the “distance
from zero” corresponds to the convention that magnitudes of nonzero numbers,
like distances, are always positive quantities.

The number line representation of signed numbers also gives us an easy was
to visualize comparisons of signed numbers. By comparison, we mean either
“less than,” “equal to,” or “greater than.” Symbolically, these three possible
comparisons are written as < (“is less than”), = (“is equal to”) and > (“is
greater than”).

Comparing positive numbers corresponds to our standard notions of quan-
tity. So for example, 15 < 27. Comparing positive numbers in decimal or frac-
tion notation is only a little more challenging, in that we first need to see them
as like quantities before comparing. So 0.043 > 0.0099 (since 0.043 = 0.0430
and 430 > 99) and 3

11 < 2
7 (since 3

11 = 21
77 ,

2
7 = 22

77 , and 21 < 22). But which is
bigger, −10 or −15?

Using the number line representation and comparison of positive numbers as
our guide, we will translate “less than” as “to the left of,” and “greater than”
as “to the right of.” In this way, −10 > −15 since the point representing −10
is to the right of the point representing −15 on the number line.

This reasoning can be summarized in the following guide for comparing
signed numbers. Note that the signs and the magnitudes are both important in
comparing two signed numbers.

• The lesser of two positive numbers is the positive number with the lesser
magnitude.

• The lesser of one positive and one negative number is the negative number.

• The lesser of two negative numbers is the negative number with the greater
magnitude (the “most negative” number).

2.3 Operations with signed numbers: Addition

and subtraction

How much money do you have at the end of the following situations? Think of
debt as being represented by negative numbers and money you have as positive
numbers.

• You have $100. Your partner hands you $250.

• You have $100. Your partner hands you an $80 phone bill.

• You have an $80 phone bill. Your partner hands you $250.

• You have an $80 phone bill. Your partner hands you a $100 electric bill.

In all four scenarios, you have something and your partner adds to what you
have. But the way you treat the four cases is different.
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The goal in this section is to arrive at rules for adding and subtracting signed
numbers. Because we now have to keep track of two aspects of each number—its
sign and its magnitude—the rules will be more complicated than the rules for
adding and subtracting positive numbers that we learned in grade school.

2.3.1 Adding signed numbers

Before listing the rules for addition, let’s give another illustration using the
graphical representation of numbers on a number line. If you had to draw
a picture, using the number line model of numbers, of the familiar equation
“2 + 3 = 5,” perhaps the best way to do it would be as follows:

First, draw an arrow starting at 0 and stretching for 2 units in the positive
direction—to the right. Then, draw another arrow starting where the first arrow
ended (at the point representing 2) and stretching for 3 units, also in the positive
direction. The sum is represented by the point where the second arrow ends: at
the point representing 5. See Figure 2.1.

| | | | | | | |

0 2 5

+2 +3

Figure 2.1: Adding 3 to 2.

The advantage of this graphical representation of addition is that it is very
easily adapted to take into account negative numbers. We will simply draw neg-
ative numbers using arrows pointing in the negative direction–arrows pointing
to the left. For example, Figure 2.2 is a number line representation of the sum
4 + (−5).

The result indicates that 4 + (−5) = −1.

If you take a few minutes to draw a few more of these number line pictures,
a few things should become clear. First, the pattern depends on whether the
two numbers being added have the same sign or different sign. Depending on
that, we will end up wither adding or subtracting the magnitudes.

Here is a summary of the conclusions of this discussion.
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| | | | | | | |

0−1 4

+4

−5

Figure 2.2: Adding −5 to 4.

Rules for adding signed numbers

• To add signed numbers with the same sign :

– The sum has the same sign as the sign of the two original num-
bers;

– The sum has magnitude which is the sum of the magnitudes of
the two original numbers.

• To add signed numbers with different signs:

– The sum has the sign of the number with the larger magnitude
of the two orginal numbers;

– The sum has magnitude which is the difference of the magnitudes
of the two original numbers (subtracting the smaller magnitude
from the larger).

Here are some examples.

Example 2.3.1. Add: (−12) + (−15).

Notice that we are adding two numbers with the same sign—both are negative.
This tells us two things:

• The sum will have the same sign—it will also be negative.

• The magnitude will be the sum of the magnitudes: 12+15 = 27. (Remem-
ber: magnitudes are always positive quantities!)

So (−12) + (−15) = −27.

The answer is −27.
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The parentheses in the preceding example are grouping symbols, meant to
indicate that the symbol representing the sign of the numbers “goes with” the
number, and are “separate from” the symbol representing addition. It is in
mathematical “bad taste” to write expressions like −12 +−15.

Example 2.3.2. Add: (−4) + 12.
This time we are adding numbers with different signs. Notice the + sign

represents addition, not a sign. However, reading the phrase as “negative four
plus twelve,” we see that the number 12, since it does not have a sign specified,
is in fact positive.

• The sum will have the sign of the number with the bigger magnitude, which
is positive. (After all, +12 has magnitude 12, and −4 has magnitude 4.)

• The sum will be the difference of the larger magnitude and the smaller
magnitude: 12− 4 = 8.

So (−4) + 12 = 8.
The answer is 8.

We illustrate one more example using fractions.

Example 2.3.3. Add: −4

5
+

3

10
.

As usual when adding fractions, we will need to rewrite the problem using
equivalent fractions with a common denominator. This will also allow us to
compare the magnitudes of the fractions.

We are adding two numbers with opposite signs. The magnitude of − 4
5 is

4
5

(

= 8
10

)

. The magnitude of 3
10 is 3

10 . The sign of the final answer will be
negative, since the number with greater magnitude is negative.

Subtracting the magnitudes:

4

5
− 3

10
4×2

5×2
− 3×1

10×1
Writing with common denominator 10

8

10
− 3

10
8− 3

10
5

10
1

2
Reducing.

Hence: −4

5
+

3

10
= −1

2
.

The answer is −1

2
.
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What should be clear from the above rules and examples is that addition
of signed numbers is a two-step process, corresponding to the two “parts” of
signed numbers. We first establish the sign of the result. We then determine
the magnitude of the results by either adding or subtracting the magnitudes,
depending on the signs of the original two numbers.

Warning! Notice that these rules do NOT say that “a negative and a
negative gives a positive,” which is a famous distortion of a correct rule (see
below). In fact, the sum of negative numbers is negative, not positive!

2.3.2 Subtracting signed numbers

We will not make a new list of rules for subtracting signed numbers. Instead, we
will illustrate a procedure to rewrite subtraction problems as addition problems,
and then rely on the same rules for adding signed numbers that we outlined in
the previous section.

When subtraction is first presented in grade school, it is usually described
as the operation of “taking away.” Unfortunately, while this analogy still holds
for negative numbers, it can be more confusing. Is it obvious to you that taking
away debt has the same effect as giving you cash?

Instead, we revert to the number line representations that gave us a clue to
our rules of adding signed numbers above. What would the number line picture
look like for the subtraction problem 6− 2 = 4?

| | | | | | | |

0 4 6

6

2

Figure 2.3: Subtracting 2 from 6.

Subtracting (positive!) 2 is represented with an arrow going in the opposite
direction (“taking away from”) the positive direction. See Figure 2.3.

Now compare Figure 2.3 to the number line representation of the addition
problem 6+(−2) in Figure 2.4. The two pictures are identical! We have labelled
them slightly differently to take into account that the second diagram depicts
addition, where the first diagram depicts subtraction.

These two number line diagrams reflect a very important mathematical fact:
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| | | | | | | |

0 4 6

6

−2

Figure 2.4: Adding −2 to 6.

Subtraction is the same as “adding the opposite.”

To be more precise, we need to understand what “the opposite” means. In
the context of addition, the opposite of a number is the number with the same
magnitude, but opposite sign. So the opposite of 3 is −3, whereas the opposite
of −8 is 8. To be even more precise, we will say that two numbers are opposites
if their sum is 0. Notice that 3 + (−3) = 0 and (−8) + 8 = 0.

Notation: Many times, it will be convenient to think of a negative sign as
representing “the opposite of.” So the symbol −5 can be thought of interchange-
ably as “negative five” and “the opposite of (positive) five.” More importantly,
the symbol −(−12) should be understood as “the opposite of negative twelve”—
which is of course positive twelve!

We are now going to outline a procedure for subtracting signed numbers.
Keep in mind that in any subtraction problem, the order of the numbers matter!
For example, 7−5 is not the same as 5−7. (In mathematical terms, subtraction
is not commutative.)

Procedure for subtracting signed numbers

1. Rewrite the subtraction problem as the sum of the first number and
the opposite of the second number ;

2. Then apply the rules for adding signed numbers in the preceding
section.

Important note: In applying this procedure for subtracting signed num-
bers, it is important to emphasize the difference in meaning between the symbol
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for subtraction and the symbol for “negative” (or “opposite of”). Most times,
reading the problem out loud will indicate whether the − symbol represents
subtraction (“minus”) or opposite (“negative”).

Exercise 2.3.4. Subtract: −10− 12.

Answer. The problem reads: “Negative ten minus twelve.” The numbers that
are being subtracted are −10 and (positive) 12. Rewriting the subtraction as
“Negative ten plus negative twelve,”

−10− 12

−10 + (−12)

−22.

The answer is −22.

Notice that this procedure involves two separate changes: the operation
changes from subtraction to addition, and the sign of the second number changes.
The first number does not change.

Exercise 2.3.5. Subtract: (−15)− (−8).

Answer. The problem reads: “Negative fifteen minus negative eight.” The
numbers being subtracted are −15 and −8. Rewriting,

−15− (−8)

−15 + (+8)

−7.

The answer is −7.

Here is one more example, this time with fractions:

Exercise 2.3.6. Subtract:
1

4
− 5

6
.

Answer. The problem reads: “(Positive) one-fourth minus (positive) five-sixths.”
Rewriting:

1

4
− 5

6
1

4
+

(

−5

6

)

3

12
+

(

−10

12

)

(rewriting with least common denominator)

− 7

12
.



28 CHAPTER 2. SIGNED NUMBERS

We will comment more on the placement of the negative sign in the next
section, after discussing dividing signed numbers. Here, we obtained the last
step by noting that the number with larger magnitude (− 10

12) was negative, so
the sum must be negative.

The answer is − 7

12
.

2.3.3 Exercises

Perform the indicated operations.

1. (−4) + (−3)

2. (−5) + (−2)

3. 3.25 + (−1.8)

4. (−12) + (−2)

5. 10 + (−10)

6.

(

−2

5

)

+

(

−1

4

)

7.

(

1

8

)

+

(

− 1

12

)

8. (−5)− (−2)

9. 5− 12

10. −4− 4

11. (−4.03)− (−2.1)

12.

(

−3

4

)

−
(

1

4

)

13.

(

1

3

)

−
(

−1

4

)

14.

(

−4

7

)

−
(

− 5

14

)

15.
3

4
− 7

8
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2.4 Operations with signed numbers: Multipli-

cation and division

Multiplication of whole numbers emerged as an abbreviated form of addition.
So, for example, “6 × 3” means 3 added to itself 6 times. But to extend this
simple understanding to all kinds of numbers, we require that the commutative,
associative, and distributive properties continue to hold.

It is not too hard, for example, to extend the definition of multiplication to
all integers. First, multiplying a positive number by a negative number, we can
reason as in the following example: We can think of 6 × (−3) as −3 added to
itself 6 times:

(−3) + (−3) + (−3) + (−3) + (−3) + (−3) = −18.

If the negative number appears first, this is slightly more difficult: How can
we think of (−2) × 4 as 4 added to itself −2 times? However, if we insist that
multiplication of signed numbers should still be commutative, then (−2) × 4
must be the same as 4× (−2), which is

(−2) + (−2) + (−2) + (−2) = −8.

What should be clear from both of these examples is that the product of a
negative number and a positive number is a negative number.

What about multiplying a negative number by a negative number? First,
you should convince yourself that the opposite of a positive number is negative,
and the opposite of a negative number is positive. Second, remember that two
numbers are opposites if their sum is 0.

Let’s consider the example (−2) × (−3). We will show that this number is
the opposite of 2× (−3). After all,

(−2)× (−3) + 2× (−3) = (2 + (−2))× (−3) by the distributive property

= 0× (−3)

= 0.

This calculation shows that (−2)× (−3) is the opposite of 2× (−3). But we saw
above that 2× (−3) = −6, so (−2)× (−3) is the opposite of −6. In conclusion,
assuming that the distributive property is to hold, (−2)× (−3) = +6.

This example is meant to illustrate a famous but often little-understood
property of multiplication of signed numbers: the product of two negative num-
bers is a positive number.

Finally, a word about division of signed numbers. We saw (in the context of
fractions) that division is the same as multiplication by the reciprocal. Keeping
in mind that two numbers are reciprocals if their product is (positive!) 1,
it should not be too hard to see that the reciprocal of a negative number is
also negative, and the reciprocal of a positive number is also positive. So for
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the purpose of signed numbers, division will follow exactly the same rules as
multiplication.

This brief discussion leads to the following rules for multiplying signed num-
bers:

Rules for multiplying and dividing signed numbers

• The product (or quotient) of two numbers with the same sign is pos-
itive.

• The product (or quotient) of two numbers with different signs is neg-
ative.

In both case, the magnitude of the product (or quotient) is just the product
(or quotient) of the magnitudes of the two numbers.

Notice how nice these rules are compared to the rules for adding signed
numbers! We never have to worry about which number has larger magnitude,
and we always perform exactly the operation indicated in the problem.

Let’s look at a couple of examples. We’ll take the opportunity to review
operations with decimals also.

Example 2.4.1. Multiply: (−0.004)× (−2.68).

Answer. Putting aside that the two numbers are written in decimal form, we
have the product of two numbers with the same sign—they are both negative.
The answer will be positive.

We will calculate the magnitude separately, by multiplying (0.004) × (2.68).
Recall that keeping track of the fact that there are a total of five decimal places
to the right of the units place (three from the first number, two from the second),
we will first multiply 4× 268 = 1072. Now we will ensure that the final answer
shows five decimal places: 0.01072.

The answer is +0.01072.

Example 2.4.2. Divide: (15.3)÷ (−0.03).

We are dividing two numbers with different signs. The result will be negative.

We will divide the magnitudes (15.3) ÷ (0.03). Recall that we will do this
as a long division problem, making sure that the divisor (the second number
in the divison problem) is a whole number. The divisor here has two decimal
places; we move the decimal place for both numbers two places to the right
(which amounts to multiplying both numbers by 100): 1530÷ 3 = 510.

In conclusion, (15.3)÷ (−0.03) = −510.

The answer is −5100.
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2.4.1 Exercises

Perform the indicated operations.

1. (3)(−12)

2. (−1)(−25)

3. 6÷ (−2)

4. (−3.2)÷ (−0.04)

5.
6

7
·
(

−2

3

)

6.

(

−1
3

4

)

÷
(

−1
1

3

)

2.5 Operations with signed numbers: Exponents

and square roots

Whole number exponents indicate repeated multiplication, in the same way that
whole number multiplication represent repeated addition.

The base of an exponential expression is the quantity immediately to the
left of the exponent.

Example 2.5.1. The base of (−4)10 is −4. (The parentheses immediately to
the left of the exponent tells us that the number inside the parentheses is the
base.)

Example 2.5.2. The base of −25 is 2. Unlike the previous example, the quan-
tity immediately to the left of the exponent is 2.

Since we will only be concerned (for now!) with whole number exponents,
the rules for exponentials with negative base follow immediately from the rules
for multiplying signed numbers. In particular, you should notice the following
fact:

The sign of exponentials with a negative base

A negative base raised to an even exponent is positive. A negative base
raised to an odd exponent is negative

We will also from time to time encounter square roots, written with the
symbol

√
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.
Remember that the square root of a number is the (non-negative) number

which, when raised to the second power (“squared”), gives the original number.
So, for example,

√
16 = 4 since (4)2 = 16.

For now, we won’t go into the different issues that arise from the operation
of taking square roots. In fact, for now, we will only consider square roots of
perfect squares : whole numbers which are the second power of another whole
number. The first few perfect squares are

1, 4, 9, 16, 25, . . .

If you haven’t worked with perfect squares for a while, you should take a moment
to make a list of the first 12 or 15 of them (by squaring the numbers from 1 to
15, for example).

There is one important fact that we cannot ignore when we are talking about
negative numbers and square roots in the same section. We have already seen
that any number, positive or negative, when squared, will result in a positive
number. After all, “squaring” a number is raising the number to an even ex-
ponent (of 2). For that reason, no real number1 can be the square root of a
negative number. Said differently, the square root of a negative number
cannot be a real number.

Warning: −
√
9 does not mean the same as

√
−9. −

√
9 means “the opposite

of the square root of 9,” which is “the opposite of 3,” or −3.
√
−9 is the square

root of −9, which is not a real number, as we just saw.

2.5.1 Exercises

Perform the indicated operations.

1. (−3)4

2. (−2)3

3. −(−2)5

4. −
√
81

5.
√
−36

2.6 Chapter summary

• Every nonzero number has two “parts:” a magnitude and a sign.

• The number 0 is neither positive nor negative, and has magnitude zero.

1For our purposes, the real numbers are all those that can be represented as points on the
number line in the manner we have described above. In particular, they can be ordered, and
there are points “infinitesimally close” to any other point on the number line. Later, we will
see “numbers” that are not real numbers.
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• Negative numbers are represented on a number line to the left of 0, while
positive numbers are represented to the right of 0. In both cases, the
magnitude of the number is represented by the distance from the point
representing it to the origin.

• The rules for adding two signed numbers depend on whether the numbers
have the same sign or different signs. If the numbers have the same sign,
the magnitudes are added and the sign is the same as that of the two num-
bers. If the numbers have different signs, the magnitudes are subtracted
and the sign is the sign of the number with the larger magnitude.

• The rules for multiplying or dividing two signed numbers depend on
whether the numbers have the same sign or different signs. If the numbers
have the same sign, the result is positive. If the numbers have different
signs, the result is negative. The magnitude of the product (or quotient)
is the product (or quotient) of the magnitudes.

• A negative base raised to an even power will be positive. A negative base
raised to an odd power will be negative.

• The square root of a negative number cannot be a real number.
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Chapter 3

Introduction to algebra

Vocabulary

• The order of operations

• Parentheses (and other grouping symbols)

• Variables

• Constants

• Algebraic expression

• Evaluate

• Function notation

3.1 The order of operations

In the previous chapters, we reviewed the basic arithmetic operations in the
context of fractions and signed numbers. In a typical problem that we are going
to encounter, however, there will be more than just one operation to perform.
For that reason, the order in which we perform the operations is important.
Usually, if we do operations in a different order, we will obtain different answers.
For example, consider the expression with two operations (both division):

8÷ 4÷ 2.

If we perform the first division first, we obtain 2 ÷ 2 = 1. If we perform the
second division first, we obtain 8÷ 2 = 4. The answers are different. Which is
correct?

The order of operations is largely a matter of convention that has developed
in history, and in fact more a question of typography than of mathematics. That
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being said, it is for the most part agreed upon as standard. We describe the
order of operations here as a rule.

The order of operations

When an expression involves more than one operation, the operations are
performed according to the following order:

1. Operations inside grouping symbols, from inside to outside.
Parentheses are the most common grouping symbols, but there are
many others.

2. Exponents and roots. When more than one exponent or root occur
in the same expression, it is standard to evaluate them from left to
right.

3. Multiplication and division. When there are more than one mul-
tiplication or division in the same expression, they must be performed
in order from left to right.

4. Addition and subtraction. When there are more than one addition
or subtraction in the same expression, they must be performed in
order from left to right.

Referring to the example at the beginning of the section, the expression
8 ÷ 4 ÷ 2 involves two division operations. Since both are at the same “level”
in the order of operations, the divisions should be performed left-to-right:

8÷ 4÷ 2 = 2÷ 2 = 1.

If we had wanted to write an expression where the second division was performed
first, we would need to use grouping symbols: 8÷ (4÷ 2).

It is worth noting at this point that both the associative properties of addi-
tion and of multiplication, as well as the distributive property of multiplication
over addition, are all properties that concern the order of operations. For ex-
ample, the associative property of addition says that repeated addition actually
does not need to be performed from left to right, but can be performed in
any order at all. The same holds, of course, for multiplicattion. This is not
true for subtraction or division, however! Neither subtraction nor division is
commutative or associative.

Important note: The unfortunate slogan “PEMDAS,” sometimes taught
to help memorize the order of operations, might imply that the first operation
performed is “parentheses.” This short-hand terminology is misleading, first
and foremost because parentheses do not represent an operation. In particular,
we draw special attention to a fact that often causes confusion:
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Parentheses never mean multiplication.

Parentheses are grouping symbols, indicating that what is inside the paren-
theses should be considered as a single expression.

However, when no operation symbol is indicated between two
expressions, the assumed operation will be multiplication.

The expression 2(3) involves multiplication (“two times three”) for the same
reason that that we will see that 2x involves multiplication (“two times x”). In
both cases, the multiplication is indicated by the fact that there is no symbol
between the two factors (of 2 and 3 in the first case, 2 and x in the second.)
Of course, 23 is simply the number twenty-three, so the parentheses in the
expression 2(3) serve to separate the three, as its own “group,” from the two.

Keep in mind also that parentheses are not the only grouping symbols. In
addition to various shaped parentheses, like brackets [, ] and braces {, } some
commonly encountered grouping symbols include the bar used to write a fraction· · ·
· · · (where the numerator and the denominator are both considered as two

separate groups) and the bar over an expression in a radical symbol
√· · · (where

everything “inside” the radical sign under the bar is considered as one group.)
The following examples illustrate the order of operations, especially involving

grouping symbols.

Example 3.1.1. Perform the indicated operations: 3− 2(−4 + 11).

Answer. There are are three operations: An addition, a subtraction and a
multiplication. Since the addition is grouped with parentheses, it will be per-
formed first. Of the remaining two, multiplication takes priority over subtrac-
tion. Hence we will perform the operations as indicated below:

3
3
− 2

2
· (−4

1
+ 11).

3− 2(−4 + 11)

3− 2(7) 1

3− 14 2

3 + (−14) changing subtraction to “adding the opposite”

−11 3

The answer is −11.

Example 3.1.2. Perform the indicated operations:
(−2)− (−6)

1− 5
.
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Answer. There are three operations: two subtractions (one each in the numer-
ator and denominator) and one division (indicated by the fraction bar). Since
the fraction groups the numerator and the denominator separately, we perform
the subtractions first, followed by the division, as indicated here:

(−2)
1
− (−6)

1 −
2

5
3 .

(−2)− (−6)

1− 5
(−2) + 6

1 + (−5)
Changing both subtractions to “adding the opposite”

4

1 + (−5)
1

4

−4
2

−1 3

The answer is −1.

Example 3.1.3. Perform the indicated operations:
√

(−5)2 − 4(1)(−6).

Answer. This time there are five operations: one exponent, two multiplications,
a subtraction and a square root. Since the square root symbol groups everything
inside, we perform those (four) operations first, and the square root last. Within
the group, the “usual” order of operations apply: first, the exponent, followed
by the two multiplications, followed by the subtraction. The order is indicated
here:

5
√

(−5)
1
2

4
− 4

2
· (1)

3
· (−6).

√

(−5)2 − 4(1)(−6)
√

25− 4(1)(−6) 1
√

25− 4(−6) 2
√

25− (−24) 3
√
25 + 24 Changing subtraction to “adding the opposite”

√
49 4

7 5

The answer is 7.
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We close with the reminder that the commutative and associative proper-
ties give great flexibility with the order of operations involving addition and
multiplication. For example, consider the expression

22− 75 + (−18)− 52− (−16) + 48 + (−12).

According to the order of operations, the six operations would be performed
from left to right. However, changing all subtractions to “adding the opposite”
and using the commutative property (to change the order) and the associative
property (to re-group positive and negative terms together), it is much easier
to perform the operations as

(22 + 16 + 48) + [(−75) + (−18) + (−52) + (−12)] .

3.1.1 Exercises

For each of the problems below: (1) Count the number of operations; (2) list
the operations in order; and (3) perform the operations.

1. 3− 5(4− 1)

2.
√

(−3)2 + (−4)2

3.
(−3)− (−1)

−2− (−1)

4. −(−3)2 + (2)(1)

5. 3

(

−1

4

)2

− 2

(

−1

4

)

+ 1

6.
√

(−1)2 − 4(2)(−3)

7.

(

1

2

)(

2

3

)

−
(

1

4

)

(−2)

8.
−(−1) +

√

(−1)2 − 4(1)(−6)

2(1)
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3.2 Algebraic expressions

All numbers are symbols. The number “5” is a symbol that indicates quan-
tity, answering the question “how many.” More abstractly, the number “5”
represents the quality that all collections of five objects have in common.

There are times when it is convenient to introduce other symbols that rep-
resent numbers. For example, you might read in an astronomy book that light
travels at the speed of nearly 300, 000 kilometers per second. This is actually a
rule that tells you that if you know how long a light ray has been traveling, then
you actually also know how far it has traveled. In 1 second, the light ray has
traveled 300, 000 kilometers (more than half the distance from the earth to the
moon). In 2 seconds, a light ray will travel 300, 000 × 2 = 600, 000 kilometers.
In 750 seconds (12.5 minutes) , a light ray travels 300, 000× 750 = 225, 000, 000
kilometers, which is the average distance from the earth to the planet Mars.

You might summarize this rule as follows: If t represents the number of
seconds that a light ray travels, then the distance it will travel is 300, 000× t, or
simply 300000t. (Remember the convention: When no operation is indicated,
there is an assumed multiplication!)

For our purposes, we will call a variable any symbol (we will always use
letters) which is meant to represent a number whose value is not specified. A
variable generally indicates that the value of the number is either unknown or,
as in the example above, changing with time. Because of this, we will sometimes
call numbers constants to distinguish them from variables.

From this point of view, algebra will be the study of expressions formed
by combining both numbers and variables by using the standard operations
of addition, subtraction, multiplication, division, (numerical) exponents, and
roots.1

The main feature which distinguishes algebra from arithmetic, then, is the
use of variables.

Convention: By far the most popular symbol to represent an unknown
quantity2 is the letter x. Because of this, we will avoid using the symbol × to
represent multiplication from now on.

3.3 Evaluating algebraic expressions

Given an algebraic expression, there is not much that we can do with it apart
from identifying the variables and the operations involved in the expression.

Example 3.3.1. Consider the algebraic expression 3x2−5x+4. This expression
involves one variable x, and five operations: an exponent, two multiplications,
a subtraction, and an addition. (Locate them!)

1There are other operations, like logarithms for example, which from this point of view are
technically not algebraic, even though they are often treated in algebra courses.

2It is in this spirit that Malcolm X undoubtedly chose his name, to indicate that his true
family name was unknown as a legacy of slavery.
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If, on the other hand we are given values for all variables appearing in a given
algebraic expression, we can evaluate3 the expression for those given values. We
do this by substituting the given values at every instance of the variable.

In the context of specifying values for a variable, we will use a short-hand
notation with the equal sign “=”. For example, we will say, “Evaluate an
expression when x = 1.” This means, “Evaluate the expression when x has the
value 1.” The use of the equal sign in this context is unfortunate, because its
meaning is very different from the way we will use it for the rest of the book.
However, like many unfortunate things, it is standard, and we will use it in this
section.

Example 3.3.2. Evaluate 3x2 − 5x+ 4 when x = −2.

Answer. The variable x appears in the expression twice. We will substitute
the value −2 in both instances. Then we will proceed according to the order of
operations. We can indicate this order schematically as follows:

3
2
· x

1
2

4
− 5

3
· x

5
+ 4.

In other words, the exponential is evaluated first, then the first multiplication,
etc.

3(−2)2 − 5(−2) + 4 Substituting −2 for x

3(4)− 5(−2) + 4 1

12− 5(−2) + 4 2

12− (−10) + 4 3

12 + 10 + 4 Changing subtraction to “adding the opposite”

22 + 4 4

26. 5

Notice the use of parentheses when we substitute a value for the variable. We
can think of the variable as a placeholder, for which we insert the given value.
In other words, we can think of the expression as being 3(· · · )2−5(· · · )+4, and
we will substitute the given value into the parentheses.

Example 3.3.3. Evaluate
y2 − y1
x2 − x1

when x1 = 4, x2 = −6, y1 = −3 and

y2 = −18.

Answer. Notice that this algebraic expression has four variables, each of which
appear once. (Be careful! These variable have subscripts, which should not be

3The word evaluate means “find the value of”
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mistaken for exponents or any other kind of operation. The subscripts belong
with the symbol for the variable.)

There are three operations involved in this expression. We will first perform
the subtraction on top, then the subtraction on bottom, and finally the division.

y2
1
− y1

x2 −
2

x1

3 .

(−18)− (−3)

(−6)− (4)
Substituting

(−18) + (3)

(−6) + (−4)
Changing both subtractions to “adding the opposite”

−15

(−6) + (−4)
1

−15

−10
2

3

2
3 .

The answer is 3/2. Notice that the final answer, as the quotient of two
negative numbers, is positive. Also, in performing the division, we write the
fraction in reduced form since the answer is not an integer.

3.3.1 Function notation

A function is a mathematical concept that is meant to express a relationship
between two or more quantities. Students who will go on to study calculus will
be expected to become familiar with these mathematical objects. The concept
of a function is the main concept that is introduced in “precalculus” classes, and
is central for any understanding of higher mathematics and many applications.

Very roughly, we can think of a function as a rule that takes one quantity
and assigns to it another quantity. For our purposes, the quantities involved
can be understood to be numbers.

Here, we are only going to discuss the most basic notation associated to
functions. Functions will be given a “name,” which we will denote with a
letter, usually f but also g, h, etc. If the variable x represents a (numerical)
quantity, the symbol f(x) will represent the quantity that the function f assigns
to the value x. The notation f(x) should be understood as a single symbol
which represents a value. In particular, there is no multiplication implied in the
notation f(x).

Many times, a function will be defined by means of an algebraic expression.
For example, we might encounter a function described as

f(x) = 3x2 − 5x+ 4.
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This just means that for any value of x, the function f assigns to x the value
of 3x2 − 5x + 4 (evaluated with a given value for x). Notice the only variable
appearing in the expression 3x2 − 5x + 4 is x. The notation f(x) is meant to
indicated that the function named f depends only of the value of the variable
x.

When a function is defined algebraically using function notation, f(x) can
also be thought of as the “value” of f for the variable x. Since x is presumed
unknown, the “value” of f is also unknown, but it is given in terms of x by the
given algebraic expression. If the value of x is known, the value of f can be
also be found by substituting the given value of the variable into the algebraic
expression defining f . The notation f(1), for example, means “the value of f
when x = 1.” Likewise, f(−3) means “the value of f when x = −3.

Example 3.3.4. Find f(−1) if f(x) = x2 − 3x+ 1.

Answer. In this example, f(x) is represented by the expression x2−3x+1. So
f(−1) is simply the value of x2 − 3x+ 1 when x = −1. We proceed exactly like
we did in the previous section.

f(−1) = (−1)2 − 3(−1) + 1 Substituting

= (1)− 3(−1) + 1 Exponent first

= 1− (−3) + 1 Multiplication second

= 1 + 3 + 1 Changing subtraction to “adding the opposite”

= 4 + 1 The first addition (formerly subtraction)

= 5. The second addition

The answer is 5.

3.3.2 Exercises

1. Evaluate −3x2 + 7x− 5 when x = −5.

2. Evaluate
√

x2 + y2 when x = −5 and y = 12.

3. Evaluate b2 − 4ac when a = 1, b = −5, c = 6.

4. Evaluate
I

RT
when I = 150, R = 0.04, T = 2.

5. Evaluate 2y2 − 9y − 1 when y = −2

3
.
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6. Evaluate
y2 − y1
x2 − x1

when

(a) x1 = 0, y1 = −4, x2 = 2, y2 = 0

(b) x1 = −2, y1 = 4, x2 = 4, y2 = −8

(c) x1 = 1, y1 = −1, x2 = 4, y2 = 5

(d) x1 = −1/3, y1 = 0, x2 = 0, y2 = −5

(e) x1 = 3, y1 = 5, x2 = −2, y2 = −8

7. Evaluate
−b+

√
b2 − 4ac

2a
when:

(a) a = 1, b = −1, c = −6

(b) a = 2, b = −7, c = 3

(c) a = 1, b = 2, c = −8

(d) a = 1/2, b = −1/3, c = −1/6

(e) a = 4, b = 16, c = 15

8. Evaluate
9

5
C + 32 when:

(a) C = −40

(b) C = −15

(c) C = 10

(d) C = 25

(e) C = 32

9. For the function f(x) = x2 − 4x+ 3, evaluate

(a) f(−3)

(b) f(1/2)

(c) f(2)

10. For the function f(x) = 3x3 + 2x2 − 5x− 12, evaluate

(a) f(0)

(b) f(−1)

(c) f(2)
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3.4 Translating algebraic expressions

Sometimes, we want to translate between an algebraic expression, represented
symbolically with variables, numbers, and operations, and a verbal expression
with the same meaning. This is most useful when it comes to so-called “word
problems” involving applications of algebra.

The first thing to identify in translating an algebraic expression are the
variable or unknown quantities, which will be represented with a letter. When
there are more than one unknown quantity, or when an unknown quantity occurs
more than once in the expression, it is important to distinguish between using
the same variable or different variables.

Example 3.4.1. Translate the following expression into words: 3x2 + 2x+ 4.

Answer. Notice that the expression involves only one variable, which we will
translate as “an unknown number.” Also notice that the expression involves five
operations.

Here is one possible translation:
“Three times the square of an unknown number, increased by twice the same

number, increased again by four.”
Can you identify the operations in the sentence above?

Subtraction sometimes causes confusion in translation, because of the im-
portance that the order plays. For example, if someone ask you, “What is four
less than ten?”, or tells you to “subtract four from ten,” you will perform the
operation 10 − 4. The same operation, however, could be expressed by, “Ten
decreased by four.”

Example 3.4.2. Translate into an algebraic expression: Five less than three
times a number.

Answer. We right away identify the unknown quantity, in this case “a num-
ber,” and represent it by the variable x.

The phrase “less than” is one of the phrases for subtraction that reverses the
normal left-to-right order. Hence, one translation would be:

3x− 5.

Another issue to be aware of in translating is the presence of implied group-
ing.

Example 3.4.3. Translate: “Twice the sum of a number and five, decreased by
the difference of three times another number and two.”

Answer. Notice right away that there are two unknown quantities, “a number”
and “another number.” We will call them s and t.

This sentence is more complicated than the others because there is implied
grouping. You might see this by noticing that the phrase has the following struc-
ture:
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“Twice SOMETHING decreased by SOMETHING ELSE.”
The SOMETHING and the SOMETHING ELSE are groups, each involving

alegbraic expressions themsleves. However, right away, we can expect the answer
to have the form

2( )− ( ).

What is the SOMETHING? “The sum of a number and five,” translated as
s+ 5.

What is the SOMETHING ELSE? “The difference of three times another
number and two,” translated as 3t− 2.

So one translation for the expression would be:

2(s+ 5)− (3t− 2).

Let’s summarize a few common issues to watch out for in translating between
algebra and words:

• Make sure to represent the same unknown quantity with the same vari-
able name, no matter how many times it appears in the expression, while
different unknown quantities should be represented by different variables.

• Subtraction has several verbalizations that reverse the usual left-to-right
order. “Subtract something from something else,” or “Something less than
something else,” both reverse the usual left-to-right order, while “Some-
thing decreased by something else,” or, “The difference of something and
something else,” maintain the usual left-to-right order.

• Grouped operations are often implied, for example, by phrases like “the
quantity of.” But they are also expressed in phrases like, ”Three times
the difference...”

3.4.1 Exercises

Translate the following phrases into algebraic expressions:

1. Twice the sum of an unknown quantity and 8.

2. Seven less than half of a number.

3. One-fourth of the difference of some number and 12.

Translate the following algebraic expressions into words:

4. 7y − 30

5. 3(x+ 2)

6. (x− 5)2 + 3x

7.
2x− 1

3

8.
7x− 3

x− 3
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3.5 Chapter summary

• In expressions involving several operations, the operations are performed
according to the order of operations.

• Parentheses and other grouping symbols indicate the expressions inside
the symbols are to be treated as one group.

• Parentheses and other grouping symbols prioritize the operations within
groups.

• Algebraic expressions consist of variables and numbers combined using the
operations of addition, subtraction, multiplication, division, (numerical)
exponents and roots.

• Algebraic expressions can be evaluated if values are given for all of the
variables involved. In this case, the values are substituted for the variables
and the operations are performed according to the order of operations.

• It is often necessary to translate back and forth between algebraic expres-
sions and their English-language translation.
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Chapter 4

Linear equations and

inequalities in one variable

Vocabulary

• Algebraic
statement

• Equation

• Inequality

• Strict inequality

• Conditional
statement

• Solution

• Ordered pair

• Solve

• Linear equation

• Coefficient

• Equivalent
equations

• Addition principle

• Multiplication
principle

• Like terms

• Coefficient

• Identity

• Contradiction

• Literal equation

4.1 Algebraic statements and solutions

In the last chapter, we considered algebraic expressions: expressions formed by
combining numbers and variables with the operations of addition, subtraction,
multiplication, division, exponents and roots. However, the only thing that we
did with them was to evaluate them for given values of the variables involved.
As soon as we took one step into the world of algebra, we quickly went right back
into the world of arithmetic, evaluating expressions by performing operations
with numbers.

In this chapter, we will begin see some important differences between the
world of algebra and that of arithmetic.

A mathematical statement is a comparison of two expressions by means of
the relations of equality (denoted with the symbol =), greater than (with the
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symbol >), less than (with the symbol <), and the compound relations “greater
than or equal to” (denoted with the symbol ≥) and “less than or equal to”
(with the symbol ≤). They can be broadly categorized as equations (those
involving equality) and inequalities (all the rest). The basic inequalities < and
> are called strict inequalities, while the compound inequalities ≤ and ≥ are
sometimes called non-strict inequalities.

The first thing to notice about mathematical statements, unlike mathemati-
cal expressions, is that a statement may be true or false. For example, 1+2 = 3
is an example of a true equation, while 1 + 1 = 5 is an example of a false
equation. Both examples are equations, but one is true and one is false.

In arithmetic, whether a statement is true or false can be completely decided
by performing all operations, then comparing the resulting numbers. In algebra,
however, this is not usually true.

An algebraic statement is a mathematical statement involving algebraic ex-
pressions. A typical algebraic equation or inequality may be true or false, de-
pending on the values of the variables involved. Such a statement is called
conditional. By contrast, there are no conditional statements in arithmetic:
every statement is simply true or false, since there are no unknown quantities.

Example 4.1.1. Consider the algebraic equation x+ 1 = 4.

• The equation x+ 1 = 4 is true when the value of x is 3.

• The equation x+ 1 = 4 is false when the value of x is −2.

These two statements show that the equation x+1 = 4 is a conditional equation,
since whether it is true or false depends on the value of the variable x.

The fact that the typical algebraic statement is conditional prompts the
following definition. We will come back to this definition over and over again
throughout the text.

A solution of an algebraic statement

A solution of an algebraic equation or inequality is a value for each of the
variables which, when substituted into the statement, make the statement
true.

Using this language, we can reformulate the results of Example 4.1.1: 3 is
a solution of the equation x+ 1 = 4, but −2 is not a solution of x+ 1 = 4.

Example 4.1.2. Determine whether −2 is a solution of the equation

x2 + 5x+ 6 = 0.
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Answer. We will substitute −2 for x:

(−2)2 + 5(−2) + 6 = 0

4 + 5(−2) + 6 = 0

4 + (−10) + 6 = 0

−6 + 6 = 0

0 = 0.

The equation is true when x is −2. So −2 is a solution of the equation x2 +
5x+ 6 = 0.

Example 4.1.3. Determine whether −3 is a solution of the equation

x2 + 5x+ 6 = 0.

Answer. We will substitute −3 for x:

(−3)2 + 5(−3) + 6 = 0

9 + 5(−3) + 6 = 0

9 + (−15) + 6 = 0

−6 + 6 = 0

0 = 0.

The equation is true when x is −3. So −3 is a solution of the equation x2 +
5x+ 6 = 0.

Notice that in the previous two examples, we found two different solutions
to the same equation.

In the case of statements with more than one variable, we need to specify
a value for each variable in order to specify a solution. Many times, we will
encounter equations or inequalities in two variables x and y.

Convention: When specifying a solution of an equation or inequality in two
variables x and y, we will use ordered pair notation. An ordered pair is a pair
of two numbers grouped with parentheses. For example, a typical ordered pair
might be (4, 7). In this case, the first number will always represent a value for
x, while the second value will always represent a value for y. A full treatment of
two-variable statements is found in the next chapter. However, we can already
get a feeling for them in the context of deciding whether a given ordered pair is
a solution or not.

Example 4.1.4. Determine whether (1,−2) is a solution of the equation

3x+ 4y = 11.

Answer. The ordered pair (1,−2) indicates that the value of x is 1 and the
value of y is −2. Substituting:

3(1) + 4(−2) = 11

3 + (−8) = 11

−5 = 11.
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The equation is false. So (1,−2) is NOT a solution of the equation

3x+ 4y = 11.

Example 4.1.5. Determine whether (5,−1) is a solution of the equation 3x+
4y = 11.

Answer. The ordered pair (5,−1) represents the case that the value of x is 5
and the value of y is −1. Substituting:

3(5) + 4(−1) = 11

15 + (−4) = 11

11 = 11.

The equation is true. So (5,−1) IS a solution of the equation 3x+ 4y = 11.

Notice that in the previous two examples (with the same equation), we have
found ONE solution of the equation, namely (5,−1). The one solution is made
up of two numbers—the values for x and for y both need to be specified for a
single solution.

Example 4.1.6. Determine whether −1/2 is a solution of the inequality

5x+ 1 ≥ −1.

Answer. The inequality has only one variable, so a solution is simply a number.
We substitute the given candidate:

5

(

−1

2

)

+ 1 ≥ −1

(−5

2

)

+ 1 ≥ −1

(−5

2

)

+
2

2
≥ −1

−3

2
≥ −1.

The inequality is false. So −1/2 is NOT a solution of the inequality 5x+1 ≥
−1.

We close this section with one of the most important definitions in this text:

Solving an algebraic statement

To solve an algebraic equation or inequality means to find all solutions.

Every word in this definition is important:
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1. Solutions: To solve an equation or inequality, we need to keep in mind
what a typical solution looks like. Is it a number, as is the case for
statements with one variable? Is it an ordered pair, as is the case for
statements with two variables?

2. All: To solve an equation or inequality, we need to know how many so-
lutions the statement has. Does it have one solution? Two? Infinitely
many? None?

3. Find: Rather than guess solutions and then check whether in fact they
are solutions or not, we would like to have a procedure that produces (or
“finds”) the solutions for us.

4.1.1 Exercises

1. Is −2 a solution of 4x+ 3 = −5?

2. Is 0 a solution of 3(x+ 2)− 2 = x− 4(x− 1)?

3. Is 11/3 a solution of 5(x− 2) = 2x+ 1?

4. Is 3 a solution of 3x− 2 = −x− 4?

5. Is −1/4 a solution of x+ 2 = 3x− 2(x− 1)?

6. Is −1 a solution of 3x+ 2 < −2?

7. Is 1/3 a solution of 3x+ 2 < −2?

8. Is 3 a solution of 2x2 − 5x = 3?

9. Is −1/2 a solution of 2x2 − 5x = 3?

10. Is −3 a solution of 2x2 − 5x = 3?

11. Is −1/2 a solution of 4x3 + 12x2 − x = 3?

12. Is (2, 3) a solution of x− 3y = −7?

13. Is (−7, 0) a solution of x− 3y = −7?

14. Is (1, 1) a solution of x− 3y ≥ −7?

15. Is (−4, 1) a solution of x− 3y ≥ −7?
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4.2 Solving linear equations in one variable

In this section, our goal will be to develop a method that will “find” all the
solutions for certain equations in one variable.

Let’s start off with a very, very simple example.

Example 4.2.1 (A very, very simple example). Solve: x = −2.

Answer. One solution of the equation is obvious: −2. Just to make sure,
substituting, −2 = −2 is a true statement.

On the other hand, it is just as obvious that any value of x which is not −2
will NOT be a solution of the equation.

In other words, the equation has only one solution.
The solution is −2.

If only it were so easy to find the solutions to every equation! In fact, our
first goal of producing a method to find all solutions to a given equation will
be to convert it to an equivalent equation that has the same easy form as our
very, very easy example. We say that two equations are equivalent if they have
exactly the same solutions.

In order to do this, let’s first specify what made our very, very easy example
so easy:

• One side of the equation is a number. All operations involving numbers
have been performed.

• The other side of the equation is an algebraic expression containing just
one variable and no operations. (One sometimes says: “x is by itself on
one side of the equation.”)

A consequence of the second item is that the equation is linear. A linear
equation is an equation where the only operations performed on a
variable are addition, subtraction, and multiplication by a constant
(called a coefficient).1 So, for example, the equation 3x+4y = 11 is a linear
equation (with two variables). The equation x2 + 5x + 6 = 0 is not linear,
because the x2 term involves a variable raised to a power different from 1.

The remainder of this section will be devoted to the following sentence:

Every linear equation (almost2) in one variable, let’s say x, is equiv-
alent to an easy equation of the form x = . (The blank will be a
number.)

There is an important consequence of this fact: (Almost2) Every linear
equation in one variable has exactly one solution.

1We will see a more concise way of stating this definition in Chapter 5.
2See section 4.2.3 below.
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4.2.1 The rules of the game

Given any linear equation in one variable x, no matter how complicated, we will
develop a method to find an equivalent equation of the form x = . Then
we will be able to read off the solution to the easy equation; it will also be the
solution of the (maybe more complicated) original equation also.

The method will be based on the following two properties of equations:

• The addition principle: Adding (or subtracting) the same quantity to
both sides of an equation will produce an equivalent equation.

• The multiplication principle: Multiplying (or dividing) the same nonzero
quantity to both sides of an equation will produce an equivalent equation.

These properties can be summarized in the loose slogan: “Doing the same
thing to both sides of an equation does not change the solutions of the equation.”
As usual with loose slogans, though, we should be aware of the fine print. For
example, multiplying both sides of an equation (which may be false) by 0 will
yield the equation 0 = 0, which is always true!

4.2.2 Applying the rules: Solving linear equations

We will use the properties in the previous section to attempt to start with any
linear equation in one variable (say x) and obtain an equivalent equation of the
form

x = .

Since the equations have the same solution, this solution will be obvious by
considering the simple equation.

Recall that one of the special features of the easy equation x = is that
the expression with the variable has no operations involved. Our guiding
strategy for solving linear equations will be to identify the operations
involved in the expression involving the variable, and then to “undo”
them, one by one, by using the addition and multiplication principles.

Example 4.2.2. Solve: x− 41 = 36.

Answer. Notice that the left-hand side of the equation (which involves the vari-
able x) involves just one operation: subtraction. To “undo” the operation of
subtracting 41, we will do the opposite: add 41 to both sides:

x− 41 + 41 = 36 + 41 Addition principle

x+ 0 = 77 Performing addition on both sides

x = 77.

In other words, the equation x−41 = 36 is equivalent to the (easy!) equation
x = 77.

The solution is 77.
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It is common to write the addition principle “vertically.” The preceding
example would be written:

x − 41 = 36

+ 41
... +41

x = 77.

Notice the way that the terms are carefully lined up. The dots
... under the

equal sign are meant to remind us that we must add the same quantity on both
sides.

Example 4.2.3. Solve: 5x+ 18 = 12.

Answer. This time, the left hand side (involving the variable x) involves two
operations: addition and multiplication. We will “undo” them in the order
opposite the order of operations. First, we will undo the addition, then the
multiplication.

5x + 18 = 12

− 18
... −18

5x = −6
5x
5 = −6

5
x = − 6

5 .

The solution is −6/5.

Sometimes, we will encounter statements with variables on both sides of the
equation or inequality. In this case, we will need to take an extra step to make
sure that the equivalent equation has variables on only one side of the statement,
like our easy equation. This can be done using the same addition principle that
we have been using so far. But we need to make one thing that we have been
using behind the scenes more explicit.

In a linear equation in one variable, like terms are identified according to
whether they involve the variable or not. In other words, terms involving the
variable will be like terms, and terms not involving the variable will be also be
called like terms.

The most important feature of like terms for now is that like terms can
be added (or “combined”). When we add like terms involving variables, we
add the coefficients of the terms, but leave the variable part the same. For
example, in the expression 5x+ 2+ 3x+ 9, the terms 5x and 3x are like terms,
and 5x + 3x = 8x. Likewise, 2 and 9 are like terms, and 2 + 9 = 11. So
5x+ 2 + 3x+ 9 = 8x+ 11.

When we use the addition principle, we will make a habit of writing like
terms in the same column.

Example 4.2.4. Solve: 3x− 9 = 8x+ 7.
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Answer (First method). This equation has variables on both sides of the equa-
tion. As mentioned, our first job will be to write an equivalent equation which
only has a variable on one side of the equation. Which side? It doesn’t really
matter, as we will illustrate here.

One popular line of thinking goes like this: Our easy equation looks like
x = , so let’s try to write the variable on the left hand side, just like our easy
model.

In that case, we need to eliminate the 8x from the right-hand side. We do
that by adding the opposite, which is −8x, to both sides.

3x − 9 = 8x + 12

−8x
... −8x

−5x − 9 = 12

+ 9
... + 9

−5x = 21
−5x
−5 = 21

−5

x = − 21
5 .

The solution is −21/5.

Answer (Second method). Let’s see what would have happened if we had written
the equivalent equation with the variable on the right hand side. In that case,
we would like to eliminate the 3x term from the left-hand side.

3x − 9 = 8x + 12

−3x
... −3x

− 9 = 5x + 12

− 12
... − 12

−21 = 5x
−21
5 = 5x

5
− 21

5 = x .

Even though this equation is not exactly in the form x = , it’s just as
easy—the variable is “by itself” on one side of the equation.

The solution is −21/5.

Looking at the two methods above, the second method has the advantage
that the coefficient of the variable term is positive after using the addition prin-
ciple to obtain an equation with the variable on one side only. That is because
in the original equation, the variable term with the larger coefficient was on the
right. From now on, we will follow the custom of writing our equivalent equation
with the variable on the side where the original coefficient of the variable term
was larger.

The only thing that can make a linear equation in one variable more compli-
cated than the examples we have seen above is if there are more operations on
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one or both sides of the equation. For example, we may have to perform mul-
tiplication (using the distributive law if necessary), or we may have to combine
like terms one one or both sides separately. The following example illustrates
this situation. Notice that before we begin to apply the addition or multiplica-
tion principles (“doing the same thing to both sides”) we will perform operations
on each side separately.

Example 4.2.5. Solve: 4(x− 3) + 2x = 7x− 9.

Answer. Notice that on the left hand side, the 4 will distribute over both terms
in the parentheses. In addition, there is more than one term on the left-hand
side with a variable; we will have to combine like terms.

4(x− 3) + 2x = 7x− 9

4(x) + 4(−3) + 2x = 7x− 9

4x− 12 + 2x = 7x− 9

6x− 12 = 7x− 9.

Now that both sides are simplified, we can apply the addition and multipli-
cation principles as above. Notice that since there are variables on both sides of
the equation, and the higher coefficient of x is on the right-hand side, we will
write our equivalent equation with the variable on the right.

6x − 12 = 7x − 9

−6x
... −6x

− 12 = x − 9

+ 9
... + 9

−3 = x .

The solution is −3.
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Summary: Solving linear equations in one variable x

1. Simplify each side of the equation separately:

• Perform any multiplication, using the distributive property if
necessary;

• Combine like terms.

2. Use the addition property to form an equivalent equation with all
variables on one side of the equation;

3. Use the addition property to form an equivalent equation with all
constant terms on the side of the equation not containing the variable
term;

4. Use the multiplication property to form an equivalent equation of the
form x = .

4.2.3 Some unusual cases: Linear equations in one vari-

able that do not have exactly one solution

We mentioned above that for almost every linear equation in one variable x,
there is an equivalent equation of the form x = , and so almost every linear
equation has exactly one solution.

In this section, we will illustrate what can go wrong.

Example 4.2.6. Solve: 2(x− 3) + 4 = 2x− 2.

Answer. We will apply the general method as usual, simplifying first and then
writing an equivalent equation with variables on the left-hand side.

2(x− 3) + 4 = 2x− 2

2x− 6 + 4 = 2x− 2

2x − 2 = 2x − 2

−2x
... −2x

− 2 = − 2.

Wait! What happened to the variable? Since the coefficients of the variable
were the same on both sides, eliminating from one side (using the addition
principle) actually eliminated the variables from both sides.

Actually, that’s not bad at all. The equivalent equation, −2 = −2, is an
arithmetic equation which is always true—no matter the value for x. (You
may try substituting several different values for x into the original equation
2(x− 3) + 4 = 2x− 2 to confirm that they will all give a true statement.)
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All real numbers are solutions for this equation. In particular, the equation
has infinitely many solutions, not just one. An equation which is true for all
values of the variables involved is called an identity.

Here is another example where a similar problem occurs.

Example 4.2.7. Solve: x+ (2x− 9) = 3(x+ 1).

Answer.

x+ (2x− 9) = 3(x+ 1)

x+ 2x− 9 = 3x+ 3

3x − 9 = 3x + 3

−3x
... −3x

− 9 = 3.

Again, eliminating the variable from one side had the effect of eliminating
the variable entirely from the equation. But this time, the original equation is
equivalent to an equation which is false—no matter the value of x.

The equation has no solution. An equation which has no solution is called a
contradiction.

We can summarize the results about solutions to linear equations in the
following general fact (which is not almost always true, but is always true!):

For every linear equation in one variable, one and only one of the
following statements must hold:

• The equation has exactly one solution; OR

• It is an identity, and every number is a solution; OR

• It is a contradiction, and it no solution.

This has what might be a startling conclusion: If a linear equation in one
variable has two different solutions, then it must have infinitely many.

4.2.4 Another use of the multiplication principle: Equa-

tions involving fractions

In this section we illustrate how to use the multiplication principle in order to
“clean up” equations involving fractions. While this is an extra step, compared
to the four-step process for solving linear equations in two variables above, it
does reduce the need to perform arithmetic with fractions that requires extra
care and attention to detail.

The extra step that we are going to introduce when we attempt to solve an
equation involving fractions is tomultiply both sides of the equation by a common
denominator of all fractions appearing in the equation. By the distributive
property, this amounts to multiplying every term on both sides of the equation
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by the common denominator. Since by definition, every denominator will be
a factor of the common denominator, the multiplication will have the effect of
ensuring that every term will only involve integers.

Example 4.2.8. Solve:
2x

3
+

1

4
= 4.

Answer. The least common denominator of the two fractions involved is 12.
We will multiply both sides of the equation by 12:

(12)

(

2x

3
+

1

4

)

= (12)(4)

(12)

(

2x

3

)

+ (12)

(

1

4

)

= 48

(

12

1

)(

2x

3

)

+

(

12

1

)(

1

4

)

= 48

24x

3
+

12

4
= 48

8x+ 3 = 48.

Notice that even though we aren’t done yet, the new equivalent equation
8x+ 3 = 48 is much simpler to work with than the original equation.

Now that both sides are simplified, we can apply the addition and multipli-
cation principles as above.

8x + 3 = 48

− 3
... −3

8x = 45
8x
8 = 45

8
x = 45

8 .

The solution is 45/8.

In the previous example, we wrote out all the steps involved in applying
the distributive law after multiplying both sides by a common denominator. In
the future, we will omit the step showing the multiplication of both sides, and
apply the distributive law directly by multiplying every term on both sides of
the equation by a common denominator.

Example 4.2.9. Solve:
x− 2

3
+

1

2
=

x

6
.

Answer. The least common denominator of all three fractions in 6. Pay careful
attention to the fact that the first fraction on the left-hand side has a numerator
involving a group with two terms.
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(6)

(

x− 2

3

)

+ (6)

(

1

2

)

= (6)

(

1

6

)

6(x− 2)

3
+

6

2
=

6

6
2(x− 2) + 3 = 1.

Now we proceed as usual:

2(x− 2) + 3 = 1
2x − 4 + 3 = 1
2x − 1 = 1

+ 1
... +1

2x = 2
2x
2 = 2

2
x = 1.

The solution is 1.

4.2.5 Some word problems

In this section we will apply the techniques of solving linear equations in one
variable to some mathematical word problems. In doing so, we will pay spe-
cial attention to the problem of translating between English and algebra. The
technique outlined here emphasizes the translation aspect by using words (like
“dictionary”) which are essential ingredients in translating from one language
to another.

For each word problem, we will follow the following four-step process:
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A four-step strategy to approach word problems

1. Create a “dictionary” for the problem. The dictionary consists
of a list of all unknown quantities, each expressed both in English and
as an algebraic expression.

2. Write an algebraic equation that represents the problem.
This involves using the dictionary from the previous step.

3. Solve the equation. This is just using the technique we have been
discussing in this chapter. It is the one step where the techniques of
algebra are used.

4. Answer the question. At this point, the solution of the equation
(from the previous step), along with the dictionary, should allow us
to answer the question asked in the original problem.

Let’s see how this four-step technique works in a few examples.

Example 4.2.10. The sum of three consecutive integers is −237. Find the
integers.

Answer. Step 1: Create a dictionary. Notice that there are three unknown
quantities: the first integer, the second integer, and the third integer. So our
dictionary will need three entries, one for each.

We can always call one of the unknown quantities x. Since our techniques
so far have been with equations in one variable, we will try to write the other
two unknown quantities in terms of x. For example, in this problem, we know
the integers are consecutive. So if we call the first integer x, then the next two
consecutive integers will be x+ 1 and x+ 2. We will write the dictionary as:

Dictionary

First integer x
Second integer x+ 1
Third integer x+ 2

Step 2: Write an equation. Many times, looking for an equation in
the original problem amounts to finding the word “is.” In this problem, we
see an equation in the sentence, “The sum of three integers IS −237.” The
word “sum” tell us that we will be adding—what? The three integers, which we
translate using our dictionary. In other word, we can write:

x+ (x+ 1) + (x+ 2) = −237.

(Note that we have introduced parentheses in order to clearly see the three un-
known quantities.)
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Step 3: Solve the equation.

x+ (x+ 1) + (x+ 2) = −237

3x+ 3 = −237 Combining like terms

3x = −240 Adding −3 to both sides

x = −80. Dividing both sides by 3.

The solution is −80.
Step 4: Answer the question. Notice that solving the equation in Step

3 does not completely answer the question. In particular, the problem asked to
find all three integers. The first integer, represented by x, is −80. The second,
represented by x+1, is −80+1, or −79. The third integer, represented by x+2,
is −80 + 2, or −78.

The three integers are −80, −79, and −78.

Example 4.2.11. The length of a rectangle is 3 more than twice the width.
Find the dimensions of the rectangle if the perimeter is 75 inches. (Use the fact
that the perimeter is given by the formula P = 2L+ 2W .)

Answer. Step 1: Create a dictionary. In this problem, we have two un-
known quantities: the length and the width. As usual, we will call one of them
x, and then try to write the other in terms of x. Notice that in this problem,
one of the unknowns (the length) is expressed in terms of the other (the width):
“The length is . . . the width.” In cases like this, it is much easier to call the
unknown appearing second (in this case, the width) as x. That way, we can
translate the expression for the first directly: 3 more than twice the width will
be written as 2x+ 3. So the dictionary will be:

Dictionary

Width x
Length 2x+ 3

Step 2: Write an equation. In this case, the equation will come from the
formula for the perimeter, along with the dictionary:

2(x) + 2(2x+ 3) = 75.

Step 3: Solve the equation.

2(x) + 2(2x+ 3) = 75

2x+ 4x+ 6 = 75 Multiplying

6x+ 6 = 75 Combining like terms

6x = 69 Adding −6 to both sides

x =
69

6
Dividing both sides by 6

x =
23

2
Reducing to lowest terms
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The solution is 23/2.
Step 4: Answer the question. The variable x represented the width of the

rectangle, so the width is 23/2 = 11.5 inches. The length was given by 2x + 3.
Substituting 23/2 for x, we obtain 2(23/2)+3 = 23+3 = 26 so the length is 26.

4.2.6 Exercises

Solve each of the following linear equations.

1. 2x− 5 = −1

2. 3(x− 2) = 4

3. 2x+ 1 = 7x+ 6

4. 3(2x− 1)− 3 = x− 5

5. 3(x− 2) + 4(2x− 1) = 11x− 17

6. 2(x− 1) + 3(2x− 3) = x+ 4

7. 2(x− 3) = 3(x− 2)− x

8. 5(3x+ 2) + 3(x− 7) = 6x− 11

9.
2

3
x− 1

2
=

3

4

10.
x− 1

4
− 1

2
=

x

6

11.
3

4
x− 3 =

1

2

12.
2x− 1

3
− 1

2
=

x

6

For each of the following, set up an equation representing the problem. Then
solve the equation to answer the question.

11. The sum of three consecutive integers is 93. Find the integers.
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12. The sum of two consecutive odd integers is 264. Find the integers.

13. One number is three less than seven times another number. If the sum of
the two numbers is 15, find the two numbers.

14. Joshua brings home $ 1,080 per week in net pay. If his deductions amount
to 28 % of his gross pay, what is his weekly gross pay?

15. Suppose that for three consecutive odd integers, the sum of the first two
and twice the third is 6. Find the integers.

16. One number is two less than three times a number. If the sum of the two
numbers is 15, find the two numbers.

4.3 A detour: “Solving” literal equations

The method outlined above in Section 4.2 gives an effective procedure, or al-
gorithm3, to solve any linear equation in one variable. It turns out that this
algorithm is also effective in a more general symbolic setting.

A literal equation, or formula, is an equation relating two or more variables.
For example,

F =
9

5
C + 32, I = Prt, h2 = a2 + b2, y = x2

are four different literal equations. The first relates the two variables F and C
(representing the temperature in degrees Fahrenheit and Celsius). The second
relates the four variables I, P , r and t (representing interest, principal, rate and
time, respectively). The third relates the three variable h, a, and b (representing
the lengths of the hypotenuse and the two legs of a right triangle). The fourth
relates the two variables x and y (representing the coordinates of a point on a
particular parabola). Such relationships are common in the world, and formulas
give a concise way of describing them.

A literal equation is linear in a given variable if the only operations involving
that variable are addition, subtraction, and multiplication by a constant or
another different variable. For example, the equation I = Prt is linear in each
of the four variables. The equation y = x2 is linear in y, but not linear in x.
The equation h2 = a2 + b2 is not linear in any of the three variables.

You will notice that three of the four examples of literal equations are written
so that one of the variables appears “by itself” on one side of the equation, with

3It is not coincidental that the English word algorithm derives from the Arabic al-

Khwarizmi, a title referring to the 9th century mathematician Muhammad ibn Musa al-
Khwarizmi. Al-Khwarizmi is best known for his textbook Al-kitab al-mukhtasar fi hisab al-

gabr wa’l-muqabala (“The compendious book on calculation by completing and balancing”),
from which the English word algebra derives.



4.3. A DETOUR: “SOLVING” LITERAL EQUATIONS 69

no algebraic operations indicated. (In the equation h2 = a2 + b2, the variable h
is not “by itself” since it is being raised to the second power.) Many formulas
are written in this format. It indicates that the value of the variable appearing
“by itself” can be determined knowing the values for all the variables on the
other side.

For example, given the “simple interest” formula I = Prt, suppose we are
given that the principal amount is $2,000 (P = 2000), the annual interest rate is
0.1% (r = 0.001) and the time invested is 3 years (t = 3). The formula implies
that knowing this information, we should be able to determine the interest
earned. Substituting the given values into the formula,

I = (2000)(0.001)(3)

I = 6.

This is a linear equation whose only solution is 6. The interest earned on a
principal amount of $2,000 over three years at an annual interest rate of 0.1%
is $6.

You will notice in the example in the preceding paragraph that the mathe-
matics involved in using a formula to determine the value of one variable when
the others are given does not involve much algebra at all—at least when the
variable to be determined is “by itself” on one side of the equation. All that
remains, given values for the other variables, is evaluation.

However, for many reasons, it will often be convenient to rewrite a literal
equation so that a given variable appears “by itself.” When the equation is
linear is the given variable, we can apply the method of Section 4.2 to “solve
the equation in terms of the given variable.” (Notice that this is an abuse of
the meaning of the word “solve.” In fact we are not solving the equation at
all, which would involve finding values of all variables for which the equation
is true. Nevertheless, the terminology is so common that it would be futile to
avoid it.)

Example 4.3.1. Solve for t: I = Prt.

Answer. The instructions, “Solve for t” mean, “Write an equivalent equation
with the t by itself on one side of the equation.” Notice that the equation is linear
in t. The variable t is not “by itself,” since it is multiplied by the variables P
and r. Applying the multiplication principle, assuming that neither P nor r
have the value 0:

I = Prt

I

Pr
=

Prt

Pr
I

Pr
= t.

Since the order of the equality does not matter, we can write it as

t =
I

Pr
.
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The answer is t = I/(Pr).

Example 4.3.2. Solve for y: 3x+ 4y = 12.

Answer. The equation is linear in y. The variable y is not “by itself:” it is
multiplied by 4 with 3x added to the result. We apply the algorithm of Section
4.2:

3x + 4y = 12

−3x
... −3x

4y = −3x +12

4y
4 = −3x+12

4

y = −3x
4 + 12

4

y = − 3
4x +3.

The answer is y = −3

4
x+ 3.

A few things to notice about our use of the algorithm:

• At the second-to-last step, dividing both sides of the equation by 4, we used
the distributive property to divide each term on the right by 4.

• At the last step, we wrote the coefficient −3/4 of x more plainly. Notice

that −3

4
x = −3

4
· x
1
= −3x

4
. Also keep in mind that

−3

4
=

3

−4
= −3

4
.

Example 4.3.3. Solve for y: 2x− 5y = 8.

Answer. The equation is linear in y. Again we apply the algorithm of Section
4.2:

2x − 5y = 8

−2x
... −2x

−5y = −2x +8

−5y
−5 = −2x+8

−5

y = −2x
−5 + 8

−5

y = 2
5x − 8

5 .

The answer is y =
2

5
x− 8

5
.

Pay careful attention to the signs in studying this example!
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4.3.1 Exercises

1. Solve for y: 3x− 2y = 6.

2. Solve for y: 5x+ 4y = 10.

3. Solve for r: I = Prt.

4. Solve for C: F =
9

5
C + 32

5. (*) Solve for m: y − y0 = m(x− x0).

4.4 Solving linear inequalities in one variable

A linear inequality, as its name implies, is an inequality in which the only
operations involving the variables are addition, subtraction, and multiplying by
a constant. In this section, we consider inequalities with just one variable.

Like equations, inequalities can be true or false. Solving an inequality in-
volves finding all values for the variables which make the statement true.

A look at a very easy example of a linear inequality shows a significant differ-
ence compared to linear equations. Consider for example the linear inequality
x ≤ 2. (Compare this with Example 4.2.1.) Notice that the variable is “by
itself” on one side of the inequality, with no other operations involved. We can
see by inspection that 2 is a solution: 2 ≤ 2 is true. (Notice that x ≤ 2 is a
compound statement: it is true when EITHER x < 2 is true OR when x = 2
is true.) But 2 is not the ONLY solution! For example, 1 is also a solution:
1 ≤ 2 is true. −4 is another solution: −4 ≤ 2 is true. 1.9999 is another solution:
1.9999 ≤ 2 is true. You can convince yourself pretty quickly that the very simple
linear inequality x ≤ 2 in fact has infinitely many solutions. This is typical for
algebraic inequalities.

Most linear equations in one variable have exactly one solution. We have
seen at least one situation (Example 4.2.6) where a linear equation might have
infinitely many solutions, but in that case every real number is a solution. The
“easy” inequality we were considering, x ≤ 2, has infinitely many solutions, but
not every real number is a solution. For example, 3 is not a solution: 3 ≤ 2 is
false.

Even the simplest linear inequality poses the following question for us: How
can we solve the inequality—find ALL solutions—when there are infinitely many
of them? How can we indicate which numbers are solutions and which are not?

To answer these questions, we will introduce a technique that will be useful
in a number of situations: graphing. To graph an algebraic statement means
to draw a picture of all solutions. Typically our “picture” will involve our
standard method of visualizing the real numbers: the number line. “Solving”
and “graphing” are really the same type of problem (finding all solutions), but
the answer is written differently.
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Our basic method for graphing algebraic statements will be to indicate so-
lutions on a number line with a solid circle (•). In the case that we have
many solutions “infinitesimally close to each other,” which will look like a solid
(shaded) line. Here is the simple example we have been considering so far:

Example 4.4.1. Graph all solutions of the inequality: x ≤ 2.

Answer. Every number less than (on a number line, to the left of) 2 will be a
solution, so we will shade the region of the number line to the left of two. In
addition, we will use a solid circle for the “border” solution 2, to indicate that
2 is in fact a solution. We will use the term “border value” to denote the fact
that for all values on one side of the value on the number line, the inequality is
true, while for all values on the other side, the inequality is false.

The graph of all solutions of x ≤ 2 is:

x ≤ 2

| | | | | |

−1 0 1 2 3
b

Notice that the picture really describes ALL solutions of the inequality x ≤ 2;
we have “solved” the inequality. We see whether a number is a solution or not
by whether or not it is in the shaded region on the number line.

In the graphical method for solving linear inequalities, special attention must
be given to the “border” value. Consider for example the strict inequality
x > −3. In this case, any number to the right of −3 on the number line will be
a solution. The border value −3 is NOT a solution, however: −3 > −3 is false.
In order to deal with the problem of shading every value to the right of −3 but
not including −3 itself, we will indicate the border value with an empty circle
(◦).

Hence the graph of all solutions of x > −3 is:

x > −3

| | | | | |

−5 −4 −3 −2 −1
bc

Summarizing:
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Border values for linear inequalities in one variable

• For strict inequalities (<, >), the border value is indicated with an
open circle (◦);

• For non-strict inequalities (≤, ≥), the border value is indicated with
a solid circle (•).

In order to solve more complicated linear inequalities in one variable, we
will present two slightly different methods. Each has some advantages. Both
will rely on the methods we have already developed to solve linear equations
in one variable, namely the addition and multiplication principles. The main
difference between the two methods will be in deciding which side of the border
value to shade.

4.4.1 Solving linear inequalities in one variable: Test value

method

As the above simple examples show, graphing an inequality has two key steps:
finding the border value and deciding which side of the border value are solutions
to the inequality. Our first method of solving inequalities separates these two
steps. The main idea in this method is that the border value of a linear inequality
divides the number line into a “greater than” side and a “less than” side (relative
to this inequality); the border value corresponds to the solution of an equation.
We will determine the appropriate side to shade by choosing a test value, which
will determine which side is which.

Example 4.4.2. Graph all solutions of the inequality: 3(x+ 2)− 4 > 2x+ 8.

Answer. Step 1. Find the border value In order to find the border value,
we consider the corresponding equation:

3(x+ 2)− 4 = 2x+ 8.

This is a linear equation in one variable. The border value is the solution of
this equation.

3(x+ 2) − 4 = 2x + 8
3x + 6 − 4 = 2x + 8
3x + 2 = 2x + 8

−2x
... −2x

x + 2 = 8

− 2
... − 2

x = 6.
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The border value is 6. Notice that we will represent the border value with an
open circle (◦) since the inequality we are solving is strict.

Step 2. Use a test value to determine which side to shade. For a
test value, we choose any number EXCEPT the border value. We “test” this
value by substituting it into the original inequality to determine whether it is a
solution. If it is a solution, all values on the same side of the border value will
be solutions; if it is not a solution, all values on the opposite side of the border
value will be solutions.

Suppose we choose 4 as a test value.

| | | | | |

3 4 5 6 7
bc bcTest value ↓ ↓ Border value

If 4 is a solution of the inequality, we will shade all values on the same side
of the border value 6 as the test value; if 4 is not a solution, we will shade all
values on the opposite side of 6 as 4.

Is 4 as solution of 3(x+ 2)− 4 > 2x+ 8?

3((4) + 2)− 4 > 2(4) + 8

3(6)− 4 > 8 + 8

18− 4 > 16

14 > 16.

The inequality is false; the test value 4 is not a solution of the inequality. There-
fore we will shade all values on the opposite side of the border value as 4.

The graph of all solutions of 3(x+ 2)− 4 > 2x+ 8 is:

3(x+ 2)− 4 > 2x+ 8

| | | | | |

3 4 5 6 7
bc bcTest value ↓

For convenience, we summarize the test-value method:
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Test-value method for graphing linear inequalities in one
variable

• Find the border value by solving the corresponding linear equation.

• Determine which side of the border value to shade by choosing a test
value and deciding whether it is a solution or not.

Represent the border value with an open or closed circle according to
whether the inequality is strict or not.

Example 4.4.3. Graph all solutions of the inequality: 2(2x−3)+3x ≤ 10x−5.

Answer. Step 1: Find the border value.

To find the border value, we solve the equation 2(2x− 3) + 3x = 10x− 5:

2(2x− 3) + 3x = 10x − 5
4x − 6 + 3x = 10x − 5
7x − 6 = 10x − 5

−10x
... −10x

−3x − 6 = −5

+ 6
... +6

−3x = 1
−3x
−3 = 1

−3

x = − 1
3 .

The border value is −1/3. We will indicate the border value with a solid circle
(•) since the original inequality (≤) is not strict.

Step 2. Use a test value to determine which side to shade.

Let’s choose 0 as our test value.

| | | | | | | |

−2 −1 − 1
3
0 1 2
bcb
↓ Test valueBorder value ↓
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We test whether 0 is a solution of 2(2x− 3) + 3x ≤ 10x− 5:

2(2(0)− 3) + 3(0) ≤ 10(0)− 5

2(0− 3) + 0 ≤ 0− 5

2(−3) ≤ −5

−6 ≤ −5.

The inequality is true; the test value 0 is a solution of the inequality. Therefore
we will shade all values on the same side of the border value as 0.

The graph of all solutions of 2(2x− 3) + 3x ≤ 10x− 5 is:

2(2x− 3) + 3x ≤ 10x− 5

| | | | | | | |

−2 −1 − 1
3
0 1 2

b
↓ Test value

We close with one final example.

Example 4.4.4. Graph all solutions of the inequality: 4x− 7 < 2.

Answer. Step 1: Find the border value. We solve the equation 4x−7 = 2:

4x − 7 = 2

+ 7
... +7

4x = 9
4x
4 = 9

4

x = 9
4 .

The border value is 9/4, which we will indicate with an open circle (◦) since
the original inequality is strict.

Step 2. Use a test value to determine which side to shade. Let’s
choose 3 as a test value:

| | | | | | | | |

1 2 3 4 5
bcbc
↓ Test valueBorder value ↓



4.4. SOLVING LINEAR INEQUALITIES IN ONE VARIABLE 77

We test whether 3 is a solution of the inequality 4x− 7 < 2:

4(3)− 7 < 2

12− 7 < 2

5 < 2

The inequality is false; 3 is not a solution of 4x − 2 < 7. Hence we shade on
the opposite side of the border value.

The graph of all solutions of 4x− 7 < 2 is:

4x− 2 < 7

| | | | | | | | |

1 2 3 4 5
bcbc
↓ Test value

4.4.2 Solving linear inequalities in one variable: Standard

form method

Another way of deciding which half of the number line to shade for a typical
linear inequality in one variable is to take advantage of the special form x <
or x > . We will call this form “standard form,” in which the variable
appears on the LEFT side of the inequality by itself with no operations. We
opened this section by considering an example of this form: x ≤ 2. The graph
consisted of shading all values less than (to the left of ) 2, along with the border
value 4 which we indicated with a solid circle (•):

x ≤ 2

| | | | | |

−1 0 1 2 3
b

On the other hand, we considered the inequality x > −3, also in standard
form. The graph consisted of shading all values greater than (to the right of )
−3, with the border value −3 indicated with an open circle (◦) to indicate that
it is not a solution of the inequality:
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x > −3

| | | | | |

−5 −4 −3 −2 −1
bc

Our second method of solving linear inequalities in one variable will be to
convert the inequality into an equivalent one in the standard form with the
variable by itself on the left side of the inequality, in almost exactly the same
way as we did to solve a linear equation. In that case, we can follow the rules:

• For inequalities in the standard form x ≤ a or x < a, always shade to the
left of the border value a;

• For inequalities in the standard form x ≥ a or x > a, always shade to the
right of the border value a.

As usual, the border value a will be indicated with a solid circle (•) or an open
circle (◦) depending on whether or not the inequality is strict.

The standard form method has the advantage of the word “always.” In
particular, because we take the trouble to write the inequality in the standard
form, there is no need to choose a test value to determine which side of the
border value to shade. There are two important points that need to be kept in
mind, however.

The first is that the standard form presumes that the variable is by itself
on the LEFT side of the inequality. When we solved equations, we were free to
write the variable by itself on EITHER side of the equation. In fact, we saw
examples, where it was more convenient to write an equation in an equivalent
form with the variable by itself on the right side of the equation.

This problem is easy to solve as long as we keep in mind that writing a < b
is exactly the same as writing b > a. In other words, writing the inequality
from right to left “changes the sense” of the inequality (in other words, the
inequality symbol “points in the opposite direction.”) So if we were to rewrite a
linear inequality into the form 5 ≥ x, we would simply rewrite it in the standard
form x ≤ 5.

The second point to keep in mind is more serious. The careful reader might
have noticed that this method was described as rewriting the inequality in stan-
dard form “in almost exactly the same way” as for linear equations. More
specifically, that means using the addition and multiplication principals to “do
the same thing to both sides” to obtain a simpler statement. In fact, the addi-
tion principle can be used in exactly the same way: Adding (or subtracting) the
same quantity from both sides of an inequality produces an equivalent inequality
(an inequality with the same solutions).
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The multiplication principal requires some adjustment, however. To see this,
let’s start with a true inequality 2 < 3. Multiplying both sides by 5, for ex-
ample, we obtain the inequality 10 < 15, which is still true. However, if we
multiply both sides of the same inequality by −5, we obtain −10 < −15—which
is false! Clearly, multiplying (and dividing, as you might guess) by a negative
quantity has a different effect than multiplying (or dividing) by a positive quan-
tity. Without going into a lengthy explanation for why this is so, just keep in
mind that multiplying by a negative quantity involves some sense of an “op-
posite,” and additive opposites on a number line are “mirror images” of each
other, reflected across the point representing 0.

For this reason, we need to adjust the multiplication principal for inequali-
ties:

The multiplication principal for inequalities

• Multiplying (or dividing) both sides of an inequality by a positive
quantity will produce an equivalent inequality;

• Multiplying (or dividing) both sides of an inequality by a negative
quantity will produce an equivalent inequality after changing the
sense of the original inequality.

For example, dividing both sides of the inequality −3x > 6 by −3 gives

the equivalent inequality
−3x

−3
<

6

−3
, or x < −2. The sense of the original

inequality has changed from > to <.
With these two small adjustments to our method of approaching linear equa-

tions, let’s go back to the same examples as we saw in the test value method.

Example 4.4.5. Graph the inequality: 3(x+ 2)− 4 > 2x+ 8.

Answer. We apply the addition principal and the revised multiplication prin-
ciple to obtain an equivalent inequality in standard form:

3(x+ 2) − 4 > 2x + 8
3x + 6 − 4 > 2x + 8
3x + 2 > 2x + 8

−2x
... −2x

x + 2 > 8

− 2
... − 2

x > 6.

Notice that at no point did we need to multiply or divide by a negative num-
ber.
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The new, equivalent inequality is of the form x > a (where here a is 6). We
will shade to the right of 6, indicating 6 with an open circle since the inequality
is strict:

3(x+ 2)− 4 > 2x+ 8

| | | | | |

3 4 5 6 7
bc

Summarizing the standard-form method:

Standard form method for graphing linear inequalities in one
variable

• Use the addition principle and (modified) multiplication principle to
re-write the inequality in the standard form, with the variable by
itself on the left side of the inequality.

• For inequalities involving “less than” (< or ≤), shade to the left of
the border value. For inequalities involving “greater than” (> or ≥),
shade to the right of the border value.

Represent the border value with an open or closed circle according to
whether the inequality is or is not strict.

Let’s apply this method to the other two examples we saw previously.

Example 4.4.6. Graph all solutions of the inequality: 2(2x−3)+3x ≤ 10x−5.
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Answer. We again rewrite the inequality in standard form:

2(2x− 3) + 3x ≤ 10x − 5
4x − 6 + 3x ≤ 10x − 5
7x − 6 ≤ 10x − 5

−10x
... −10x

−3x − 6 ≤ −5

+ 6
... +6

−3x ≤ 1
−3x
−3 ≥ 1

−3

x ≥ − 1
3 .

This time, in our final step, we had to divide by a negative number, so the
sense of the inequality changed from ≤ to ≥.

Since the final inequality has the standard form x ≥ a (where a is −1/3),
we will shade to the right of the border value; the border value −1/3 will be
indicated with a solid circle since the inequality is not strict.

The graph of all solutions of 2(2x− 3) + 3x ≤ 10x− 5 is:

2(2x− 3) + 3x ≤ 10x− 5

| | | | | | | |

−2 −1 0 1 2
b

Example 4.4.7. Graph all solutions of the inequality: 4x− 7 < 2.

Answer. Rewriting the inequality in standard form:

4x − 7 < 2

+ 7
... +7

4x < 9
4x
4 < 9

4

x < 9
4 .

At no point did we multiply or divide by a negative number; the sense of the
inequality remained the same.

Since the equivalent inequality has the standard form x < a (where here a
is 9/4), we will shade to the left of the border value 9/4, indicating the border
value with an open circle since the inequality is strict.
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The graph of all solutions of 4x− 7 < 2 is:

4x− 2 < 7

| | | | | | | | |

1 2 3 4 5
bc

To summarize:

• A typical linear inequality in one variable will have infinitely many solu-
tions. For this reason, the solutions are typically indicated with a graph
on a number line.

• The typical graph of a linear inequality will be half of a number line, all
points to the left of or to the right of the border value, with the shaded
region representing solutions to the inequality.

• The border value is indicated with either an open circle (◦), in the case of
a strict inequality (< or >), or a solid circle (•), in the case of a non-strict
inequality (≤ or ≥).

• Which side of the border value to shade can be determined either by the
test value method or by the standard form method.

Keep in mind that an inequality, like an equation, can be an identity (and
so all real numbers are solutions) or a contradiction (and so has no solution).

4.4.3 Exercises

In the problems below, “solve” means “graph all solutions.” For each one, list
five individual solutions.

1. Solve: 3x− 4 > 6.

2. Solve: 2(x− 3) + 4 ≤ x− 5.

3. Solve: 3(2x− 1) + 4(3x+ 5) > 2(x− 6).

4. Solve: x− 5(2x+ 1) ≤ 6.

5. (*) Solve: −2(x− 3) ≥ −4(x+ 1) + 2x.

6. (*) Solve: 2x+ 3(x− 2) > 5(x− 1)− 1.
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4.5 Chapter summary

• A solution of an algebraic equation or inequality is a value for each variable
which, when substituted, makes the statement true.

• To solve means to find all solutions.

• A linear equation is one in which the only operations involving variables
are addition, subtraction, and multiplication by a constant.

• A typical linear equation in one variable has one solution. The excep-
tions are contradictions (statements that have no solution) and identities
(statements which are true for all values of the variable).

• Solving a linear equation in one variable involves using the addition and
multiplication principles to find an equivalent equation for the form

x = .

• “Solving” a literal equation for a given variable means writing an equiva-
lent equation with the given variable “by itself” on one side of the equation.

• A typical linear inequality in one variable will have infinitely many solu-
tions. To solve them, the solutions are graphed on a number line.
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Chapter 5

Linear equations and

inequalities in two variables

Vocabulary

• xy-plane

• Plotting ordered pairs

• Graph

• Intercepts (x– and y–intercept of a line in an xy-plane)

• Slope of a line

• Parallel lines

• Perpendicular lines

• Horizontal lines

• Vertical lines

• Slope-intercept form of a linear equation in two variables

• Point-slope form of a linear equation in two variables

• System of linear equations

5.1 Solving linear equations in two variables

We now turn our attention to linear equations with two variables, which we will
assume to be called x and y. A linear equation in two variables can always be
written in a standard form

Ax+By = C,

85
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where A and B are constant coefficients and C is a constant. What is “standard”
about this form is that the terms involving variables are on one side of the
equation, while the constant term (not involving variables) is on the other side
of the equation. However, a linear equation may not be written in this standard
form. In fact, we will soon see several situations in which it is better to write a
linear equation in another form.

As with any algebraic statement, a linear equation in two variables may be
true or false, depending on the values for both variables x and y. As we saw
earlier in Section 4.1, a solution to a linear equation in two variables consists of
a value for each of the two variables, which we indicate by writing them together
as an ordered pair.

Let’s start by looking at a relatively easy example of a linear equation in
two variables:

x+ y = 5.

It’s easy to see a few examples of solutions to this equation: (1, 4), (2, 3), and
(3, 2), for example. With a little more thought, more exotic solutions come to

mind: (−1, 6) and

(

1

2
, 4

1

2

)

, for example. On the other hand, not every ordered

pair is a solution to this equation: (2, 2) is not a solution, for example.

5.1.1 A method for producing solutions

In the case that the equation is more complicated, there is still a straightfor-
ward method to produce solutions. We illustrate this method in the following
example.

Example 5.1.1. Find three solutions to the equation 2x− 5y = 10.

Answer. Our strategy will be to “eliminate” one of the variables and to solve the
remaining linear equation in one variable. We eliminate a variable by choosing
a value for that variable, then substituting the value into the original equation.
The solution to the original equation will be an ordered pair consisting of the
chosen value for the “eliminated” variable and the value obtained by solving the
resulting (one-variable) equation.

For example, let’s choose the value 0 for x. Substituting into the given
equation for x gives 2(0) − 5y = 10; the variable x has been “eliminated.” We
then solve:

2(0) − 5y = 10
0 − 5y = 10

−5y = 10
−5y
−5 = 10

−5

y = −2.

The solution corresponding to our choice of 0 for x is (0,−2).
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For another solution, let’s choose the value 0 for y. Substituting this value
for y gives 2x− 5(0) = 10. Solving:

2x − 5(0) = 10
2x − 0 = 10
2x = 10
2x
2 = 10

2

x = 5.

The solution corresponding to our choice of 0 for y is (5, 0).

Since we were asked for three solutions, we make one more choice. Let’s
choose the value 1 for y. Substituting gives 2x− 5(1) = 10. Solving:

2x − 5(1) = 10
2x − 5 = 10

+ 5
... +5

2x = 15
2x
2 = 15

2

x = 15
2 .

The solution corresponding to our choice of 1 for y is (15/2, 1).

The three solutions we obtained are (0,−2), (5, 0), and (15/2, 1).

We will organize the data from finding solutions to a linear equation in two
variables into a table. For example, we will summarize the three solutions above
as:

x y Solution

0 −2 (0,−2)

5 0 (5, 0)

15/2 1 (15/2, 1)

Notice that we have indicated the value that was chosen with a boxed number,
while the value obtained by solving the corresponding equation with an unboxed
number.

We can summarize this method for finding solutions.
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Finding solutions to an algebraic equation in two variables

To find solutions to an algebraic equation in two variables:

1. Choose a value for one of the variables;

2. Substitute the chosen value into the equation and solve the resulting
equation in one variable.

The ordered pair corresponding to the chosen value with the value obtained
by solving the resulting equation (in the appropriate order) will be a solu-
tion to the original equation in two variables.

One thing should be clear from the method described in the example above:
A linear equation in two variables will typically have infinitely many solutions,
one for each choice of value for x (or y). This will present some problems from
the point of view of solving such equations—finding all solutions.

5.1.2 Graphing linear equations in two variables

In Section 4.4 on linear inequalities in one variable, we saw a powerful method
for keeping track of solutions of algebraic statements with infinitely many solu-
tions: graphing. However, in the case of algebraic statements in two variables,
a number line is not sufficient. To keep track of the values of both variables,
we will use the xy–plane (sometimes called the Cartesian plane, after one of
the originators of the concept, the French philosopher and mathematician René
Descartes).

For the sake of reference, we list here some of the most important properties
of an xy-plane (see Figure 5.1):

• It is formed by two number lines placed at right angles and meeting where
both are labeled 0. The number lines are called the x-axis (the horizontal
number line) and the y-axis (the vertical number line). The point of
intersection of the axes is called the origin.

• The positive x-direction is to the right. The positive y-direction is up-
wards.

• An ordered pair is represented by a point on the xy-plane by means of its
coordinates. The first number (the x-coordinate) represents the number
of units (“in the x-direction”) from the y-axis to the point . The sec-
ond number (the y-coordinate) represents the number of units (“in the
y-direction”) from the x-axis to the point.
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Figure 5.1: An xy-plane

• Points on the x-axis correspond to ordered pairs having 0 as a y-coordinate.
Points on the y-axis correspond to ordered pairs having 0 as an x-coordinate.

Let’s return to our example x+ y = 5. Just by inspection, we found several
solutions. We will now represent each ordered pair solution with a point in the
xy-plane. (This is called plotting the ordered pairs.)
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•(1, 4)

•(2, 3)

•(3, 2)

•(−1, 6)

•(0.5, 4.5)

Five solutions of x+ y = 5

This graph, obtained by plotting five solutions of the same linear equation
in two variables, points to a crucial fact that will be central to our treatment of
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linear equations in two variables:

BIG FACT: The geometry of solutions to linear equations in
two variables

The points corresponding to plotting all solutions to a linear equation in
two variables all lie on a single line. Every point on this line corresponds
to a solution to the equation.

This fact, combined with some basic geometry, gives a powerful technique
to solve a linear equation in two variables in the form of a graph.

General method to graph linear equations in two variables

To graph all solutions of a linear equation in two variables:

1. Find at least two solutions.

2. Plot the solutions.

3. Draw the line passing through the chosen solutions.

Notice that geometry comes into the picture due to the fact, written down
as far back as Euclid, that two (different) points determine a unique line passing
through them. This fact is what allows us to “buy two solutions, get infinitely
many solutions free.”

Combined with our method for producing solutions to linear equations in
two variables above, we are hence able to graph any linear equation in two
variables.

Example 5.1.2. Graph the equation 2x− 5y = 10.

Answer. Recall in Example 5.1.1 above, we found three solutions to 2x− 5y =
10, given in the table

x y Solution

0 −2 (0,−2)

5 0 (5, 0)

15/2 1 (15/2, 1)

We plot these solutions in Figure 5.2.
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Figure 5.2: Three solutions of 2x− 5y = 10

Notice that the three solutions appear to lie on the same line, as we expected
from our Big Fact. All that remains is to “connect the dots” in Figure 5.3.
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•(0,−2)

•(5, 0)

•(7.5, 1)

Figure 5.3: All solutions of 2x− 5y = 10.

It is important to emphasize that the last “connect the dots” step, simplest
from the procedural point of view, is also the most significant. We have gone
from three solutions to infinitely many solutions—one for each point on the line.

Let’s look at two more examples.

Example 5.1.3. Graph the solutions of 3x+ 4y = 12.
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Answer. We first find three solutions.
Choosing 0 for x, we substitute and solve:

3(0) + 4y = 12
0 + 4y = 12

4y = 12
4y
4 = 12

4

y = 3.

So (0, 3) is a solution.
Choosing 0 for y, we substitute and solve:

3x + 4(0) = 12
3x + 0 = 12
3x = 12
3x
3 = 12

3

x = 4.

So (4, 0) is a solution.
Choosing −3 for y, we substitute and solve:

3x + 4(−3) = 12
3x − 12 = 12

+ 12
... +12

3x = 24
3x
3 = 24

3

x = 8.

So (8,−3) is a solution.
Summarizing our results so far, we have the table:

x y Solution

0 3 (0, 3)

4 0 (4, 0)

8 −3 (8,−3)

We now plot the three solutions and connect them with a line. See Figure
5.4.

Notice that choosing 0 first for x and then for y is useful for more than just
the ease of working with the number 0. The point whose x-coordinate is 0 (the
point (0, 3) in the previous example) is the y-intercept of the line: the point
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Figure 5.4: All solutions of 3x+ 4y = 12.

where the line intersects the y-axis. Likewise, the point whose y-coordinate is
0 (the point (4, 0) in the previous example) is the x-intercept of the line, or
the point where the line intersects the x-axis. We will often refer to these two
special points on a line in the xy-plane, as they stand out on the graph.

Example 5.1.4. Graph the solutions of y =
1

4
x− 2.

Answer. As usual, we will make three choices to find three solutions. This time,
however, we will take advantage of the form in which the equation is written,
with the y by itself on one side of the equation, and only choose values of x.

Choosing 0 for x, we substitute and solve:

y = 1
4 (0) − 2

y = 0 − 2
y = −2.

So (0,−2) is a solution.
Choosing 4 for x, we substitute and solve:

y = 1
4 (4) − 2

y = 1 − 2
y = −1.

So (4,−1) is a solution.
Choosing 8 for x, we substitute and solve:

y = 1
4 (8) − 2

y = 2 − 2
y = 0.
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So (8, 0) is a solution.
Hence we have the table:

x y Solution

0 −2 (0,−2)

4 −1 (4,−1)

8 0 (8, 0)

(Can you see why we chose the values of x that we did?)
Plotting the solutions and connecting them with a line gives Figure 5.5.
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Figure 5.5: All solutions of y =
1

4
x− 2.

5.1.3 Exercises

For each of the linear equations in two variables below, graph the solutions.

1. x− y = 4

2. 2x+ 3y = −6

3. 5x− y = 2

4. −4x+ 3y = 12

5. −x+ 3y = 9

6. y = 2x− 1

7. y =
1

3
x− 2

8. y = −3

4
x+ 1
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5.2 A detour: Slope and the geometry of lines

We saw in the last section how geometry can be helpful in solving a linear
equation in two variables. In particular, using the fact that two points determine
a line, we were able to find all solutions of a linear equation in two variables (as
a graph) just by knowing any two different solutions.

In this section, we continue the theme of how geometry can help us study
linear equations in two variables. After defining the slope of a line, we will
show how we can use this concept to develop another method for graphing the
solutions to such equations. We will also show how this concept allows us to
write an equation for a line in the xy-plane.

The slope will give a way to measure a line. It will be a single number that
is designed to measure the “steepness” of a line.

Consider for example the lines shown in Figure 5.6. Line A is steeper than
line B. (Imagine yourself riding a bicycle up two hills represented by the lines.
It will be harder to pedal up line A than line B!) So we will want to assign a
larger number as the slope of line A than for the slope of line B. Line C is not
steep at all; it is “flat.” We will want to assign a slope of 0 to this line. Line
D appears to be about as steep as line A, but in different “directions.” Line A
is slanted upwards (from left to right), while line D is slanted downwards. We
will assign a positive number as the slopes for lines A and B, but a negative
number for the slope of line D. Vertical lines are special in that they do not
have a slope. (Don’t try to ride your bike down a vertical cliff!)

Line A Line B Line C Line D

Figure 5.6: Four lines with different slopes.
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How do we make this measurement called slope? It turns out than an effec-
tive way to assign a number that matches exactly with our expectations from
the previous paragraph is to define the slope as the ratio of the vertical change
in distance between two points on the line to the horizontal change in distance
between the same two points, with the understanding that a change from upper
to lower (going from left to right) will be negative1. See Figure 5.7.

•

•

H

V m = V
H

Figure 5.7: The definition of slope m.

Notice that we have defined the slope without reference to a coordinate
system, i.e. without an xy-plane. In the case that the line is drawn with
reference to a coordinate system, the vertical and horizontal distances in the
definition of the slope can be written in terms of the coordinates of two points
on the line with coordinates (x1, y1) and (x2, y2):

The slope of a line in an xy-plane

The slope of a line in an xy-plane passing through the points with coordi-
nates (x1, y1) and (x2, y2) is given by the ratio

m =
y2 − y1
x2 − x1

.

(See Figure 5.8.)

It should be pointed out that in this context, the notation ∆y and ∆x are

1This definition in itself is based on an important fact from geometry. Recall that two
triangles are similar if their corresponding angles have equal measurements. The ratio of
corresponding sides of similar triangles are equal. For that reason, the slope does not depend
on the two points chosen. Can you see why?
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sometimes used to represent the change in x and y respectively, so the slope can
be remembered as

m =
∆y

∆x
.

•

•

(x1, y1)

(x2, y2)

H = x2 − x1

V = y2 − y1

m =
V

H
=

y2 − y1
x2 − x1

Figure 5.8: The slope defined relative to an xy-plane.

In order to use the formula defining the slope, the coordinates of (any!) two
points on the line are needed.

Example 5.2.1. Find the slope of the line passing through the points with
coordinates (6,−2) and (3, 7).

Answer. Since we are given the coordinates of two points on the line, all that
remains to do is to label the coordinates, substitute into the formula defining the
slope, and evaluate.

Labelling,

x1 y1 x2 y2
( 6 , −2 ), ( 3 , 7 )

Substituting and evaluating:

m =
(7)− (−2)

(3)− (6)

=
7 + 2

3 + (−6)

=
9

−3

= −3.

The slope is −3.
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For the sake of the reader who is seeing the slope formula in action for the
first time, let’s re-do the previous example, but labeling the coordinates in the
opposite way:

x1 y1 x2 y2
( 3 , 7 ), ( 6 , −2 )

Then substituting,

m =
(−2)− (7)

(6)− (3)

=
(−2) + (−7)

3

=
−9

3
= −3.

We obtain the same answer, the slope being −3. This is a special case of the
point that we made in the definition: the slope does not depend on which two
points on the line are chosen, and in particular, does not depend on the order
that the points are used.

Although a graph is not necessary for the purpose of computing the slope
of a line, the reader might want to plot the two given ordered pairs (6,−2) and
(3, 7) to visualize the line passing through the corresponding points to verify
that the line slants downwards going from left to right, as we would expect from
a line with a negative slope.

We next illustrate an example where the required information to compute
the slope from the definition is not given directly. We will see shortly that there
is another, more effective way to approach this example.

Example 5.2.2. Use the definition to find the slope of the line given by the
equation 2x+ y = 2.

Answer. Although we are not given the coordinates of two points on the line,
in some ways we have better: we have an equation for the line. We have already
seen a method for obtaining as many solutions to this equation as we want—two
will be enough.

Choosing 0 for y, we substitute and solve:

2x + (0) = 2
2x = 2
2x
2 = 2

2

x = 1.

So (1, 0) is a solution.
Choosing 0 for x, we substitute and solve:

2(0) + y = 2
0 + y = 2

y = 2.
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So (0, 2) is a solution.
Summarizing our results so far, we have the table:

x y Solution

1 0 (1, 0)

0 2 (0, 2)

Now, labeling the coordinates of our two solutions,

x1 y1 x2 y2
( 1 , 0 ), ( 0 , 2 )

Substituting and evaluating:

m =
(2)− (0)

(0)− (1)

=
2

0 + (−1)

=
2

−1

= −2.

The slope is −2.

This example also gives us a way to illustrate even more surely that the
slope does not depend on the points chosen. Suppose your classmate’s choices
are different from yours, and they obtain two different solutions (−1, 4) and
(2,−2). (Check that these are really solutions to 2x+y = 2!) In that case, they
would label:

x1 y1 x2 y2
( −1 , 4 ), ( 2 , −2 ).

Substituting and evaluating would give:

m =
(−2)− (4)

(2)− (−1)

=
(−2) + (−4)

2 + (1)

=
−6

3
= −2.

The two points were chosen differently, but the slope of the line is the same!
We conclude this subsection with an example that will lead in to the next

main use of the slope concept.

Example 5.2.3. Find the slope of the line given by the equation y =
2

3
x− 4.
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Answer. As in the last example, we first find any two solutions.
Choosing 0 for x, we substitute and solve:

y = 2
3 (0) − 4

y = 0 − 4
y = −4.

So (0,−4) is a solution.
Choosing 3 for x, we substitute and solve:

y = 2
3 (3) − 4

y = 2 − 4
y = −2.

So (3,−2) is a solution.
Summarizing our results so far, we have the table:

x y Solution

0 −4 (0,−4)

3 −2 (3,−2)

Labeling our two solutions,

x1 y1 x2 y2
( 0 , −4 ), ( 3 , −2 )

Substituting and evaluating:

m =
(−2)− (−4)

(3)− (0)

=
(−2) + (4)

3)

=
2

3
.

The slope is 2/3. We will see very shortly that this answer is no surprise.

The previous example 5.2.3 is a special case of an important fact relating
the slope to linear equations in two variables:

Slope-intercept form of a linear equation in two variables

Suppose that a linear equation is written in the special form

y = mx+ b,

with the variable y by itself on one side of the equation. Then m (the
coefficient of x) is the slope of the line, and the y-intercept has coordinates
(0, b).
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This special form of writing a linear equation in two variables, where the
variable y is written by itself on one side of the equation, is known as the slope-
intercept form of the equation of a line, since both the slope and the y-coordinate
of the y-intercept can be read directly from the equation.

Notice that in Example 5.2.3, the equation y =
2

3
x− 4 was written in slope-

intercept form. The slope 2/3 was indeed the coefficient of x. Notice also,
although we didn’t mention it at the time, that the y-intercept has coordinates
(0,−4), a fact that we could also read from the form of the equation. (Keep in
mind that the b term in the special slope-intercept form is added, so we should

think of the equation as being written y =
2

3
x+ (−4).)

If a linear equation in two variables is not written in slope-intercept form,
then there is no way to read off the information so easily. However, by changing
the form of the equation, we can take advantage of the special slope-intercept
form for any equation.

Example 5.2.4. Find the slope and y-intercept of the line given by the equation
3x− 4y = 12.

Answer. The equation is not written in slope-intercept form, since the variable
y is not by itself. However, we can solve for y in terms of x:

3x − 4y = 12

−3x
... −3x

−4y = −3x + 12
−4y
−4 = −3x+12

−4

y = −3x
−4 + 12

−4

y = 3
4x − 3.

The slope is 3/4 and the y-intercept has coordinates (0,−3).

We will see several more examples of this procedure in a different context in
the following subsection.

5.2.1 Using the slope as an aid in graphing

In this subsection, we show how the slope gives an alternative method to the
problem of graphing the solutions to a linear equation with two variables, apart
from making a table of values to find solutions. It is based on the following
principal:

The slope, considered as a ratio of the change in the y-coordinates to the
change in the x-coordinates of points on the line, gives a way to obtain a
new point on the line from a given one.
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Specifically, we will think of the slope as a fraction which gives instructions
to move “up and to the right” or “down and to the right,” depending on whether
the slope is positive or negative.2

Example 5.2.5. Find three other points on the line passing through the point
with coordinates (−3,−2) and having slope 2.

Answer. The slope is 2 =
2

1
. So, beginning from the given point’s coordinates

(−3,−2), we will move our pencil on the graph one unit to the right and two
units upwards to obtain our first new point. See Figure 5.9. This new point has
coordinates (−2, 0), as should be clear from the graph.
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•

(−3,−2)

to the right 1 unit

up 2 units

Figure 5.9: Using the slope to find a second point on a line.

Repeating the procedure two more times gives two other new points with
coordinates (−1, 2) and (0, 4). (Even though we could write down a “formula”
to obtain the numerical coordinates of one point from the next, it is by far simpler
in the cases we will encounter to just read the coordinates from the xy-plane.)

Using the method of the previous example gives us an effective way to graph
the solutions of a linear equation in two variables—especially if the equation is
written in slope-intercept form.

2More properly, we should think of moving “in the same direction” or “in the opposite
direction,” so that, for example, we can also obtain a second point from a given one on a line
with positive slope by moving down and to the left.
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Example 5.2.6. Graph the solutions of y = −x+ 3.

Answer. Notice that the equation is written in slope-intercept form; y is by
itself on one side of the equation. The slope is −1 (the coefficient of x), while
the y-intercept has coordinates (0, 3).

Using the slope m = −1 =
−1

1
, we start at the given point with coordinates

(0, 3) and “move” one unit downward and one unit to the right in order to obtain
a second point having coordinates (1, 2). This gives us two solutions; the graph
will consist of all points on the line passing through these two points.

The graph is given in Figure 5.10.
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Figure 5.10: All solutions of y = −x+ 3.

While the previous example was straightforward due to the fact that the
equation was written in slope-intercept form to begin with, we have already
seen that it doesn’t take much effort to rewrite an equation in slope-intercept
form if it isn’t written that way to begin with, by solving for y.

Example 5.2.7. Graph the solutions of 2x− y = 6.

Answer. The equation is not written in slope-intercept form, since y is not by
itself on one side of the equation. Solving for y in terms of x:

2x − y = 6

−2x
... −2x

−y = −2x + 6
−y
−1 = −2x+6

−1

y = −2x
−1 + 6

−1

y = 2x − 6.
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We now see that the slope is 2 and the y-intercept has coordinates (0,−6).

Using the slope m = 2 =
2

1
, we start at the point representing (0,−6) and

“move” upwards two units and to the right one unit in order to obtain a second
solution (1,−4).

The graph is given in Figure 5.11.
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Figure 5.11: All solutions of 2x− y = 6.

The only possible difficulty in this method of graphing is that when following
the method too literally, we will occasionally be forced to plot points with
fractional coordinates, as the next example illustrates.

Example 5.2.8. Graph the solutions of 3x+ 2y = 5.

Answer. The equation is not written in slope-intercept form, since y is not by
itself on one side of the equation. Solving for y:

3x + 2y = 5

−3x
... −3x

2y = −3x + 5
2y
2 = −3x+5

2

y = −3x
2 + 5

2
y = − 3

2x + 5
2 .

We see that the slope is −3/2 and the y-intercept has coordinates (0, 5/2).
Since 5/2 = 2 1

2 , the point representing (0, 5/2) is plotted halfway between

those representing (0, 2) and (0, 3). Using the slope m =
−3

2
, we start at the
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point representing (0, 5/2) and “move” downwards three units and to the right
two units to obtain a second solution (2,−1/2).

The graph is given in Figure 5.12.
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Figure 5.12: All solutions of 3x+ 2y = 5.

(Notice that we encountered fractional coordinates in this example because
the y-intercept had a fractional y-coordinate. If we had used a solution with
integer coordinates like (1, 1), we could have avoided this inconvenience—but
then we would have been on our way to constructing a table.)

5.2.2 Finding an equation of a given line

So far, we have concentrated on the relationship between the slope and the
graph of a linear equation in two variables. The sign of the slope indicates
which “direction” the line is slanted. The magnitude of the slope measures the
ratio of the vertical change to the horizontal change, and so given one point on
the line, the slope indicates how to determine other points on the same line.

However, the slope concept also opens the door to a answering a new kind
of question. Suppose we are given a line (in an xy-plane) described by some
geometric data. How can we find an equation whose solutions correspond to the
given line3?

What is meant by describing a line with geometric data? We will consider
the following situations:

• A line described by one point on the line and the slope;

• A line described by two points on the line;

3Notice that we do not ask for “the” equation of a line. The reader can check, for example,
that the equations x + y = 1 and 2x + 2y = 2 have the same solutions, and so describe the
same line in an xy-plane.
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• A line described by one point on the line, given that it is parallel to another
line;

• A line described by one point on the line, given that it is perpendicular
to another line.

The simplest example will show that we already have tools to answer this
question.

Example 5.2.9. Find an equation for the line passing through the point with
coordinates (0,−2) and having slope 3.

Answer. Notice that in this case, the point given happens to be the y-intercept!
(That can be seen even without plotting the point by noticing that the x-coordinate
is 0.) Hence we can treat the slope-intercept form of a line, which we have writ-
ten as y = mx+ b, as a formula, and substitute the values of m and b.

In this case, m = 3 and b = −2, so an equation of the line, in slope-intercept
form, would be

y = 3x− 2.

“That was too good to be true!” Of course, we had been given exactly the
data needed to substitute into the slope-intercept “formula” for a line. In the
next example, we show that the previous method still applies in a more general
context. We also illustrate a second method which is better adapted to the more
general setting.

Example 5.2.10. Find an equation for the line passing through the point with
coordinates (1,−2) and having slope −4.

Answer. This time, the given point is not the y-intercept (the x-coordinate is
not 0!), so we cannot proceed as directly as in the previous example.

Method 1

Even though we do not have all the information needed to substitute into the
slope-intercept “formula,” we can proceed in two steps.

The first, easy step is to substitute the information we do have, which is the
slope (m = −4), into the formula:

y = −4x+ b.

This time, b is still unknown.
In the second step, we will use the coordinates (1,−2) of the given point to

solve for b, by substituting the coordinates for x and y in the equation we have
obtained so far:

y = −4x + b
(−2) = −4(1) + b
−2 = −4 + b

+4
... +4

2 = b.
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The solution for b is 2.

Now, since we have values for m AND b, we can substitute into the slope-
intercept “formula” as above. The answer is

y = −4x+ 2.

Method 2

Instead of trying to use the slope-intercept “formula,” the second method will
use the definition of the slope directly. Namely, we will substitute the coordinates
for the given point (1,−2) along with the coordinates of a second unknown point
(x, y), along with the value of the slope, into the formula defining the slope

m =
y2 − y1
x2 − x1

. Namely, we label:

x1 y1 x2 y2
( 1 , −2 ), ( x , y ).

After substituting these values, we solve for y in terms of x:

−4 = (y)−(−2)
(x)−(1)

−4 = y+2
x−1

−4 · (x− 1) = y+2
x−1 · (x− 1)

−4x +4 = y + 2

−2
... −2

−4x +2 = y.

The answer is y = −4x+ 2.

Notice that in the key step to this method, multiplying both sides by (x− 1)
to “cancel” the denominator in the definition of the slope, we assumed that
x−1 6= 0. This is permitted since we were supposing (x, y) to be the coordinates
of a second point on the line different from (1,−2).

While Method 1 functions well, it is somewhat artificial in that we are using
a “formula” that doesn’t match the data we are given. That is why Method 1
is a two-step method.

Method 2, on the other hand, used exactly the information we were given:
the slope and the coordinates of any one point on the line. Because it applies
in the more general setting, we summarize from Method 2 a “formula” for an
equation of the line passing through a given point with a given slope.
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The point-slope form of a linear equation in two variables

An equation for the line with slope m and passing through the point with
coordinates (x0, y0) is given by

y − y0 = m(x− x0).

This is known as the point-slope form of a line. As indicated in Method 2
of the last example, it derives from the definition of the slope, where we have
incorporated the step of “canceling the denominator” into the formula.

Unlike the slope-intercept form of a line, which is useful because we can
“read off” geometric data from the equation, the point-slope form of a line is
almost exclusively used as a “formula” to find an equation for a line, where
values of m, x0 and y0 are substituted to obtain an equation involving x and y.

In the remaining examples, we will use the point-slope form of the line to
find an equation for the given line.

Example 5.2.11. Find an equation for the line passing through the points with
coordinates (4, 1) and (−2, 5).

Answer. Unlike the previous examples in this section, this time we are not
given the slope. Fortunately, since we have the coordinates of two points on the
line, we can use the definition to find the slope.

Step 1: Find the slope Labelling

x1 y1 x2 y2
( 4 , 1 ), ( −2 , 5 ),

we substitute into the definition:

m =
(5)− (1)

(−2)− (4)

=
4

−6

= −2

3
.

Step 2: Use the point-slope formula We now have m = −2/3. We
can choose the coordinates of either of the given points to use in the point-slope
formula; let’s use the first. Labeling,

x0 y0
( 4 , 1 ),
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we can substitute into the point-slope formula and solve for y in terms of x:

y − (1) = (− 2
3 )(x − (4))

y − 1 = (− 2
3 )(x − 4)

y − 1 = (− 2
3 )(x) − (− 2

3 )(4)

y − 1 = − 2
3x − (− 8

3 )

y − 1 = − 2
3x + 8

3

+ 1
... + 1

y = − 2
3x + 11

3 .

(Notice that solving for y in terms of x amounts to writing the answer in slope-
intercept form.)

Since this is the first example of its type, let’s verify that the result does
not depend on which of the two points we choose. If we had instead chosen the
second point, we would have obtained

x0 y0
( −2 , 5 ).

We can now substitute into the point-slope formula and solve for y in terms of
x:

y − (5) = (− 2
3 )(x − (−2))

y − 5 = (− 2
3 )(x + 2)

y − 5 =
(

− 2
3

)

(x) +
(

− 2
3

)

(2)

y − 5 = − 2
3x +

(

− 4
3

)

y − 5 = − 2
3x − 4

3

+ 5
... + 5

y = − 2
3x + 11

3 .

While the equation looked different immediately after substituting into the point-
slope formula, the slope-intercept form of the equation is the same.

The answer, in slope-intercept form, is y = −2

3
x+

11

3
.

The last two examples of this subsection will rely on the the following trans-
lation of geometric facts into the language of slopes. Recall that two lines in a
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plane are parallel if they have no point of intersection; two lines in a plane are
perpendicular if they intersect at right angles. These geometric definitions
can be translated (with some work) into algebraic facts by means of the slope.

Parallel and perpendicular lines described by slope

• Two lines are parallel if they have the same slopes.

• Two lines are perpendicular if the product of their slopes is −1.

In algebraic terms, suppose two lines have slopesm1 andm2. If the lines are
parallel, then m1 = m2. If the lines are perpendicular, then m2 = −1/m1

(where m1 6= 0). (It might be helpful to think of m2 = −1/m1 in words:
“m2 is the opposite of the reciprocal of m1.”)

Example 5.2.12. Find an equation for the line passing through the point with
coordinates (−3, 2) and which is parallel to the line x+ 6y = 1.

Answer. We are not given the slope of the line in question. However, we are
given the equation of a parallel line. Let’s find the slope of the parallel line, then
use the same slope for the line in question.

Step 1: Find the slope of the parallel line.

Since we are given an equation for the parallel line, let’s rewrite it in slope-
intercept form:

x + 6y = 1

−x
... −x

6y = −x + 1
6y
6 = −x+1

6

y = −x
6 + 1

6

y = − 1
6x + 1

6 .

The slope of the parallel line is −1/6.

Step 2: Use the point-slope formula.

We will substitute m = −1/6 (using the same slope as the parallel line)
and the coordinates of the given point

x0 y0
( −3 , 2 )
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into the point-slope formula, and solve for y in terms of x.

y − (2) = (− 1
6 )(x − (−3))

y − 2 = (− 1
6 )(x + 3)

y − 2 =
(

− 1
6

)

(x) +
(

− 1
6

)

(3)

y − 2 = − 1
6x +

(

− 3
6

)

y − 2 = − 1
6x − 1

2

+ 2
... + 2

y = − 1
6x + 3

2 .

The answer, in slope-intercept form, is y = −1

6
x+

3

2
.

Example 5.2.13. Find an equation for the line passing through the point with
coordinates (3, 5) which is perpendicular to the line 3x− 2y = 12.

Answer. Again, we are not given the slope of the line in question.

Step 1: Find the slope of the perpendicular line.

We rewrite the equation of the perpendicular line in slope-intercept form:

3x − 2y = 12

−3x
... −3x

−2y = −3x + 12
−2y
−2 = −3x+12

−2

y = −3x
−2 + 12

−2

y = 3
2x − 6.

The slope of the perpendicular line is 3/2.

Step 2: Use the point-slope formula.

For the slope of the line in question, we will use the opposite of the recip-

rocal of the slope of the perpendicular line: we will substitute m = −2/3 along
with and the coordinates of the given point

x0 y0
( 3 , 5 )
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into the point-slope formula:

y − (5) = (− 2
3 )(x − (3))

y − 5 = (− 2
3 )(x − 3)

y − 5 =
(

− 2
3

)

(x) −
(

− 2
3

)

(3)

y − 5 = − 2
3x −

(

− 6
3

)

y − 5 = − 2
3x + 2

+ 5
... + 5

y = − 2
3x + 7.

The answer, in slope-intercept form, is y = −2

3
x+ 7.

Notice that in none of the examples in this section were we asked to graph
the lines in question. Having done the work of writing their equations in slope-
intercept form, however, doing so would have not been much extra effort.

5.2.3 Special cases: Horizontal and vertical lines

In the beginning of our discussion of linear equations in two variables, we men-
tioned that such an equation (in variables x and y) could always be written in
the form Ax + By = C, where A, B, and C are constants. We did not specify
that these constants were not 0 (although if they are both 0, the equation is no
longer a linear equation!). In the case that either A or B is zero, the correspond-
ing term is “missing,” and it appears that the equation has only one variable.
However, the context determines whether we should consider the equation in a
one-variable setting or a two-variable setting.

Let’s start with the case of horizontal lines. When we first introduced the
slope concept, we specified that horizontal lines should have slope 0.

Example 5.2.14. Find an equation of the horizontal line with slope 0 and
passing through the point with coordinates (−3,−7).

Answer. We have been given exactly the information needed to use the point-
slope formula. So we will substitute and solve for y in terms of x.

y − y0 = m(x − x0)
y − (−7) = (0)(x − (−3))
y + 7 = (0)(x + 3)
y + 7 = 0

− 7
... −7

y = −7.
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The answer is y = −7. Notice that although the example was clearly stated
in the setting of two variables (an ordered pair was given!), only one variable
appears in the equation describing the line.

Let’s consider the equation y = −7 from the previous example more carefully.
A solution to this equation, which in this context will be an ordered pair (x, y),
must make the equation y = −7 after substituting its coordinates into the
equation. However, there is no place to substitute x-values. In other words, the
equation y = −7 imposes no restrictions at all on x! A table might look like:

x y Solution

0 −7 (1,−7)

−4 −7 (−4,−7)

29 −7 (29,−7)

−0.717 −7 (−0.717,−7)

3 −7 (3,−7)

Whatever x value we choose, the equation requires that the y-coordinate be −7.

Turning our attention to vertical lines, we immediately run into the problem
that a vertical line does not have a slope (roughly speaking, the slope of a
vertical line is “infinite”). Because of this, our strategy of relying on the point-
slope formula would lead nowhere.

However, our discussion of a table of values for solutions to an equation in
two variables with one variable missing still applies.

Example 5.2.15. Graph the equation x = −1 in an xy-plane.

Answer. We will make a table to find solutions. Since the equation x = −1
does not involve the variable y, we will be free to choose any value of for y.
However, the only x-value that will make the equation true will be −1. One
possible table might be:

x y Solution

−1 0 (−1, 0)

−1 −2 (−1,−2)

−1 1 (−1, 1)

Plotting these three solutions and drawing the line through them, we obtain
Figure 5.13.

Notice that the line given by the equation x = −1 is a vertical line.

There are some obvious patterns in the previous two examples, which we
can summarize as follows:
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x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

•

•

•

(−1, 0)

(−1,−2)

(−1,−1)

Figure 5.13: All solutions to x = −1.

Horizontal and vertical lines

• An equation for a horizontal line passing through the point with co-
ordinates (a, b) is y = b.

• An equation for a vertical line passing through the point with coor-
dinates (a, b) is x = a.

For future reference, it is worth remembering two special cases of this pattern
in an xy-plane:

• An equation for the x-axis is y = 0.

• An equation for the y-axis is x = 0.

5.2.4 Exercises

1. Find the slope of the lines in an xy-plane described by the following in-
formation:

(a) Passing through the points (−2, 4) and (1,−2).

(b) Passing through the points (0,−3) and (4, 5).

(c) Passing through the points (−1, 4) and (−1,−2).

(d) Having equation x− 3y = 4.
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(e) Having equation 2x+ 3y = −6.

(f) Having equation 5x− y = 2.

(g) Having equation y = 2x− 1.

(h) Having equation y =
1

3
x− 2.

(i) Having equation y = −3

4
x+ 1.

(j) Having equation y = 4.

(k) Having equation y = −x

2. Find the slope and y-intercept of the line given by the equation y = −3

4
x+ 1.

3. Find the slope and y-intercept of the line given by the equation 5x−y = 2.

4. Find an equation of the line having slope 3/4 and passing through the
point (3,−2).

5. Find an equation of the line passing through the points (2,−1) and (5, 1).

6. Find an equation of the line passing through the point (4,−2) and parallel
to the line given by 3x− 4y = 6.

7. Find an equation of the line passing through the point (1, 0) and perpen-
dicular to the line given by x+ 4y = 2.

The following exercises give an alternate method to approach problems of
the type in Examples 5.2.12 and 5.2.13.

8. (*) Show that for any values of A, B, C1, C2, (A 6= 0) the line described by
the equations Ax+By = C1 is parallel to the line described by Ax+By =
C2.

9. Use the result of the previous exercise to find an equation of the line
parallel to 3x + 5y = 8 and passing through the point with coordinates
(2,−3).

10. (*) Show that for any values of A, B, C1, C2, (A,B 6= 0) the line described
by the equations Ax+By = C1 is perpendicular to the line described by
−Bx+Ay = C2.

11. Use the result of the previous exercise to find an equation of the line per-
pendicular to −x+5y = 7 and passing through the point with coordinates
(−1, 5).
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5.3 Solving linear inequalities in two variables

We will approach linear inequalities in two variables in the same way as we
approached linear inequalities in one variable. The reader should review Section
4.4.2 on one-variable inequalities briefly before proceeding; just like in that
section, we will outline two approaches to solving two-variable inequalities.

As we have seen, a solution to a linear inequality in two variables is a value
for each of the two variables which, when substituted into the inequality, make
the inequality true. As in the case of linear equations in two variables, we will
represent a solution with an ordered pair.

Let’s look at an example: x+ y < 3. Given any ordered pair, we can test to
see whether or not it is a solution by substituting and evaluating. For example,
(3, 4) is not a solution since (3) + (4) < 3 is false. On the other hand, (0, 1) is a
solution, since (0) + (1) < 3 is true. You should check that (−1, 1), (2,−3) and
(0, 0) are also solutions to x + y < 3, while (3, 3) and (1, 2) are not solutions.
After checking these ordered pairs, it is not hard to believe that the inequality
has infinitely many solutions—as well as infinitely many ordered pairs which are
not solutions.

As usual in the case when we have infinitely many solutions, we will attempt
to draw a graph to represent all the solutions. However, plotting the solutions
(and non-solutions) to the inequality x + y < 3 shows that coming up with a
“pattern” will take a little more thought, see Figure 5.14.
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◦

◦

◦

Figure 5.14: Four solutions (•) and three non-solutions (◦) to x+ y < 3.

The key to seeing a pattern here is to take a step back and remember that
solutions to a linear equation all lie on a line. Points not on the line do not
represent solutions to the linear equation—or, equivalently, represent solutions
to a linear inequality. In other words, if an ordered pair (a, b) is not a solution
to the equation Ax+By = C (and so the corresponding point is not on the line
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given by Ax+By = C), then the ordered pair (a, b) is a solution to Ax+By 6= C.

Now there are two ways that the inequality Ax+By 6= C can be true: either
Ax + By < C is true, or Ax + By > C is true. It is an important fact about
an xy-plane that all points representing solutions to Ax + By < C lie on the
same side of the line Ax+ By = C in an xy-plane, and all points representing
solutions to Ax + By > C lie on the other side of the same line. Figure 5.15
is the same as Figure 5.14, except with the “border” line x + y = 3 indicated.
(Notice that the ordered pair (1, 2), which is not a solution to x + y < 3, is
represented by a point on the border line described by x+ y = 3.)
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◦
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◦

Figure 5.15: Solutions (•) and non-solutions (◦) to x+ y < 3, with border line
x+ y = 3.

We can summarize the above discussion as follows: The graph of all solutions
to a typical linear inequality in two variables will consist of all points on one
side of a line in an xy-plane. The border line will not (or will) be included
depending on whether the inequality is strict (or not).

Our strategy to solve a linear inequality in two variables will then be the
following:
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General strategy to solve linear inequalities in two variables

To solve a linear inequality in two variables:

1. Draw the border line. Use a dotted line for strict inequalities (so
that points on the border line do not represent solutions) or a solid
line for non-strict inequalities (so that the border points do represent
solutions).

2. Shade the side of the border line that consists of solutions.

As in Section 4.4.2, we will discuss two methods to decide which side of the
border line to shade.

Method 1: Test point method

The idea of this method is to choose any point in the xy-plane not on the
border line. Test whether the chosen point represents a solution to the inequality.
If it does represent a solution, shade all points on the same side of the border
line as the test point. If it does not, shade all points on the opposite side of the
border line.

We will give three examples using this method.

Example 5.3.1. Graph the solutions of x− 3y < 6.

Answer. The first step is to graph the border line represented by x − 3y = 6;
notice that we will draw the border as a dotted line since the inequality is strict
(and the points on the border do not represent solutions to the inequality). To
do that, we can use either of our methods for graphing linear equations. We list
here a possible table of values to find two solutions:

x y Solution

0 −2 (0,−2)

6 0 (6, 0)

Now we choose a test point to determine which side of the border line to
shade. Let’s choose one with coordinates (1, 1). To test it, we substitute these
coordinates into the original inequality x− 3y < 6:

(1) − 3(1) < 6
1 − 3 < 6

−2 < 6.

The inequality is true, and so (1, 1) is a solution. We shade all points on
the same side of the border line as the one representing (1, 1) to represent all
solutions of x− 3y < 6. See Figure 5.16.
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Figure 5.16: All solutions of x− 3y < 6.

Example 5.3.2. Graph the solutions of 2x+ 5y ≥ 10.

Answer. We first graph the border line represented by 2x + 5y = 10; we will
draw the line as a solid line since the inequality is non-strict, and so points on
the border do represent solutions to the inequality. In order to graph the border
line, we might use the following table of values:

x y Solution

0 2 (0, 2)

5 0 (5, 0)

Now we choose a test point; this time let’s choose the origin, with coordinates
(0, 0). Substituting these coordinates into the original inequality 2x+ 5y ≥ 10,

2(0) + 5(0) ≥ 10
0 + 0 ≥ 10

0 ≥ 10.

The inequality is false; (0, 0) is not a solution to 2x + 5y ≥ 10. We shade
all points on the opposite side of the border line as the origin to represent all
solutions of 2x+ 5y ≥ 10. See Figure 5.17.

Example 5.3.3. Graph all solutions of y < −1

3
x+ 1.

Answer. First, as always, we graph the border line represented by y = −1

3
x+ 1.

We will draw it using a dashed line since the inequality is strict. This time, since
the equation is written in slope-intercept form, we see that the y-intercept has
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Test point (0, 0)

Figure 5.17: All solutions of 2x+ 5y ≥ 10.

coordinates (0, 1). A second solution can be obtained by “moving” down one
unit and to the right three units to give (3, 0).

Now we choose a test point; since zero is a nice number to work with let’s
choose the origin with coordinates (0, 0) again. To decide whether it is a solution,

we substitute into y < −1

3
x+ 1:

(0) < − 1
3 (0) + 1

0 < 0 + 1
0 < 1.

The inequality is true; (0, 0) is a solution of y < −1

3
x+ 1. We will shade all

points on the same side of the border line as the origin (0, 0). See Figure 5.18.

Method 2: Standard form method

Many students look at a few examples of linear inequalities and try to find
patterns, or “shortcuts,” to the test point method. “Wouldn’t it be great,”
someone might say, “if every ‘less than’ inequality had a graph shaded below
the border line! Then I don’t have to waste my time with test points.” However,
look back at Examples 5.3.1 and 5.3.3; if there is a pattern, it is not so simple.
In fact, since the an inequality can be written in so many equivalent forms, there
is really no hope for an easy “shortcut.”

However, if we make the effort of writing the inequality in a standard form,
it is possible to make “rules” for which side of the border line to shade. Here is
an example of such rules:



5.3. SOLVING LINEAR INEQUALITIES IN TWO VARIABLES 121

x

y

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−5

−4

−3

−2

−1

0

1

2

3

4

5

•

•

•
Test point (0, 0)

Figure 5.18: All solutions of y < −1

3
x+ 1.

1. The points representing solutions to a linear inequality of the form
y < mx + b (or y ≤ mx + b) lie below the border line given by
y = mx+ b.

2. The points representing solutions to a linear inequality of the form
y > mx + b (or y ≥ mx + b) lie above the border line given by
y = mx+ b.

Notice what is “standard” about this standard form: The y variable is by
itself on the left side of the inequality. As with linear equalities in one variable,
where the standard form consisted of having the x variable by itself on the left
side of the inequality, if the inequality is not in standard form, we can use our
basic addition and multiplication principals to rewrite the inequality in standard
form. Keep in mind that as always, multiplying or dividing both sides of an
inequality by a negative quantity requires changing the sense of the inequality.

Example 5.3.3 already gave an example of these standard form rules, since
in that example the y variable was already by itself on the left side. Notice
in Figure 5.18 that the shaded region is below the border line, as the rules for
standard form dictate for the inequality <.

Here are two more examples illustrating the standard form method for graph-
ing linear inequalities in two variables.
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Example 5.3.4. Graph the solutions of 3x+ 4y ≥ 12.

Answer. In this case, the inequality is not in our standard form. We solve for
y:

3x + 4y ≥ 12

−3x
... −3x

4y ≥ −3x + 12
4y
4 ≥ −3x+12

4

y ≥ −3x
4 + 12

4
y ≥ − 3

4x + 3.

Notice that at no point did we divide by a negative number; the sense of the
inequality ≥ does not change.

One advantage of the standard form we have chosen is that the equation

of the border line y = −3

4
x+ 3 is in slope-intercept form. The y-intercept has

coordinates (0, 3) and the slope is −3

4
, so the coordinates of a second point on

the line is obtained by “moving” down three units and to the right four units
from (0, 3), giving (4, 0). We draw the border line with a solid line since the
inequality ≥ is not strict.

Since the inequality in standard form is ≥, we will shade above the border
line. See Figure 5.19.
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Figure 5.19: All solutions of 3x+ 4y ≥ 12.

Example 5.3.5. Graph the solutions of 4x− 2y > 5.
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Answer. We will first write the inequality in standard form:

4x − 2y > 5

−4x
... −4x

−2y > −4x + 5
−2y
−2 < −4x+5

−2

y < −4x
−2 + 5

−2

y < 2x − 5
2 .

This time, when we divided by −2 on the fourth line, the sense of the inequality
changes from > to <.

The border line, represented by y = 2x− 5

2
, has y-intercept

(

0,−5

2

)

and

slope m = 2 =
2

1
. We can obtain a second point by starting from

(

0,−5

2

)

and

“moving” up 2 units and to the right 1 unit to give

(

1,−1

2

)

. (Notice that

−5/2 = −2.5) We will draw the border line with a dashed line since the original
inequality > is strict.

Even though the original inequality was >, in standard form the inequality
changed to < (when we divided by a negative number). For that reason, we will
shade below the border line. See Figure 5.20.

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5
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0

1

2

3

4

5

6

7

8

•

•

(1,−0.5)

(0,−2.5)

Figure 5.20: All solutions of 4x− 2y > 5.
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5.3.1 Exercises

Solve the following linear inequalities in two variables. In each case, graph all
solutions and list five individual solutions.

1. −x− y > 6

2. 2x+ 5y ≤ 10

3. 3x− 2y ≥ 12

4. −4x+ y > 4

5. y ≥ −1

2
x+ 4

6. y < 1
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5.4 Solving systems of linear equations

A system of equations represents a situation where a solution must make all
of several equations true, as opposed to just one equation. In this section we
will consider only systems of two linear equations in two unknowns. A solution
to such a system will be an ordered pair which, when substituted, makes both
equations true.

For example, the following is a typical system of linear equations:

{

2x + 5y = 13 ⊚

x − 2y = 2 ⊛
(5.1)

There are a few things to notice about our notation in writing systems of
linear equations:

• The system is indicated by the symbol {. This indicates that a solution
must make both equations true. (Caution: Not every text uses this sym-
bol.)

• We write both equations is the general form Ax + By = C, where all
variable terms are on the left side of the equations and all constant terms
are on the right side. (If an equation is not written in this form, it can be
rewritten as an equivalent one in the general form by using the addition
principle.)

• We have written the equations so that like terms are in the same “column,”
with x-terms written above x-terms and y-terms written above y-terms.

• We use the symbols ⊚ and ⊛ to represent the two equations. For example,
in this case, “Equation ⊚,” or just ⊚, will refer to the equation 2x+5y =
13.

Let’s look at some potential solutions for System (5.1). The reader should
check the validity of the statements below:

• (9,−1) is a solution to Equation ⊚, but (9,−1) is not a solution to Equa-
tion ⊛. So (9,−1) IS NOT a solution to System (5.1).

• (6, 2) is a NOT solution to Equation ⊚, but (6, 2) is a solution to Equation
⊛. So (6, 2) IS NOT a solution to System (5.1).

• (4, 1) is a solution to Equation ⊚, and (4, 1) is not a solution to Equation
⊛. So (4, 1) IS a solution to System (5.1).

• (0, 0) is a not solution to Equation ⊚, and (0, 0) is not a solution to
Equation ⊛. So (0, 0) IS NOT a solution to System (5.1).

The preceding paragraph should convince the reader that to find solutions
to a system of equations, it is not enough to solve the two equations separately.
At this point, we found one solution to System (5.1), but we can’t be sure that
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it is the only solution. To do that, we need a method to solve systems of linear
equations.

Before discussing a general method, we can again let geometry give us a guide
as to what to expect. We know, for example, that Equation ⊚ has infinitely
many solutions, which form a line when plotted in an xy-plane. We also know
that Equation ⊛ also has infinitely many solutions, which form a different line
when plotted in an xy-plane. So, if we graph both equations in the same xy-
plane, a point will represent a solution to both equations if it lies on both
lines—in other words, if it is a point of intersection of the two lines. But we
know from elementary geometry that two non-parallel lines have exactly one
point of intersection. So we have the following conclusion:

A typical system of two linear equations in two variables will have exactly
one solution. The solution, when plotted on an xy-plane, represents the
point of intersection of the lines represented by the two equations.

In fact, this discussion already gives one method to solve a system of linear
equations: Graph both equations on the same xy-plane, and the solution will
be the coordinates of the point of intersection. However, this method requires
a high degree of accuracy in plotting, and we will not generally rely on this
method to solve systems of linear equations.

There is another, more algebraic way to solve systems of linear equations.
Beginning with one of the equations, we could solve for one of the variables, say
y, in terms of the other variable x. Then we could substitute this expression
for y in terms of x into the second equation to obtain a new equation in just
one variable x. This new linear equation (in one variable) will typically have
one solution. Substituting this solution into the first equation (for y in terms
of x) will give a corresponding value of y. The solution will be an ordered pair
consisting of the solutions for x and y.

The method in the preceding paragraph is sometimes known (for obvious
reasons) as the substitution method. Despite the fact this method applies to
a wide variety of systems beyond those that we are considering here, we will
not pursue this method any further. In many situations it requires detailed
calculations with fractions, which as it turns out can be avoided in most cases
we will encounter.

Solving systems of linear equations: Elimination method

We are going to outline a method for solving systems of two linear equations in
two variables x and y, both of which have integer coefficients for both variables
(this can always be arranged using the method of Section 4.2.4). We will arrive
at the method by considering several examples, from simpler to more general.

Example 5.4.1. Solve:

{

x + y = 4 ⊚

x − y = 1 ⊛
(5.2)
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Answer. Looking at System (5.2), we can notice that the y-terms have a special
form in Equations ⊚ and ⊛: they are “opposites,” in the sense that their coef-
ficients (1 and −1) have the same magnitude but opposite sign. Let’s apply the
addition principle, which as a reminder states that we can add the same quantity
to both sides of an equation without changing the solutions. For a solution to
Equation ⊛, both sides are equal, so we will “add Equation ⊛ to Equation ⊚,”
meaning add the left sides and right sides of the equations.

Eliminate y:

x + y = 4 ⊚

x − y = 1 ⊛

2x = 5 ⊚+⊛

Notice that the new equation, which we denote ⊚+⊛, is an equation in one
variable, with solution 5/2. We have learned so far that if (x, y) is a solution to
System (5.2), then x must have the value 5/2.

What is the corresponding y-value for the solution? One way to find this
would be to substitute the x-value 5/2 into either Equation ⊚ or ⊛ to obtain a
new equation in one variable y and then solve. However, let’s stay in the spirit
of “elimination.”

The preceding step of eliminating y worked so well because the original co-
efficients of y were so nice. If we wanted to eliminate x, adding the equations
directly does not work, as we just saw. While the coefficients of x, which are
both 1, do have the same magnitude, they have the same sign, and so are not
“opposites.”

But why not, instead of adding the two equations, subtract them—or, what
is the same, add the opposite of Equation ⊛ to Equation ⊚?

Eliminate x:

x + y = 4 ⊚

−x + y = −1 ⊛ × (−1)
2y = 3 ⊚ − ⊛

Notice that we multiplied every term on both sides of Equation ⊛ by −1.
We represent this with the notation ⊛× (−1).

So after adding to obtain ⊚ − ⊛ (which is the same as ⊚ + (−1) × ⊛), we
obtain the equation in one variable 2y = 3, which has solution 3/2. This tells
us that if (x, y) is a solution to System (5.2), then y must have the value 3/2.

From our preceding discussion, we expect that System (5.2) has one solution.
We conclude:

The solution to System (5.2) is

(

5

2
,
3

2

)

.

It is worth pointing out from this first example that we did encounter frac-
tions in our solution, even though the system involved equations without frac-
tional coefficients. This is completely normal. However, we did not encounter
fractions until the very last step of each elimination, and in fact, we never
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had to perform operations with these fractions. As we will see, this is typical
for systems with integer coefficients and a major advantage of the elimination
method.

From our first example, we can already see the outlines of the elimination
method: Combine the two equations in such a way that one of the variables
is “eliminated” in order to find a value for the other variable. Then repeat
the process, eliminating the other variable to find the value for the remaining
unknown. The solution is the ordered pair formed by the two values obtained
in this way.

What remains to investigate is exactly how to combine the equations in such
a way that one variable is always eliminated. The next example is a step in that
direction.

Example 5.4.2. Solve:

{

3x + y = 9 ⊚

x − 2y = −6 ⊛
(5.3)

Answer. In this example, unfortunately, the coefficients of neither variable are
“opposites.” In fact, neither adding nor subtracting the equations will eliminate
either of the variables this time.

However, we don’t give up hope. Notice that even though the coefficients of
y are not opposites, at least they have opposite signs! If there was only a way
to change the equations in such a way that the magnitudes were equal...

Actually, the notation we used in the first example already had the clue to
a way around this problem. If we multiply both sides of Equation ⊚ by 2, then
the new y term will be opposite that of the y-term in Equation ⊛; adding the
resulting equations will eliminate y!

Eliminate y:

6x + 2y = 18 ⊚ × 2
x − 2y = −6 ⊛

7x = 12 2×⊚ + ⊛

After eliminating y, we obtain an equation in just one variable (x) whose
solution is 12/7. The conclusion is that if (x, y) is a solution to System (5.3),
then x must be 12/7.

Turning now to the y-coordinate of the solution, we want to eliminate x.
This time, the coefficients of x not only have different magnitudes (1 and 3),
but they have the same sign. They are far from being opposites. A little thought,
though, can convince us that again, we already have the idea of how to cope with
this: why not multiply Equation ⊛ by the negative number −3. That way, the
resulting coefficients of x will have the same magnitudes but opposite signs:
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Eliminate x:

3x + y = 9 ⊚

−3x + 6y = 18 ⊛× (−3)
7y = 27 ⊚ + (−3)×⊛

In the resulting equation ⊚ + (−3) × ⊛, we have eliminated x to obtain an
equation in one variable y with solution 27/7.

The solution to System (5.3) is
(

12

7
,
27

7

)

.

One thing should be clear from these examples so far: Be careful of signs
when multiplying both sides by a negative number!

Example 5.4.3. Solve:
{

2x + 5y = 13 ⊚

x − 2y = 2 ⊛
(5.4)

Answer. This is the example that we used in the opening of the section (System
(5.1). We already saw the solution at that time, when we were checking if
various ordered pairs were solutions. Now we will apply the elimination method
to actually find the solution “from scratch.”

In looking at the system, we see that we can eliminate x exactly as in the
previous example. We will multiply Equation ⊛ by −2 (notice that the coeffi-
cients of x initially have the same sign, so we need to multiply by a negative
number in order to make the resulting coefficients “opposite.”

Eliminate x:

2x + 5y = 13 ⊚

−2x + 4y = −4 ⊛× (−2)
9y = 9 ⊚ + (−2)×⊛

The equation 9y = 9 has 1 as a solution, so the y-coordinate of the solution
to System (5.4) is 1.

When we turn to eliminating y, we encounter a new problem. The good news
is that the coefficients of y (5 and −2) have opposite signs. But there is no way
to multiply just one of the equations by an integer to make the coefficients of y
“opposites,” as we need to eliminate y.

It turns out that the way around this difficulty is not hard: we will use the
multiplication principle on both equations. First, we find a common multiple
of the magnitudes 2 and 5. That is, we find an integer that both 2 and 5 divide
evenly. The least common multiple of 2 and 5 is 10. (The reader might notice
that finding a common multiple of 2 and 5 is exactly the same mental process as
finding a common denominator4 for two fractions with denominators 2 and 5.)

4In fact, a common denominator is just a common multiple of the denominators.
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Once the common multiple 10 is found, we will multiply both equations by a
number so that the magnitude of the coefficient of y is 10. That is, in this case,
we will multiply Equation ⊚ by 2 and Equation ⊛ by 5.

Eliminate y:

4x + 10y = 26 ⊚ × 2
5x − 10y = 10 ⊛ × 5
9x = 36 2×⊚ + 5×⊛

The resulting equation 9x = 36 has 4 as a solution, so the x-coordinate of
the solution to System (5.4) is 4.

Putting this together with the result of the previous elimination step, we find
that the solution to System (5.4) is (4, 1).

With the three preceding examples as guides, we can write down a general
method that describes the “elimination” that is at the heart of the elimination
method.

In order to eliminate a variable from a system of linear equations:

• Find a common multiple of the magnitudes of the coefficients of the
variable to be eliminated;

• If the coefficients of the desired variable originally had different signs,
multiply each equation by a positive number so that the magnitude
of the coefficients of the desired variable in the resulting equations is
the common multiple;

• If the coefficients of the desired variable originally had the same sign,
multiply one equation by a positive number and one equation by
a negative number so that the magnitude of the coefficients of the
desired variable is the common multiple.

After these preparations, adding the resulting equations will result in a new
equation that does not involve the variable to be eliminated.

The next example illustrates the general method.

Example 5.4.4. Solve:

{

6x + 4y = 16 ⊚

9x − 5y = 7 ⊛
(5.5)

Answer. To eliminate x, we see that the least common multiple of the coeffi-
cients of x (6 and 9) is 18. Since the signs of the coefficients are the same, we
will multiply one equation (say Equation ⊛) by a negative number. Specifically,
we will multiply Equation ⊚ by 3 and Equation ⊛ by −2:
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Eliminate x:

18x + 12y = 48 ⊚× 3
−18x + 10y = −14 ⊛× (−2)

22y = 34 3×⊚ + (−2)×⊛

The solution to the resulting equation 22y = 34 is 17/11 (after reducing), so
the y-coordinate of the solution to System (5.5) is 17/11

Now to eliminate y, we see that the least common multiple of the magnitudes
of the coefficients of y in System (5.5) (4 and −5) is 20. Since the signs of
the coefficients are already different, we will multiply both equations by positive
numbers to achieve the common multiple. Specifically, we will multiply Equation
⊚ by 5 and Equation ⊛ by 4:

Eliminate y:

30x + 20y = 80 ⊚× 5
36x − 20y = 28 ⊛× 4
66x = 108 5×⊚ + 4×⊛

The solution to the equation 66x = 108 is 18/11 (after reducing), so the
x-coordinate of the solution to System (5.5) is 18/11.

Together with the first elimination step, we see that the solution to System
(5.5) is

(

18

11
,
17

11

)

.

5.4.1 Systems that do not have exactly one solution

By thinking of a system of two linear equations in two unknowns graphically,
we came to the conclusion that a “typical” such system will have exactly one
solution, just like a “typical” linear equation in one variable will have exactly
one solution. However, keeping in mind Section 4.2.3, we might expect that not
every system is “typical.”

To see what might go wrong, consider following example.

Example 5.4.5. Solve:

{

x + 2y = 9 ⊚

3x + 6y = 10 ⊛
(5.6)

Answer. We will apply our elimination method, as usual.

To eliminate x, we see that the least common multiple of the coefficients of x
(1 and 3) is 3. The signs of the coefficients are the same, so we will multiply one
equation (say Equation ⊚) by a negative number. Specifically, we will multiply
Equation ⊚ by −3 and Equation ⊛ by 1:
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Eliminate x:

−3x − 6y = −27 ⊚× (−3)
3x + 6y = 10 ⊛× 1

0 = −17 (−3)×⊚ + ⊛

Although we were aiming to eliminate x, both variables were eliminated in
the resulting equation!

As in Section 4.2.3, the question in such cases is whether the new equation
is true or false.

Since the equation 0 = −17 is false, System (5.6) has no solution.

What went “wrong” in the previous example? Why did our elimination pro-
cedure end up eliminating both variables, instead of the ”typical” one variable
at a time?

To investigate Example 5.2.12 more closely, let’s rewrite both equations in
slope-intercept form. Solving Equation ⊚ for y gives:

x + 2y = 9

−x
... −x

2y = −x + 9
2y
2 = −x+9

2

y = −x
2 + 9

2

y = − 1
2x + 9

2 .

We see that the slope of the line given by Equation ⊚ is −1/2 and the y-intercept
is (0, 9/2).

Turning to Equation ⊛, we solve for y:

3x + 6y = 10

−3x
... −3x

6y = −3x + 10
6y
6 = −3x+10

6

y = −3x
6 + 10

6

y = − 1
2x + 5

3 .

The slope of the line given by Equation ⊛ is −1/2 and the y-intercept is (0, 5/3).
Comparing, we see that the two lines represented by Equations ⊚ and ⊛

have the same slope, but different y-intercepts. In other words, the Equations
represent parallel lines!

In fact, this shouldn’t be a big surprise. Our geometric thinking that led us
to the conclusion that the typical system of two linear equations in two variables
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had a single solution was that two different lines in a plane typically intersect
in one point—except when the two lines are parallel, in which case they have
no point of intersection.

Keeping in mind that we saw two “unusual” situations in Section 4.2.3, let’s
look at one last example.

Example 5.4.6. Solve:

{

2x − y = 5 ⊚

4x − 2y = 10 ⊛
(5.7)

Answer. Let’s eliminate x first.The least common multiple of the coefficients
of x (2 and 4) is 4. The signs of the coefficients are the same, so we will
multiply one equation (say Equation ⊚) by a negative number. Specifically, we
will multiply Equation ⊚ by −2 and Equation ⊛ by 1:

Eliminate x:

−4x + 2y = −10 ⊚× (−2)
4x + 2y = 10 ⊛× 1

0 = 0 (−2)×⊚ + ⊛

Again, we have eliminated both variables. This time, though, the resulting
equation is true.

In the one-variable situation in Section 4.2.3, this would have led us to con-
clude that all real numbers were solutions. However, in this case, not every
ordered pair is a solution. For example, the reader can check that (0, 0) is not
a solution to System (5.7).

To understand what the resulting true equation is telling us, let’s again
rewrite the equations in slope-intercept form to see what some geometry can
tell us.

Solving Equation ⊚ for y gives:

2x − y = 5

−2x
... −2x

−y = −2x + 5
−y
−1 = −2x+5

−1

y = −2x
−1 + 5

−1

y = 2x − 5.

The slope of the line given by Equation ⊚ is 2 and the y-intercept is (0,−5).
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Solving Equation ⊛ for y gives:

4x − 2y = 10

−4x
... −4x

−2y = −4x + 10
−2y
−2 = −4x+10

−2

y = −4x
−2 + 10

−2

y = 2x − 5.

The slope of the line given by Equation ⊛ is 2 and the y-intercept is (0,−5).

Notice that the two equations represent lines with the same slope and the
same y-intercept—they actually represent the same line.

In other words, System (5.7) has infinitely many solutions, all of which are
represented by the points on the line given by either Equation ⊚ or Equation ⊛.
We could graph the solutions: See Figure 5.21.

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−6

−5

−4

−3

−2

−1

0

1

2

3

4

•

•

(0,−5)

(1,−3)

Figure 5.21: All solutions of

{

2x − y = 5
4x − 2y = 10

The unusual cases in this section are detected using the elimination method
when both variables are eliminated. We can summarize our results as follows:
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Suppose that, in using the elimination method to solve a system of two
linear equations in two unknowns, an equation results which involves neither
of the two variables.

• If the resulting equation is false, the system has no solution. The
lines represented by the two equations are parallel lines.

• If the resulting equation is true, the system has infinitely many solu-
tions, represented by the points on the graph of either equation. The
lines represented by the two equations are the same.

5.4.2 Exercises

Solve the following systems of linear equations.

1.

{

x− y = 8

2x+ y = 1

2.

{

3x− 2y = −1

2x+ y = −3

3.

{

x− 2y = 4

5x+ 6y = 3

4.

{

2x− 3y = 6

x+ 4y = 8

5.

{

3x+ 2y = 4

−x+ 5y = 10

6.

{

4x− y = 6

2x+ 3y = 8

7.

{−2x+ y = 5

4x− 2y = 8

8.

{y = 2x− 5

y =
x+ 4

2
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5.5 Chapter summary

• A typical linear equation in two variables has infinitely many solutions.
When graphed on an xy-plane, the points corresponding to solutions of a
linear equation in two variables form a line.

• The most basic strategy to graph all solutions of a linear equation in two
variables is to plot two solutions, then draw the line passing through these
two.

• An alternate method to graph all solutions to a linear equation is to use
the slope of the line and the coordinates of one point on the line. This is
most useful when the equation is written in slope-intercept form.

• Given the slope of a line and the coordinates of one point on the line, the
point-slope form of a line gives a “formula” to write an equation of the
line.

• Linear inequalities in two variables typically have infinitely many solu-
tions. The points corresponding to these solutions in an xy-plane all lie
on the same half the xy-plane with border line given by the corresponding
linear equation.

• A typical system of two linear equations in two variables has one solution.
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Chapter 6

Polynomials

Vocabulary

• Term

• Polynomial

• Coefficient

• Degree of a term

• Degree of a polynomial

• Leading term

• Descending order

• Like terms

• Scientific notation

• Distributive law

6.1 Introduction to polynomials

Up to this point, we have been looking at algebra from the point of view of
solving equations and inequalities. Indeed, this is a major point of distinction
between arithmetic and algebra. In arithmetic, there is no such thing as a
conditional statement: every equation or inequality is either true or false. In
algebra, a typical equation or inequality may be true or false, depending on the
values of the variables involved. For that reason, the word “solve,” in the sense
of finding all solutions, only has meaning in the context of algebra.

There is another way of looking at algebra, however, that has nothing to
do with solving equations or inequalities. In this view, algebra is a kind of

139
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“arithmetic of symbols.” Variables, which up to this point have been treated as
unknown numbers, will be viewed as symbols which can themselves by added,
subtracted, multiplied or divided according to fixed rules. These rules should,
of course, correspond to the rules of arithmetic of numbers when values are
substituted for the variables. For instance, we would like the commutative
and associative laws of addition and multiplication to apply, and we would like
multiplication to distribute over addition.

We have already seen this arithmetic of symbols in the course of solving
linear equations when we “combined like terms.” In this chapter, we carry out
this symbolic arithmetic in a more general setting.

We will start by setting up the terminology that we will use throughout this
chapter.

Terms

A term is an algebraic expression which is not itself written as the sum (or
difference) of two or more expressions. It may involve products or quotients
of constants or variables.

An algebraic expression can be written as a sum of terms. In this case, a
term is a quantity which appears in an algebraic expression as part of a
sum (a “summand”).

Phrased differently, terms are expressions which are added.

For example, the algebraic expression

x2 + 4x+ 5

has three terms: x2, 4x, and 5. One might say that “terms are separated by
the addition symbol (+).”

From now on, it will be especially important to distinguish between subtrac-
tion and “adding the opposite.” For example, we will consider the expression

x3 − 3x2 − 5x− 4

as being
x3 + (−3x2) + (−5x) + (−4).

In particular, this expression has four terms (which are added): x3, −3x2, −5x
and −4.

A word of caution in our terminology. We will encounter more complicated
expressions like

(x− 3)(x2 + 5x+ 6).
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This expression has only one term! It is formed by two grouped expressions,
(x− 3) and (x2+5x+6), which are multiplied, not added. In a similar way, the
expression

(2x+ 3)(4x− 1) + (3x+ 2)(x− 5)

has two terms: the first term is (2x+ 3)(4x− 1) and the second term is
(3x + 2)(x − 5). The point is that terms can be quite complicated, but they
must appear as part of a sum.

A polynomial will be an algebraic expression having a particular form.

Polynomials in one variable

A polynomial in one variable (say x) is an algebraic expression, which can
be written in such a way that each of its terms has the form

axn,

where a represents any number and n represents a whole number.

(It is easy to make a definition for polynomials with more than one variable.
For example, a polynomial in two variables x and y should have terms of the
form axmyn, where both m and n are whole numbers.)

The most important feature of a polynomial is the exponent of the variable
part of each term. To say that the exponent must be a whole number means,
for instance, that the exponent cannot be negative, nor can it be fractional.

Here are some examples of polynomials:

• x2 − 6x− 7;

• 3x− 5

2
;

• t5 + 1;

• x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

Here are some examples of algebraic expressions that are not polynomials:

• 1

x
;

• x−2 (we will see what this means shortly);

• x+ 1

x2 − 3x+ 5
;

• √
x;
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• 2x + x2.

Exercise 6.1.1. For each of the examples listed above of algebraic expressions
which are not polynomials, identify what it is about them that prevents them
from being considered polynomials.

Notice that each term of a polynomial is formed by multiplying a “num-
ber part,” called the coefficient, with a “variable part.” The variable part is
completely described by the exponents of the variables involved.

Degree

For a polynomial in one variable, the degree of a term is the exponent of
the variable part of the term. The degree of a polynomial is the highest
degree of any of its terms.

Pay attention to the fact that this definition is really two definitions: the
degree of a term is (usually) different than the degree of the polynomial in which
it appears.

In the case of polynomials in more than one variable, the definition requires
a little more care. In that case, the degree of a term is defined to be the sum
of all the exponents having a variable base. So the degree of the term −5x2y
would be 3.

Notice that a polynomial of degree one corresponds to what we referred to
in the preceding chapter as linear.

Exercise 6.1.2. For each of the polynomials below, identify the terms. For
each term, identify the coefficient and the degree. Then determine the degree of
the polynomial.

(a) x2 − 6x− 7;

(b)
3x− 5

2
;

(c) t5 + 1;

(d) x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

A polynomial can be classified by the number of terms it involves. For
example, a monomial is a polynomial with one term, a binomial is a polynomial
with two terms, and a trinomial is a polynomial with three terms.

Normally, we will write a polynomial in descending order : terms with higher
degree will be written to the left of terms with lower degree. In case a polynomial
is not written in descending order, we will take the trouble to rewrite it by using
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the commutative law of addition, as the following example illustrates. The terms
with the highest degree is called the leading term.

Example 6.1.3. Write the polynomial 4x3 − 5x6 + 6 − 3x + x2 in descending
order.

Answer. The polynomial not written in descending order. For example, a de-
gree 3 terms (4x3) is written to the left of a degree 6 term (−5x6).

There are five terms: 4x3, −5x6, 6, −3x and x2. We arrange them in
descending order, from highest degree term (the degree 6 term) to the lowest
degree term (the degree 0 term).

Written additively, the polynomial is written

(−5x6) + (4x3) + (x2) + (−3x) + (6),

where we have used parentheses only to highlight the separate terms. More sim-
ply, the polynomial would be written in descending order as

−5x6 + 4x3 + x2 − 3x+ 6.

The above example emphasizes again the importance of the ability to inter-
change between subtracting and “adding the opposite.”

6.1.1 Exercises

Decide whether or not the following algebraic expressions are polynomials.

1. x100 − πx2

2. 6x− 18x3

3.
9x+ 2

4

4. x2 + x+ 3− 2
x2

5. 5x − 2x

For each of the following polynomials, (a) list the terms; (b) for each term,
identify the degree of the term and the coefficient of the term; (c) rewrite the
polynomial in descending order; and (d) identify the degree of the polynomial.

6. 3− x

7. 5 + x2 − 3x

8. 1− x+ x2 − x3 +
x4

2
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6.2 Adding and subtracting polynomials

With this introduction to the terminology of polynomials, we now proceed to
the “arithmetic of polynomials” that we discussed in the introduction. In other
words, we will combine two polynomials using the basic operations of addition,
subtraction, multiplication, and division, to obtain (most of the time!) a new
polynomial.

The key idea to understand how to add and subtract polynomials is the
idea of “like terms.” We have already seen this concept several times. We saw
it in the course of solving linear equations: we combined (meaning added or
subtracted) variable terms with variable terms and constant terms with constant
terms. We even saw the idea earlier: it is the reason why, when adding fractions,
that we need to have a common denominator.

The basic idea of combining like terms can be seen by looking at some simple
examples using whole number coefficients, where we can represent multiplication
as repeated addition. For example, 3x4 simply means x4 + x4 + x4. Thinking
in this way, we could represent the sum 3x4 + 2x4 as

(x4 + x4 + x4) + (x4 + x4),

which (by virtue of the associative law) is the same as x4 + x4 + x4 + x4 + x4,
or just 5x4.

The equation1 3x4 + 2x4 = 5x4 has another justification, which is better
suited to explaining a general rule. Applying the distributive law2,

3x4 + 2x4 = (3 + 2)x4 = 5x4.

The advantage of this way of looking at the sum is that it holds for any coeffi-
cients, not just for whole number coefficients.

Of course, both of the above approaches depended on the fact that both
terms being added were “x4-terms.” If we tried to apply either of the above
strategies to the sum 3x4+2x3, both would fail. In fact, these two terms cannot
be “combined” at all.

The essence of the above discussion can be summarized in the following
points:

• Two terms are called like terms if they have the same variable part. In
other words, the terms should involve the same variables, and each variable
should have the same exponent.

• Like terms can be combined by adding (or subtracting) their coefficients.
Symbolically, axn + bxn = (a + b)xn. Notice the variable part does not
change as a result of adding like terms.

1Notice that this equation, unlike most of the equations we saw in Chapter 2, is an identity:
it is true for all values of x.

2Thinking of the variable as an (unknown) number, the distributive law needs no extra
justification. Considering the variable as a symbol, however, the distributive law technically
must be “extended” to apply in the setting of variables as well as of numbers.
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• Terms that are not like terms cannot be combined. Their sum must be
represented by two (unlike) terms.

6.2.1 Adding polynomials

With this said, addition of polynomials is nothing more than “combining like
terms.”

Example 6.2.1. Add: (3x2 − 2x+ 1) + (4x2 + 6x− 7).

Answer. The parentheses in this problem are grouping symbols, written to em-
phasize that we are adding two polynomials, 3x2 − 2x + 1 and 4x2 + 6x − 7.
However, thanks to the associative and commutative properties of addition, the
parentheses have no impact whatsoever on the problem: we can rearrange and
group the terms any way we like. In particular,

(3x2 − 2x+ 1) + (4x2 + 6x− 7)

3x2 − 2x+ 1 + 4x2 + 6x− 7 Removing parentheses

(3x2 + 4x2) + (−2x+ 6x) + (1− 7) Grouping like terms

7x2 + 4x− 6 Combining like terms

The answer is 7x2 + 4x− 6.

It is common practice when adding polynomials to take advantage of “col-
umn notation.” Just like when adding numbers with many digits, different
columns represent different “place values” (powers of ten), columns can be used
in adding polynomials so that different columns represent different like terms.
We will always write polynomials in descending order when using column nota-
tion.

For example, in the previous example, we can write

3x2 − 2x + 1
+ 4x2 + 6x − 7

7x2 + 4x − 6

(We will many times not write the + symbol in front of the second polynomial
when using column notation, with addition being assumed.)

Notice also using column notation that all like terms are added. So in the
second column, for example, we are adding the terms −2x and 6x. Speaking
loosely, we could say “the minus sign applies to the coefficient of the term.”

Using column notation, it is especially important to pay attention to “missing
terms,” as the following example illustrates.

Example 6.2.2. Add: (x4 − 5x2 + 2x− 6) + (x3 − 8x− 3).

Answer. Writing the sum in column notation,
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x4 − 5x2 + 2x − 6
x3 − 8x − 3

x4 + x3 − 5x2 − 6x − 9

Notice again that

• The addition of the two polynomials is not explicitly written; it is assumed
that the polynomials in the two rows are added;

• The columns are always added, with a minus sign considered as the sign
of the coefficient of the term involved.

The answer is x4 + x3 − 5x2 − 6x− 9.

Example 6.2.3. Add: (x3 − x2 + 4x− 7) + (3x2 − 4x+ 1).

Answer. Rewriting the sum in column notation:

x3 − x2 + 4x − 7
3x2 − 4x + 1

x3 + 2x2 − 6

Notice that in the third column, the sum of 4x and −4x is 0x, which is simply
0 (this property of 0, familiar in the setting of numbers, extends to variables as
well). Since adding 0 does not change the quantity being added, we do not need
to write the 0 term, unless it is the only term in the polynomial remaining.

The answer is x3 + 2x2 − 6.

6.2.2 Subtracting polynomials

To subtract polynomials, we will follow the same strategy that we used to sub-
tract signed numbers: we will think of subtraction as “adding the opposite.” We
only need to think carefully of what we mean by the opposite of a polynomial.

We have used the word ”opposite” in the sense that two numbers are op-
posites if their sum is zero. We will use the word in exactly the same way for
polynomials: two polynomials are opposites if their sum is zero.

Example 6.2.4. The following are examples of polynomials which are opposites:

• The opposite of 2x− 4 is −2x+ 4.

• The opposite of x3 − 6x2 − 7x+ 2 is −x3 + 6x2 + 7x− 2.

• The opposite of 1− t3 is t3 − 1.

Exercise 6.2.5. For each pair of polynomials in the previous example, add
the polynomials to show that their sum is zero in order to confirm that the
polynomials are opposites.
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In the case of numbers, we used the symbol − to represent “the opposite
of.” So −2 means the same as “the opposite of 2,” and −(−6) means the same
as “the opposite of −6.”

We will use the same understanding of the − symbol in the case of polyno-
mials. Rewriting the example above, we have

• −(2x− 4) means “the opposite of 2x− 4,” or −2x+ 4.

• −(x3 − 6x2 − 7x + 2) means “the opposite of x3 − 6x2 − 7x + 2,” or
−x3 + 6x2 + 7x− 2.

• −(1− t3) means “the opposite of 1− t3,” or t3 − 1.

From even these few examples, you should be able to see an important
pattern that we will always use in practice: To find the opposite of a polynomial,
change the sign of the coefficient of every term in the polynomial.

With this background, we can interpret subtraction of polynomials.

Subtraction of polynomials

To subtract two polynomials, add the first polynomial to the opposite of
the second polynomial.

Example 6.2.6. Subtract: (3x− 5)− (2x+ 1).

Answer. We rewrite the subtraction problem as “adding the opposite:”

(3x− 5) + (−2x− 1).

Notice that the first polynomial remains the same; we add the opposite of the
second polynomial, which was originally 2x+ 1.

Now, combining like terms,

(3x− 5) + (−2x− 1)

3x− 5 + (−2x) + (−1)

[3x+ (−2x)] + [−5 + (−1)] Grouping like terms

x− 6 Combining like terms

The answer is x− 6.

Example 6.2.7. Subtract: (t3 − 2t2 + t− 5)− (2t3 + t− 4).

Answer. Rewriting,

(t3 − 2t2 + t− 5) + (−2t3 − t+ 4).
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In column notation, we add

t3 − 2t2 + t − 5
−2t3 − t + 4
−t3 − 2t2 − 1

The answer is −t3 − 2t2 − 1.

As a final example, we remind the reader that when a subtraction is in-
dicated by a sentence of the form, “Subtract X from Y ,” the first quantity
appears second in the difference, as Y −X. Unlike addition, subtraction is not
commutative—the order that we write the terms does affect the outcome.

Example 6.2.8. Subtract x2 − 2x− 5 from 8x+ 2.

Answer. Translated into algebra, the problem asks to perform the following
subtraction problem:

(8x+ 2)− (x2 − 2x− 5).

Now, rewriting as an addition problem,

(8x+ 2) + (−x2 + 2x+ 5)

8x+ 2 + (−x2) + 2x+ 5

−x2 + (8x+ 2x) + (2 + 5) Grouping like terms

−x2 + 10x+ 7 Combining like terms

The answer is −x2 + 10x+ 7.

6.2.3 Exercises

Perform the indicated operations.

1. (x2 − 5x− 6) + (2x2 + 2x+ 4)

2. (5x3 + 2x2 − 3x+ 3) + (−x3 − 3x2 + 2x+ 4)

3. (y2 + 5y − 1)− (−3y2 + 2y − 4)

4. (x3 − x2 − x+ 1)− (4x3 − 3x2 + 2x+ 4)

5. (3x3 − 2x+ 1)− (−x3 − 3x2 + 2x+ 4)

6. Subtract 4x+ 2 from −x+ 15

7. Subtract x2 − 4x− 1 from 2x2 − 2x+ 5
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6.3 Properties of exponents

Up to this point, the exponents with a variable base appearing in polynomials
have mainly served to distinguish between like and unlike terms. Going fur-
ther, however, we will need to pay more attention to how the terms involving
exponents interact when multiplied or divided.

The following table summarizes key properties of exponents. Here, in gen-
eral, x and y represent bases, which will be either a number or a variable. The
exponents a and b will for now represent numbers, but we will be a little vague
here about exactly what kind of numbers they are (in the case of polynomials,
the exponents will be whole numbers).

Properties of exponents

(E1) xa · xb = xa+b.

(E2)
xa

xb
= xa−b (as long as x 6= 0).

(E3) x0 = 1 (as long as x 6= 0).

(E4) (x · y)a = xa · ya.

(E5) (xa)b = xa·b.

(E6)

(

x

y

)a

=
xa

ya
(as long as y 6= 0).

Before we provide examples to show these properties “in action,” it is worth
making some comments about these properties.

• Notice that the properties all involve the operations of multiplication or
division. One might say, “Exponents behave nicely with multiplication
and division.” The interaction between exponents and addition (or sub-
traction) is more complicated, as we will see below.

• The key feature of properties (E1) and (E2) is that the factors being
multiplied or divided have the same base (denoted by x).

• The key feature of properties (E4), (E5), and (E6) is that the base of the
exponential on the left hand side involves only the operations of multipli-
cation, division, or exponentiation.

• Most of the properties (with the exception of (E3)) are easy to justify
when the exponents are positive whole numbers. In that case, writing
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exponents as “repeated multiplication,” the properties follow directly from
the commutative and associative properties of multiplication along with
the definition of division as an inverse operation to multiplication.

• Property (E3) is of a different nature than the others; for this reason, it is
sometimes hardest to justify. The reason is that it has no interpretation
as a “repeated multiplication,” since the phrase, “Multiply the base x
by itself 0 times” is meaningless. Instead, (E3) follows from formally
extending property (E2), in the following sense. Consider the expression
xa

xa
, where for the moment we will consider a to be a positive whole number

and x any nonzero number (so that the denominator is not zero!). On the

one hand, any nonzero number divided by itself is 1:
xa

xa
= 1. On the

other hand, if we insist that (E2) must hold, we have
xa

xa
= xa−a = x0.

For this reason, if (E2) is to hold, the only way to define x0 in a consistent
way is x0 = 1, as in (E3).

Properties (E1)–(E6) are most useful when the bases involved are variables.
In the following examples, we will use the common word “simplify” to mean “use
the relevant properties of exponents to write in an equivalent, simpler form.”

Example 6.3.1. Simplify: (w5x8)(w2x3).

Answer. The only operation involved is multiplication, so we can change the
order and grouping of the factors at will, relying on the commutative and asso-
ciative properties of multiplication.

(w5x8)(w2x3)

(w5w2)(x8x3) Grouping factors with the same base

(w5+2)(x8+3) Property (E1)

w7x11.

The answer is w7x11. Notice the the bases of the remaining exponentials (w
and x) are different, and so no further simplification is possible.

Example 6.3.2. Simplify:
x3y5

x3y
.

Answer. This time we have an expression involving multiplication and division.
The strategy will be the same: grouping factors with the same base.
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x3y5

x3y
(

x3

x3

)

·
(

y5

y

)

Grouping factors with the same base

(x3−3)(y5−1) Property (E2)

x0y4

1 · y4 Property (E3)

y4.

The answer is y4. Notice that the in the factor
y5

y
, the exponent of the

denominator y is 1.

Example 6.3.3. Simplify:

(

x8y4

x2

)3

.

Answer. In this case, we will simplify the expression inside the grouping sym-
bols first.

(

x8y4

x2

)3

(

x8

x2
· y

4

1

)3

Grouping factors with the same base

(x8−2 · y4)3 Property (E2)

(x6y4)3

(x6)3 · (y4)3 Property (E4)

x6·3y4·3 Property (E5)

x18y12.

The answer is x18y12.

Example 6.3.4. Simplify: (3x2y7)4.

Answer. In this example, the base is a product of three factors: 3, x2, and y7.
Property (E4), applied to this situation, implies that each factor separately must
be raised to the fourth power3.

(3x2y7)4

(3)4 · (x2)4 · (y7)4 Property (E4)

81 · x2·4 · y7·4 Property (E5)

81x8y28.

3Property (E4) is stated for a base which is the product of two factors. However, in the
case of three factors, we can apply the property twice: (x · (y · z))a = x

a · (y · z)a = x
a · ya · za.
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The answer is 81x8y28.

Example 6.3.5. Simplify:
(2xy4)3

x2y5
.

Answer. We will first simplify the numerator, then separate the factors accord-
ing to common bases.

(2xy4)3

x2y5

(2)3(x)3(y4)3

x2y5
Property (E4)

8x3y12

x2y5
Property (E5)

(

8

1

)

·
(

x3

x2

)

·
(

y12

y5

)

Grouping factors with the same base

(8)(x3−2)(y12−5) Property (E2)

8xy7.

The answer is 8xy7. Notice that in the last step, as usual, we do not write the
exponent 1: x1 = x. In the grouping step, we grouped the whole number 8 in the
numerator, writing it as a fraction 8/1 for the sake of seeing the multiplication
more clearly.

6.3.1 Integer exponents

The properties of exponents listed above are enough for most of the work we
will do with polynomials. However, it is worth pointing out that they also give
a way to define negative exponents in a way consistent with our understanding
of exponents as repeated multiplication, similar to the way that the definition
x0 = 1 is required if the other properties are to be satisfied.

Namely, we make the following definition:

For any nonzero base x 6= 0 and any exponent a, we define

x−a =
1

xa
.

In particular,

x−1 =
1

x
.

To see that this definition is consistent with the properties above, notice that
on the one hand, x0−a = x−a. On the other hand, if properties (E2) and (E3)
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are to hold, we have x0−a =
x0

xa
=

1

xa
. In other words, to be consistent with the

standard properties of whole number exponents, the only possible definition for
negative exponents is the one we have stated, x−a = 1/xa.

Since this definition is less intuitive than our usual understanding of whole
number exponents, we list some numerical examples of this definition.

Example 6.3.6. Find the values of each of the following exponentials.

(a) 3−1

(b) 2−5

(c) 10−4

(d) (−2)−3

(e)

(

2

5

)−1

(f)

(

3

4

)−2

Answer. (a) 3−1 =
1

31
=

1

3
.

(b) 2−5 =
1

25
=

1

32
.

(c) 10−4 =
1

104
=

1

10000
= 0.0001.

(d) (−2)−3 =
1

(−2)3
=

1

−8
= −1

8
.

(e)

(

2

5

)−1

=
1

(

2
5

)1 =
1

(

2
5

) =
1

1
· 5
2
=

5

2
.

(f)

(

3

4

)−2

=
1

(

3
4

)2 =
1
9
16

=
1

1
· 16
9

=
16

9
.

The previous examples provide evidence that negative exponents do not
affect the sign of the result, but instead indicate a reciprocal. This is not
surprising if we think of exponents as repeated multiplication; the “opposite”
sign indicates the “opposite” in the sense of multiplication, which is the notion

of reciprocal. Note especially in the last example that

(

3

4

)−2

=

(

4

3

)2

.

Since we have defined negative exponents in such a way to be consistent with
the familiar properties of exponents, we can manipulate and simplify expressions
involving negative exponents exactly as with positive exponents, as the following
examples illustrate.
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Example 6.3.7. Simplify:
x7 · x−9

x−4
. Write the answer using only positive ex-

ponents.

Answer.

x7 · x−9

x−4

x7+(−9)

x−4
Property (E1)

x−2

x−4

x(−2)−(−4) Property (E2)

x(−2)+4

x2.

The answer is x2.
As usual, when we subtract negative numbers, we took the trouble to rewrite

the subtraction as “adding the opposite.”

Example 6.3.8. Simplify:

(

x−3y

x−5y8

)−2

. Write the answer using only positive

exponents.

Answer. We will simplify inside the grouping symbols first:

(

x−3y

x−5y8

)−2

(

x−3

x−5
· y

y8

)−2

Grouping common bases

(

x(−3)−(−5) · y1−8
)−2

Property (E2)

(

x(−3)+(5)y1+(−8)
)−2

Subtraction as “adding the opposite”

(

x2y−7
)−2

(x2)−2(y−7)−2 Property (E4)

x(2)(−2)y(−7)(−2) Property (E5)

x−4y14

1

x4
· y

14

1
Rewriting negative exponent as a reciprocal

y14

x4
.

The answer is y14/x4. Notice that while the equivalent expression x−4y14

is just as “simple” as the final answer, we took the extra effort to write the
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answer using only the more familiar whole number exponents, as requested in
the problem.

The reader should be advised that the above approach to simplifying is not the
only possible route to the final answer. For example, Property (E6) of exponents
could be applied to the expression as a first step. (Check to see that the final
answer is the same!)

6.3.2 Exercises

Use properties of exponents to simplify the following algebraic expressions.

1. (x2)(x5)

2. (z4)3

3. (4x3)−2

4.
(a2b3)2

a3b5

5.
x5 · y2
(y2)3

6.
y5 · y2
(y2)3

The following exercises illustrate the error of the common mistake of applying
a “rule” to equate (a+ b)2 with a2 + b2. For the given values of a and b below,
evaluate (a) (a+ b)2 and (b) a2 + b2.

7. a = 2, b = 3

8. a = −1, b = 2

6.4 A detour: Scientific notation

The distance from the sun to Earth is, on average, approximately 93,000,000
miles. The speed of light (in a vacuum) is approximately 300,000,000 meters
per second. The radius of a hydrogen atom is approximately 0.000000000053
meters.

In many fields of science, we are faced with either very large or very small
quantities, like the ones in the previous paragraph. Scientific notation is a con-
venient way of treating such numbers. In this section, we briefly review scientific
notation. Even though it is not related to polynomials (or even algebra) as such,
it will give us an opportunity to practice using the properties of exponents.
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Scientific notation

A number is written in scientific notation if it has the form

a× 10n,

where

• a is a number whose magnitude is between 1 and 10, possibly being
1 but strictly less than 10. Symbolically, 1 ≤ |a| < 10.

• n is any integer (positive, negative or zero).

Notice the unfortunate but completely standard use of the “times” symbol
× representing the multiplication involved in scientific notation. We will refer
to the number a as the “number part” (or coefficient) of the number written in
scientific notation to distinguish it from the “exponential part.” (Technically,
of course, all “parts” of a number written in scientific notation are numbers.)

For example, the following numbers are written in scientific notation:

• 2× 108;

• −4.5× 1015;

• 3.14× 10−4.

The following numbers are not written in scientific notation (can you see why?):

• 22× 10−14;

• 755.88;

• 10× 104;

• −8× 103/2.

Converting between scientific notation and standard (decimal) notation is
accomplished with the help of the nice properties of powers of ten.

Example 6.4.1. Convert each of the following numbers in scientific notation
into standard (decimal) notation.

(a) 2× 108;

(b) −4.5× 1015;

(c) 3.14× 10−4.

Answer. (a) 2× 108 = 2(100000000) = 200, 000, 000.
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(b) −4.5× 1015 = −4.5(1000000000000000) = −4, 500, 000, 000, 000, 000.

(c) 3.14× 10−4 = 3.14

(

1

104

)

= 3.14

(

1

10000

)

= 3.14(0.0001) = 0.000314.

The clever reader can certainly see a way to describe a shortcut based on
the three examples above in terms of “moving the decimal place.”

Example 6.4.2. Write each of the following numbers in scientific notation.

(a) 93, 000, 000

(b) 300, 000, 000

(c) 0.000000000053.

Answer. In order to determine the correct power of ten in writing a number
in scientific notation, first identify what we will call the leading digit, meaning
the first non-zero digit appearing in the number reading from left to right. So
the leading digit in (a) would be 9; the leading digit in (b) would be 3; and the
leading digit in (c) would be 5.

The exponent of 10 of the number written in scientific notation will be de-
termined by the place value of the leading digit. (This can be determined by
counting the digits between the leading digit and the units digit, not including
the units digit but including the leading digit if it is not the same as the units
digit.) So in (a), the 9 is in the position with place value 107; in (b), the 3 is in
the position with place value 108; and in (c), the 5 is in the position with place
value 10−11.

Putting this together, we obtain:

(a) 93, 000, 000 = 9.3× 107;

(b) 300, 000, 000 = 3× 108;

(c) 0.000000000053 = 5.3× 10−11.

Keep in mind that “big” numbers have positive powers of ten in scientific
notation, while “small” numbers have negative powers of ten.

6.4.1 Multiplication and division of numbers in scientific

notation

Because scientific notation has multiplication “built in” to the notation, per-
forming the operations of multiplication and division with numbers in scientific
notation are particularly simple using the rules of exponents. We will illustrate
this sentence with the following examples.

Example 6.4.3. Multiply: (3× 107)(1.5× 10−2).
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Answer. The first thing to notice is that since the only operations appearing
are multiplication, we can use the commutative and associative properties to
re-order and re-group the factors:

(3× 107)(1.5× 10−2) = (3)(1.5)(107)(10−2).

Since scientific notation always involves multiples of the same base (ten), we
can apply property (E1), adding the exponents:

(3× 107)(1.5× 10−2) = (3)(1.5)(107)(10−2)

= (4.5)(107+(−2))

= 4.5× 105.

The answer is 4.5× 105.

Summarizing the previous example, multiplying numbers in scientific nota-
tion involves multiplying their “number part” and adding the exponents of the
powers of ten.

The following example shows that the product of two numbers written in
scientific notation will not automatically result in a number written in scientific
notation.

Example 6.4.4. Multiply: (5× 108)(3× 104).

Answer. Following the previous strategy:

(5× 108)(3× 104) = (5)(3)(108)(104)

= (15)(108+4)

= 15× 1012.

Unfortunately, the result is not in scientific notation, since the “number
part” 15 has magnitude greater than 10. We will approach this problem by
writing the number part in scientific notation, then again using the fact of having
a common base of 10 to apply Property (E1) of exponents again:

(5× 108)(3× 104) = 15× 1012

= (1.5× 101)(1012)

= 1.5× 101+12

= 1.5× 1013.

The answer, written in scientific notation, is 1.5× 1013.

Our approach to dividing numbers written in scientific notation is similar to
multiplication, but we will use Property (E2) of dividing exponentials with a
common base.

Example 6.4.5. Divide:
6× 10−2

4× 10−5
.
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Answer. The only difference between division and multiplication is that we need
to group the numerators and denominators carefully:

6× 10−2

4× 10−5
=

6

4
· 10

−2

10−5

= 1.5× 10(−2)−(−5)

= 1.5× 10(−2)+(5)

= 1.5× 103.

The answer is 1.5 × 103. Notice that we took the trouble to rewrite the
subtraction of exponents as addition of the opposite.

Example 6.4.6. Divide:
4× 10−5

8× 1012
.

Answer. Following the procedure of the previous examples,

4× 10−5

8× 1012
=

4

8
· 10

−5

1012

= 0.5× 10(−5)−(12)

= 0.5× 10(−5)+(−12)

= 0.5× 10−17.

Unfortunately, we again are in the situation where the result is not written
in scientific notation; the “number part” has magnitude less than 1. Applying
a similar strategy as the one in Example 6.4.4,

4× 10−5

8× 1012
= 0.5× 10−17

= (5× 10−1)× 10−17

= 5× 10(−1)+(−17)

= 5× 10−18.

The answer is 5× 10−18.

6.4.2 Exercises

Write the following numbers in scientific notation.

1. 7, 500, 000, 000, 000, 000, 000 (the approximate number of grains of sand
on the planet)

2. 0.000000000275 (the approximate diameter of a water molecule, measured
in meters)

Write the following numbers in standard (decimal) notation.
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3. 6.022 × 1023 (the approximate number of carbon atoms in 12 grams of
pure carbon)

4. 1× 10−3 (the number of liters in one milliliter)

Perform the indicated operation. Write your answer in scientific notation.

5. Multiply: (6× 104)(3× 103)

6. Divide:
4× 106

2× 108

7. Multiply: (7× 10−4)(1.3× 10−10)

8. Divide:
−1.53× 101

−3× 10−3

9. Multiply: (3.4× 108)(2.1× 10−5)

10. Divide:
3× 10−12

6× 10−4

11. Multiply: (1.55× 1010)(8.1× 10−10)

12. Divide:
−2× 105

8× 10−5

6.5 Multiplying polynomials

Returning to the subject of the arithmetic of polynomials, we now turn to
multiplication. Since polynomials (in one variable x) are made up of terms
having the form axn, the results of the previous section will apply, especially
Property (E1) of exponents.

Notice that multiplying a monomial by a monomial involves nothing more
that applying Property (E1) directly, as the following example shows.

Example 6.5.1. Multiply: (15x3)(4x2).

Answer. The two polynomials being multiplied, 15x3 and 4x2, each have one
term. To multiply them, we will apply the associative and commutative proper-
ties to regroup the factors, the apply Property (E1):

(15x3)(4x2)

(15 · 4)(x3 · x2) (Re-grouping the factors)

60x3+2 (Property (E1))

60x5.

The answer is 60x5.
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Normally, we will not illustrate the regrouping as a separate step.
In order to multiply polynomials with more than one term, we will need to

remember the distributive law. The distributive law describes an important re-
lationship between multiplication and addition (which, in the case of operations
with whole numbers, is based on multiplication as repeated addition).

Symbolically, the distributive law is often summarized by the identity

a(b+ c) = ab+ ac. (6.1)

It’s worth paying a little more attention to what Equation 6.1 is really say-
ing. On the left hand side, there are two operations, addition and multiplication;
the order of operations dictates that the sum, which is grouped, is performed
before the multiplication. On the right hand side, there are three operations:
two multiplications and one addition. The order of operations on the right dic-
tates that the two multiplications are performed first, followed by the addition.
The distributive law gives a precise way that the order of operations between
addition and multiplication can be changed. In words, the product of two fac-
tors, one of which is a sum of two terms, is the same as the sum of the product
of the first factor with each of the two terms involved in the sum.

Before going further, let’s apply the straightforward expression of the dis-
tributive law to the product of a monomial with a binomial.

Example 6.5.2. Multiply: (3x2)(2x+ 7).

Answer.

(3x2)(2x+ 7) = (3x2)(2x) + (3x2)(7) (The distributive law)

= 6x2+1 + 21x2 (Property (E1))

= 6x3 + 21x2.

The answer is 6x3 + 21x2.

It’s also worth noting that even though the distributive law is written with
only one of the factors involving a sum, it in fact applies more generally, keeping
again the commutative and associative laws in mind. For example, try to justify
each step in the following sequence of identities (each step involves applying one
of either the commutative law, the associative law, or the distributive law as
stated above):

(a+ b+ c)(x+ y) = (a+ b+ c)(x) + (a+ b+ c)(y)

= (x)(a+ b+ c) + (y)(a+ b+ c)

= (x)(a+ (b+ c)) + (y)(a+ (b+ c))

= (x)(a) + (x)(b+ c) + (y)(a) + (y)(b+ c)

= xa+ (xb+ xc) + ya+ (yb+ yc)

= ax+ bx+ cx+ ay + by + cy.
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What is most important about the above sequence identities is not really
the in-between steps (although pointing out the different laws at work would
make your fourth-grade math teacher smile!). We started with the product of
a factor with three terms a + b + c with a factor with two terms x + y. The
final expression involves the sum of six (= 3 × 2) multiplications. Each of the
six multiplications involves one term from the first expression and one term
from the second expression. Moreover, each term from the first expression is
“matched” with each term in the second expression, which is why we ended up
with six multiplications.

Let’s summarize the distributive law in the following way:

The distributive law

The product of two factors, each of which is a sum of several terms, is the
same as the sum of terms obtained by multiplying each term of the first
factor by each term of the second factor.

Let’s see a few examples of the distributive law in action in multiplying poly-
nomials. You will notice that in these cases, after applying the distributive law
and properties of exponents, like terms often appear—which can (and should)
then be combined!

Example 6.5.3. Multiply: (x+ 4)(x+ 2).

Answer. Notice that in multiplying a polynomial with two terms by a poly-
nomial with two terms will result, applying the distributive law, to 2 × 2 = 4
multiplications:

(x+ 4)(x+ 2)

(x)(x) + (x)(2) + (4)(x) + (4)(2) (Distributing)

x2 + 2x+ 4x+ 8 (Multiplying in each term)

x2 + 6x+ 8. (Combining like terms)

The answer is x2 + 6x+ 8.

Example 6.5.4. Multiply: (2x+ 5)(3x+ 2).

Answer.

(2x+ 5)(3x+ 2)

(2x)(3x) + (2x)(2) + (5)(3x) + (5)(2) (Distributing)

6x2 + 4x+ 15x+ 10 (Multiplying in each term)

6x2 + 19x+ 10. (Combining like terms)
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The answer is 6x2 + 19x+ 10.

The following example illustrates the way that we will approach the distribu-
tive law involving subtraction.

Example 6.5.5. Multiply: (2x− 1)(x− 6).

Answer. Both of the two binomials involve subtraction. However, as usual, we
can consider this as a sum by writing the subtraction as “adding the opposite.”
In particular, the two terms in the first binomial are 2x and −1, while the two
terms from the second binomial are x and −6. We will write this explicitly when
distributing.

(2x− 1)(x− 6)

(2x)(x) + (2x)(−6) + (−1)(x) + (−1)(−6) (Distributing)

2x2 − 12x− x+ 6 (Multiplying in each term)

2x2 − 13x+ 6. (Combining like terms)

The answer is 2x2 − 13x+ 6.
(Notice that in the third line, we switched back to writing the polynomial

using subtraction, instead of writing 2x2 + (−12x) + (−x) + 6 . Either way of
writing would be acceptable, since they both have the same terms, but it is typical
to write it as we have done in the answer above.)

Example 6.5.6. Multiply: (x+ 4)(x− 4).

Answer.

(x+ 4)(x− 4)

(x)(x) + (x)(−4) + (4)(x) + (4)(−4) (Distributing)

x2 − 4x+ 4x− 16 (Multiplying in each term)

x2 − 16. (Combining like terms)

The answer is x2 − 16. The “middle” like terms “cancelled” (their sum is
zero).

When we have whole number powers of a polynomial, it is best to take the
10 seconds required to rewrite the problem as a repeated multiplication.

Example 6.5.7. Multiply: (3x+ 4)2.

Answer. We start by making the multiplication explicit.

(3x+ 4)2

(3x+ 4)(3x+ 4) (Exponent as repeated multiplication)

(3x)(3x) + (3x)(4) + (4)(3x) + (4)(4) (Distributing)

9x2 + 12x+ 12x+ 16 (Multiplying in each term)

9x2 + 24x+ 16. (Combining like terms)
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The answer is 9x2 + 24x+ 16. Notice that the answer is NOT the same as
(3x)2 + (4)2 (refer to the last two exercises in Section 6.3.2)!

Example 6.5.8. Multiply: (2x− 1)(x2 − 5x+ 2).

Answer. The distributive law, applied to this multiplication of a binomial with
a trinomial, will involve 2× 3 = 6 multiplications.

(2x− 1)(x2 − 5x+ 2)

(2x)(x2) + (2x)(−5x) + (2x)(2) + (−1)(x2) + (−1)(−5x) + (−1)(2) (Distributing)

2x3 − 10x2 + 4x− x2 + 5x− 2 (Multiplying in each term)

2x3 − 11x2 + 9x− 2. (Combining like terms)

The answer is 2x3 − 11x2 + 9x− 2.

The last example illustrates the fact that when multiplying a product of three
(or more) factors, we still have to apply the distributive law “one multiplication
at a time.”

Example 6.5.9. Multiply: (x− 3)(x+ 2)(2x+ 5).

Answer. We will introduce square brackets to group the first multiplication:

[(x− 3)(x+ 2)] (2x+ 5)

[(x)(x) + (x)(2) + (−3)(x) + (−3)(2)] (2x+ 5)
[

x2 + 2x− 3x− 6
]

(2x+ 5)

(x2 − x− 6)(2x+ 5)

(x2)(2x) + (x2)(5) + (−x)(2x) + (−x)(5) + (−6)(2x) + (−6)(5)

2x3 + 5x2 − 2x2 − 5x− 12x− 30

2x3 + 3x2 − 17x− 30.

The answer is 2x3 + 3x2 − 17x− 30.

To summarize, multiplying polynomials involves the distributive law, prop-
erty (E1) of exponents, and combining like terms.

6.5.1 Exercises

Multiply the following polynomials.

1. (x− 3)(x+ 2)

2. (3x− 4)(2x− 1)

3. (2x+ 3)2
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4. (x− 1)(x2 + x+ 1)

5. (x+ 3)(x3 + 2x2 − 3x− 2)

6. (x2 − 3x− 1)(x2 + 2x+ 3)

7. (3x− 2)2.

8. (4x− 3)(2x− 1)(x+ 2).

9. (2x− 5)(x2 + 4x− 6)

10. (*) (2x− 1)3.

11. (*) Verify the identity (a+b)2 = a2+2ab+b2 by applying the distributive
law on the left hand side.

12. (*) For what values of a and b does the equality (a+ b)2 = a2 + b2 hold?

6.6 Dividing a polynomial by a monomial

Just as in division of whole numbers, division of polynomials raises certain very
fundamental issues. The most basic problem is the fact that the quotient of
two polynomials may not be a polynomial. This can be seen from a very simple
example. Consider the quotient of the polynomial x2 divided by the polynomial
x3. By the Property (E2) of exponents, above, we have x2 ÷ x3 = x2−3 = x−1.
Even though we can now make perfect sense of the meaning of x−1 (as 1/x), it
is not a polynomial, since the exponent is not a whole number.

We will not attempt a full treatment of division of polynomials here. In
order to do so, we would need to consider “fractions of polynomials,” what
are known as rational expressions (rational since they are formed by ratios of
polynomials). This is usual treated in an “intermediate algebra” course. A more
detailed treatment would involve the division algorithm and a corresponding
“long division” of polynomials. This is usually treated in a precalculus course.

We are interested in those division problems that can be handled using just
the properties of exponents and the distributive law. It turns out that this can
be done, provided that we divide a polynomial by a monomial.

We will be using the distributive law in the following form:

a+ b

c
=

a

c
+

b

c
.

In words, the quotient of several terms (in the numerator) by a single term
(in the denominator) is the same as the sum of the quotients of each term (in
the numerator) by the term in the denominator. As an exercise, you may derive
this version of the distributive law from the usual one by expressing “division
by c” as “multiplication by 1/c.”

Here are a few examples of division of polynomials, when the divisor (in the
denominator) is a monomial.
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Example 6.6.1. Divide:
27x6 + 18x4

3x2
.

Answer.

27x6 + 18x4

3x2
=

27x6

3x2
+

18x4

3x2
(Distributing)

= 9x6−2 + 6x4−2 Dividing, using property (E2)

= 9x4 + 6x2.

The answer is 9x4 + 6x2.

Example 6.6.2. Divide:
2y3 − 12y2 − 18y

2y
.

Answer.

2y3 − 12y2 − 18y

2y
=

2y3

2y
+

−12y2

2y
+

−18y

2y
(Distributing)

= y2 − 6y − 9.

The answer is y2− 6y− 9. Notice that we maintained our custom of writing
the distributive law using addition, in this case involving adding terms with nega-

tive coefficients. Also notice that
y2

y
= y2−1 = y1 = y, while

y

y
= y1−1 = y0 = 1.

Example 6.6.3. Divide:
5x5 − 10x4 + 5x2

5x2
.

Answer.

5x5 − 10x4 + 5x2

5x2
=

5x5

5x2
+

−10x4

5x2
+

5x2

5x2
(Distributing)

= x3 − 2x2 + 1.

The answer is x3 − 2x2 + 1. Pay special attention to the last term:

5x2

5x2
=

5

5
· x

2

x2

= 1 · x2−2

= 1 · x0

= 1 · 1 = 1.

Many times this phenomenon is referred to as “canceling.” The main thing to
remember is that “canceling” does not mean “disappearing!”

Example 6.6.4. Divide:
11x4 − 8x3 + 10x2

4x3
.
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Answer.

11x4 − 8x3 + 10x2

4x3
=

11x4

4x3
+−8x34x3 + 10x24x3 (Distributing)

=
11

4
x4−3 +

−8

4
x3−3 +

10

4
x2−3

=
11

4
x− 2 +

5

2
x−1.

The answer is (11/4)x− 2 + (5/2)x−1.
Two things to notice about this example:

1. Because the division of whole number coefficients did not end up so “clean”
this time, in the sense that the result did not end up being an integer, we
wrote the division step more explicitly.

2. The fact that the result includes an x−1-term (with a negative exponent)
is another reminder: the quotient of two polynomials may not be a poly-
nomial!

6.6.1 Exercises

Perform the indicated division problems.

1.
10x2 − 20x

−2x

2.
x2 − 3x+ 9

3x

3.
3x5 − 12x4 − 9x2

3x

4.
2x8 − 2x5 − 8x4

2x4

5.
25x3 − 35x2 + 5x

−5x

6.7 Chapter summary

• A polynomial is a special algebraic expression, all of whose terms involve
only whole-number powers of the variable or variables.

• Exponents (originally defined in terms of repeated multiplication) have
a number of properties which follow the principle, “Exponents work well
with multiplication and division.”

• Adding polynomials involves simply combining like terms.
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• Subtracting polynomials (similar to subtracting signed numbers) is best
accomplished by rewriting the difference as “adding the opposite,” with
the opposite of a polynomial understood as “changing the sign of every
term.”

• Multiplying polynomials involves both the distributive property and the
simplest property of exponents, xa · xb = xa+b. After distributing and
multiplying, be sure to check to see if there are any like terms which can
be combined.

• Dividing a polynomial by a monomial can also be accomplished using a
version of the distributive law, dividing each term of the dividend by the
divisor and applying the rule of exponents xa/xb = xa−b.

• The rules of exponents are also helpful in working with numbers written
in scientific notation. In particular, two numbers written in scientific
notation can be easily multiplied or divided, with the understanding that
it sometimes takes an extra step to ensure that the final answer is written
in scientific notation.



Chapter 7

Factoring

Vocabulary

• A factor (of an integer)

• A factor (of a polynomial)

• To factor

• Greatest common divisor

• To factor completely

• Difference of squares

• Quadratic trinomial

• Monic polynomial

7.1 Introduction to factoring

There are a number of circumstances when it is convenient to see a polynomial
not as a sum of terms but as a product of factors. The process of writing a
polynomial as a product of factors is called “factoring.” The main use we will
see for factoring will be in Chapter 9, in order to solve some quadratic equations.
However, factoring is also a basic technique for working with rational expressions
(in intermediate algebra) and in solving higher-degree polynomial equations (in
precalculus).

In this chapter, we will outline some basic techniques for factoring. By the
end, we will have developed a kind of “checklist” that we can apply to try to
factor any polynomial expression.

The word “factor,” in the context of mathematics, always implies the oper-
ation of multiplication. Just like we use the word “term” to mean a quantity

169
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being added, the word “factor” will be used to represent a quantity being mul-
tiplied.

Example 7.1.1. • In the expression 4 · 7, there are two factors, 4 and 7.

• In the expression (3.79)(−1.2)(5.9), there are three factors, 3.79, −1.2 and
5.9.

• In the expression 3x, there are two factors, 3 and x.

One thing to keep in mind is that factors might be more complicated that
those in the previous example.

Example 7.1.2. • In the expression 4x(x2+3x+1), there are three factors:
4, x and x2+3x+1. Notice that the entire expression in parentheses (which
is one “group” having three terms) is one factor.

• In the expression (x + 1)(x + 4), there are two factors, x + 1 and x + 4.
Notice that each of the two factors has two terms.

Unfortunately, the word “factor” is used in other ways as well. While the
basic meaning of a factor as “an expression appearing in a product” is not lost,
in other uses of the word this basic meaning is hidden in the background.

For example, the integer 12, considered as an arithmetic expression, does not
appear as a factor at all, in the sense that there is no multiplication indicated.
However, we can write 12 = 3 · 4. So we can say that 3 and 4 are factors of 12.
Likewise, −2 is also a factor of 12, since 12 can also be written as (−2)(−6).
Notice that, from this point of view, factors of an integer come in pairs: −2 is
a factor of 12, and so is −6.

In summary, a factor of an integer is an integer which can be multiplied by
another integer to give the original number. (Sometimes it is said that a factor
of an integer “divides the original number evenly,” but we want to emphasize
that the word factor implies the operation of multiplication.) While the word
“factor” in this sense is sometimes meant to only refer to positive numbers, we
will need to consider both positive and negative factors.

Here are a few things to remember about factors of integers:

• 1 is a factor of every integer. (And so is −1.)

• Every integer is a factor of itself. (And so is its opposite a factor of itself.)

• A prime number is a positive integer with exactly two positive factors: 1
and itself.1

Example 7.1.3. List all the factors of each of the following integers:

(a) 12;

(b) −140;

1For this reason, the number 1 is not a prime number, since it has only one positive factor.
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(c) 25;

(d) 17.

Answer. (a) The factors of 12 are 1, 2, 3, 4, 6, 12, −1, −2, −3, −4, −6 and
−12.

(b) The factors of −140 are 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140, −1, −2,
−4, −5, −7, −10, −14, −20, −28, −35, −70 and −140.

(c) The factors of 25 are 1, 5, 25, −1, −5, and −25.

(d) The factors of 17 are 1, 17, −1 and −17. (Notice 17 is a prime number.)

In a similar way, a factor of a polynomial is another polynomial
which, when multiplied by a third polynomial, gives the original poly-
nomial. In the case that that the polynomial is already written as a product,
some factors are easy to see. For example, the polynomial (3x + 2)(x − 1) has
two factors, being 3x + 2 and x − 1. Whether it has any other factors will be
investigated in the remainder of the chapter.

What happens if a polynomial is not written as a product?
So far, we have used the word “factor” as a noun. However, due to the

importance in various contexts of seeing an expression written as a product, the
word “factor” is also used as a verb.

Factoring

To factor means to write as a product of two (or more) factors.

For example, to factor the number 12, we could write 3·4 or 2·6 or (−1)(−12).
From this example, you can see that there is usually more than one way to factor
an integer.2

Likewise, when we are asked to factor a polynomial, the answer should be
a product of two (or more) polynomials. For example, to factor x2 + 3x + 2,
we would write (x + 1)(x + 2). You can check that the answer is correct by
multiplying the two polynomials x+ 1 and x+ 2—you should get x2 + 3x+ 2.
By the end of this chapter, you will see how to obtain that answer, if it weren’t
given to you like it was here. But you should notice something right away:
Factoring is the opposite process as multiplying. This will be our guide
to presenting all the various methods of factoring below.

2(The Fundamental Theorem of Arithmetic states, however, that there is only one way to
factor a positive integer into factors which are powers of prime numbers, up to the order in
which the factors are written. This is called the prime factorization of the integer. You might
remember algorithms for producing the prime factorization of a number, like the so-called
“factor tree.”)
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NOTICE: For the remainder of this chapter, all of our polynomials will have
integer coefficients. In particular, when we are asked to factor a polynomial
with integer coefficients, we will insist that the factors should also have integer
coefficients.

7.2 “Factoring out” the greatest common factor

Let’s start out with an example where we can “cheat.”

Example 7.2.1. Factor: 6x3 + 21x2.

Answer. One answer is 3x2(2x+ 7).

To see why, refer to Example 6.30 in the last chapter. We can “cheat”
because we already multiplied two polynomials to obtain 6x3+21x2, so when we
are now asked to factor the same polynomial—to write it as a product—we can
just refer back to the original multiplication problem.

The problem, of course, is that on many occasions we will not be able to
refer back to a multiplication problem to find an answer. But let’s look a little
more carefully at the preceding example to try to find a strategy.

Our “answer” 3x2(2x + 7) has two factors: 3x2 and 2x + 7. How are the
related to the original polynomial 6x3 + 21x2?

Notice that the original polynomial had two terms: 6x3 and 21x2. The
coefficients of these two terms, 6 and 21, have two positive common factors:
1 and 3. (When we look for common factors, we will keep in mind that 1 is
always a common factor.) Of these, the greatest common factor is 3—which is
the coefficient of the factor 3x2.

In addition to the common factor of 3, the terms 6x3 and 21x2 have a variable
part in common—they both involve powers of x. How many factors of x are
common? Both terms include a factor of x, since x3 = x · x2 and x2 = x · x.
Both terms also include a factor of x2, since x3 = x2 · x and x2 = x2 · 1. But
only one of the terms includes a factor of x3, since the second term includes only
two factors of x. Summarizing, the greatest common factor of x3 and x2—the
greatest number of factors of x that are in common to both—is x2. Notice that
x2 is the variable part of our original factor 3x2.

To summarize the preceding two paragraphs: the factor 3x2 is the greatest
common factor (often abbreviated as GCF) of the two original terms 6x3 and
21x2. We obtained it by separately considering the coefficients and the variable
parts of the terms and multiplying the result.

What about the other factor 2x + 7 from our answer? How is this factor
related to the original polynomial?

Notice what happens when we divide our original polynomial 6x3 +21x2 by
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the common factor 3x2 that we just discussed:

6x3 + 21x2

3x2

6x3

3x2
+

21x2

3x2

2x+ 7.

In other words, the second factor 2x+7 is the quotient of the original polynomial
by the greatest common factor.

Let’s summarize the method that we have taken out of the preceding dis-
cussion. The process of factoring by finding a greatest common factor is often
referred to as “factoring out” the greatest common factor.

Factoring out the greatest common factor

To factor a polynomial whose terms have a common factor:

1. Find the greatest common factor of all the terms of the original poly-
nomial, considering both the coefficients and the variable parts.

2. Divide the original polynomial by the GCF from Step 1 to obtain the
second factor.

The answer is the product of the polynomials from Steps 1 and 2.

NOTICE: It is possible to factor polynomials using a common factor that
is not the GCF. For example, we could have factored 6x3 + 21x2 above as
x2(6x + 21) or as 3x(2x2 + 7x). (Check that these are all valid!) We have
written the polynomial as a product of two factors, as required. However, these
factorizations are not “complete,” in the sense that one of the factors still has
factors in common among its terms. From now one, we will always ask to factor
completely, which in this context means to factor out not just any common fac-
tor, but the greatest common factor. We will have more to say about “factoring
completely” below.

The following examples illustrate the procedure for factoring out the GCF,
as well as a number of issues to watch out for.

Example 7.2.2. Factor completely: 12x7 − 8x5 + 16x3.

Answer. The polynomial has three terms, 12x7, −8x5 and 16x3. The coeffi-
cients have (positive) common factors 1, 2 and 4. The highest power of x that
is common to all three terms is x3. So the greatest common factor is 4x3.
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Dividing the original polynomial by the GCF of 4x3:

12x7 − 8x5 + 16x3

4x3

12x7

4x3
+

−8x5

4x3
+

16x3

4x3

3x4 − 2x2 + 4.

The answer is 4x3(3x4 − 2x2 + 4).

Notice that the greatest common factor includes the least exponent appear-
ing in any of the terms. Although this “rule” seems strange, keep in mind we
are looking to what factors are in common to all terms.

The next example shows illustrates a basic feature of polynomials: Not every
polynomial can be factored, at least in any way that will be considered in this
text. (One should keep in mind the example of prime numbers from arithmetic.)

Example 7.2.3. Factor completely: x2 + 5.

Answer. The polynomial has two terms, x2 and 5. The only positive common
factor of the coefficients is 1. There is no common factor of x. So the GCF of
these two terms is 1.

Although we could conceivably divide the original polynomial by 1, this will
result in the same polynomial, and so as a factorization we would have to write
(1)(x2+5). However, we have gained nothing in the sense that the new “factor”
is the same as the original polynomial.

The answer is: The polynomial cannot be factored.

In particular, from now on, we will be more precise about what we mean
by the verb “to factor.” To factor will mean: Write as a product of two or
more factors, none of which are 1. (There will be one exception to this when
we discuss factoring by grouping in Sections 7.5 and 7.6 below.)

CAUTION: We will see many examples in later sections of polynomials
whose terms have no common factor, but that can be factored using other
techniques. (For the record, the polynomial x2+5 in the example above cannot
be factored using any of the methods we will discuss.)

Example 7.2.4. Factor completely: 10x− 25.

Answer. The polynomial has two terms, 10x and −25. The coefficients have
positive common factors 1 or 5. They do not have a common variable factor,
since the second term does not involve x. So the greatest common factor is 5.

Dividing the original polynomial by the GCF of 5, we obtain

10x− 25

5
10x

5
+

−25

5
2x− 5.
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The answer is 5(2x− 5).

Example 7.2.5. Factor completely: x3 − 4x2 − 2x.

Answer. The polynomial has three terms, x3, −4x2 and −2x. The coefficients
have only positive common factor 1. The highest power of x that is common to
all three terms is x. So the greatest common factor is x.

Dividing the original polynomial by the GCF of x:

x3 − 4x2 − 2x

x
x3

x
+

−4x2

x
+

−2x

x

x2 − 4x− 2.

The answer is x(x2 − 4x− 2).

When the leading coefficient of a polynomial is negative, it is customary to
“factor out” a negative number, so that the more complicated factor has positive
leading coefficient. The next two examples in this section illustrate that point.

Example 7.2.6. Factor completely: −4x2 + 8x− 6.

Answer. The polynomial has three terms, −4x2, 8x and −6. The positive
common factors of the coefficients are 1 and 2. There is no common factor
involving x. Since the leading coefficient is negative, we will use −2 as the
GCF.

Dividing the original polynomial by the GCF of −2:

−4x2 + 8x− 6

−2

−4x2

−2
+

8x

−2
+

−6

−2

2x2 − 4x+ 3.

The answer is −2(2x2 − 4x + 3). Notice that the second, more complicated
factor (the trinomial) has a positive leading coefficient of 2.

Example 7.2.7. Factor completely: −x2 − 2x+ 4.

Answer. The polynomial again has three terms, −x2, −2x and 4. The only
positive common factor of the coefficients is 1. There is no common factor
involving x. Even though normally we might say that this polynomial cannot be
factored, we will go to the trouble of “factoring out” the common factor of −1
because the leading coefficient is negative.
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Dividing the original polynomial by the GCF of −1:

−x2 − 2x+ 4

−1

−x2

−1
+

−2x

−1
+

4

−1

x2 + 2x− 4.

The factorization, according to what we have written so far, is
(−1)(x2+2x−4). However, it is typical in this case to suppress the multiplication
by −1, which has the effect of “the opposite of.” So we will simply write −(x2+
2x− 4).

The answer is −(x2 + 2x− 4).

We conclude with an example illustrating the fact that the principles of
“factoring out” a variable common factor extend to polynomials with more
than one variable.

Example 7.2.8. Factor completely: 4x2y3z5 − 12x5y8z3 + 16x3y4.

Answer. The polynomial has three terms, 4x2y3z5, −12x5y8z3 and 16x3y4.
The coefficients have greatest common factor 4. The highest power of x that is
common to all three terms is x2. The highest power of y that is common to all
three terms is y3. Since the third term has no factor of z, z will not appear in the
greatest common factor. Combining all this information, the greatest common
factor of the three terms is 4x2y3.

Dividing the original polynomial by the GCF of 4x2y3:

4x2y3z5 − 12x5y8z3 + 16x3y4

4x2y3

4x2y3z5

4x2y3
+

−12x5y8z3

4x2y3
+

16x3y4

4x2y3

z5 − 3x3y5z3 + 4xy.

The answer is 4x2y3(z5 − 3x3y5z3 + 4xy).

7.2.1 Exercises

Factor the following polynomials completely.

1. 6x3 − 2x

2. 4x5 − 12x3 − 8x2

3. 18x− 9

4. −3x4 + 15x3 − 9x2
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5. 6ab3 − 12a2b2

6. −xy4 − 2x2y3 − 15x5y

7.3 Differences of squares

Let’s look at the polynomial
x2 − 16.

Based on the previous section, we might be tempted to say that this polynomial
cannot be factored. After all, the only positive factor x2 and −16 have in
common is 1.

But not so fast! Looking back at Example 6.34, we’ve seen this polynomial
before—it was the result of the product (x + 4)(x − 4). So once again, we can
“cheat:” x2 − 16 can be factored as (x+ 4)(x− 4)!

We never would have noticed that x2 − 16 could have been factored just by
looking for common factors. The question is now: What made this polynomial
so special, and is there a pattern that we can use?

The first thing to notice about this polynomial is that it has only two terms—
it is a binomial. More important, though, each of the two terms (ignoring for
a moment the signs) are perfect squares : x2 is (x)2 (“x squared”) and 16 is
(4)2 (“four squared.”) Finally, the two perfect squares are subtracted. For
that reason, this example and those having these common features are called
“differences of squares.”

Notice, by the way, that the two quantities which are being squared—in this
example, the x and the 4, play a key role in the factorization: (x + 4)(x − 4).
This pattern is at the heart of factoring a difference of squares.

Factoring a difference of squares

The factorization of a polynomial having the special form a2 − b2 is

(a+ b)(a− b).

(Notice that since the answer is a product, the order that we write the
factors is not important, thanks to the commutative property of multipli-
cation.)

Exercise 7.3.1. Show by multiplying (a + b)(a − b) that this product is really
the same as a2 − b2. You can look back at Example 6.34 if you need a hint.

What this “formula” says is that once you see that you have a difference of
squares, you are almost done. Just figure out what quantities are being squared
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(playing the roles of a and b in the formula), and fill them into the pattern

( + )( − ).

The only thing that requires some care is recognizing a difference of squares.
(If you aren’t familiar with the perfect square numbers, write a list of the first
10 or 12: 12 = 1, 22 = 4, 32 = 9, and so on.)

Example 7.3.2. Factor completely: x2 − 81.

Answer. Notice first that the two terms x2 and −81 have no factors in common
(except 1).

However, x2 is a perfect square (x squared) and 81 is also a perfect square (9
squared). The perfect squares are being subtracted. It is a difference of squares!

The answer is (applying the pattern) (x+ 9)(x− 9).

Example 7.3.3. Factor completely: 9x2 − 25.

Answer. Again, the terms have no common factor (other than 1).
The term 9x2 is a perfect square: 9x2 = (3x)2, using Property (E4) of

exponents. Also, 25 (= (5)2) is a perfect square. Since the perfect squares are
subtracted, this is a difference of squares.

The answer is (3x+ 5)(3x− 5).

Example 7.3.4. Factor completely: x2 + 4.

Answer. The two terms have no common factor (other than 1).
Both terms x2 and 4 are again perfect squares: x2 = (x)2 and 4 = (2)2.

However, the terms are not subtracted! This example is not a difference of
squares, and so the “formula” approach we have been using cannot be applied.
In fact, there is no simple factorization for x2+4, at least with polynomials with
integer coefficients.

The answer is: x2 + 4 cannot be factored.

The previous example is an example of a general fact: a sum of squares
a2 + b2 cannot be factored using polynomials with integer coefficients. (The
reader refer to Exercise 11 to see that (a+ b)(a+ b) is not in general the same
as a2 + b2.)

The next example shows that sometimes, differences of squares may appear
“in disguise.”

Example 7.3.5. Factor completely: x6 − 25y4.

Answer. The two terms have no common factor other than 1.
On the surface, the exponents for the variables are not 2, so this may not

appear to be a difference of squares. However, because both exponents are even,
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we can use Property (E4) and (E5) of exponents (Section 6.3) to express them
as perfect squares. In particular, x6 = (x3)2 and 25y4 = (5y2)2. Since the terms
are subtracted, this is a difference of squares!

The answer is (x3 + 5y2)(x3 − 5y2).

In the previous examples, we have never had to worry about common factors.
In fact, the reader might wonder why bother making note in all those examples
that there were no common factors other than one. The next example shows
that a difference of squares might not be apparent until common factors are
“factored out.”

Example 7.3.6. Factor completely: 3x3 − 27x.

Answer. In this example, the two terms 3x3 and −27x have a common factor
of 3x. Our first step will be to factor out the common factor, as in the previous
section:

3x(x2 − 9).

We have obtained a factorization of 3x3 − 27x, in the sense that we have
written it as a product of two factors. However, the factor x2− 9 is a difference
of squares, and so can itself be factored. In other words, we have not factored
completely. The factor x2 − 9 factors as (x+ 3)(x− 3).

The answer is 3x(x + 3)(x − 3). Notice that the common factor that we
factored out first must appear in the final factorization.

We close this section with another reminder about factoring completely.

Example 7.3.7. Factor completely: 16x4 − 1.

Answer. The two terms have no common factor (other than 1).
Both terms 16x4 and 1 are perfect squares: 16x4 = (4x2)2 and 1 = (1)2.

Since they are being subtracted, we have a difference of squares, and we write

(4x2 + 1)(4x2 − 1).

We need to make sure that we have factored completely. Looking carefully
at the two remaining factors, we see that the first factor 4x2 + 1 is a sum of
squares, and as mentioned above, cannot be factored. However, the second factor
4x2 − 1 is again a difference of squares: 4x2 = (2x)2 and 1 = (1)2. In other
words, 4x2 − 1 can be factored as (2x+ 1)(2x− 1).

The answer is (4x2 + 1)(2x+ 1)(2x− 1).

7.3.1 Exercises

1. a2 − 9

2. x2 − 25
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3. x2 + 64

4. 4x2 − 36

5. 25x4 − 81y6

6. x4 − 4x2

7. 3x3 − 75x

8. (*) (Other special products) Use the formula a2+2ab+ b2 = (a+ b)2 from
Exercise 11 to factor the following polynomials:

(a) x2 + 2xy + y2

(b) x2 + 10x+ 25

(c) x2 + 12x+ 36

9. (*) (Other special products) Show that a2 − 2ab+ b2 = (a− b)2 by multi-
plying the right side. In words, this is a “formula” which says that if we
have a sum of squares with an additional term that is the opposite of twice
the product of the two quantities being squared, it can be factored as the
square of the difference of the two quantities. (You will notice that this is
actually just a version of the formula in the previous exercises, replacing
−b for b.)

10. (*) Use the formula in the previous exercise to factor the following poly-
nomials:

(a) x2 − 2x+ 1

(b) x2 − 18x+ 81

(c) x2 − 8x+ 16

11. (*) (Difference of cubes) Show that a3 − b3 = (a − b)(a2 + ab + b2) by
multiplying the right side. This is a “formula” which says that if we
have a difference of perfect cubes (quantities raised to the third power),
the expression can be factored as the product of the difference of the two
quantities and the sum of the squares of the two quantities and the product
of the two quantities.

12. (*) Use the formula in the previous exercise to factor the following poly-
nomials completely:

(a) x3 − 8

(b) x3y − 125y4

13. (*) (Sum of cubes) Show that a3+b3 = (a+b)(a2−ab+b2) by multiplying
the right side. Unlike the case of squares, sums of perfect cubes can be
factored! The “formula” says that if we have a sum of perfect cubes, the
expression can be factored as the product of the sum of the two quantities
and the sum of the squares of the two quantities minus the product of the
two quantities.
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14. (*) Use the formula in the previous exercise to factor the following poly-
nomials:

(a) x3 + 64

(b) 8x3 + 27

7.4 Quadratic trinomials I. Monic trinomials

Many times, we will encounter polynomials having the form ax2+ bx+ c, where
a, b, and c represent numerical coefficients. When a (the coefficient of x2) is not
zero, this polynomial is quadratic, meaning that it is a polynomial of degree
2, or, what is the same, that the highest degree of any term is 2. We will call
polynomials of the form ax2 + bx+ c quadratic trinomials, given that there
are in general three terms whose highest degree is 2. (Notice though that if any
of the coefficients are zero, there may be less than three terms.)

We will follow the custom from now on of always using the letter a to rep-
resent the coefficient of the degree 2 term (the quadratic term), b for the the
coefficient of the degree 1 term (the linear term), and c for the degree 0 term
(the constant term).

In the next two sections, we will discuss methods to factor quadratic tri-
nomials. To make the presentation easier, we will first consider an easier case,
when a = 1. (Polynomials whose leading coefficient is 1 are called monic poly-
nomials.) Then, in the next section, we will take up the general case.

As we have in the past sections, let’s start with an example. We will try to
factor the quadratic trinomial

x2 + 6x+ 8.

(In the notation of the previous paragraphs, a = 1, b = 6 and c = 8.)
We first check that this polynomial cannot be factored using any of our two

prior methods. There is no factor (except 1) common to all three terms. Also,
it is clearly not a difference of squares—it has three terms, after all. So both of
our methods so far fail.

Let’s cheat! Looking back, in Example 6.31, x2 + 6x + 8 happened to have
been the result of the multiplication (x+4)(x+2). In other words, (x+4)(x+2)
is the factorization for x2 + 6x+ 8.

As usual, we can’t always hope that every polynomial we want to factor will
have been the result of some multiplication problem we had previously done.
However, as has been our pattern, let’s see if we can find some key features of
this example to help us find a general method for factoring (monic) quadratic
trinomials.

Let’s first set a goal of factoring a quadratic trinomial as a product of two
linear (degree 1) polynomials. In fact, if we are factoring a monic quadratic
trinomial, we will attempt to factor our quadratic trinomial x2 + bx + c into a
product of the form

(x+ )(x+ ),
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where the blanks will represent some numbers that we have to “fill in.” (In
our example, these numbers were 4 and 2.) Notice that this special form will
guarantee that the result will be a monic polynomial, since the only degree 2
term from distributing will be (x)(x) = x2.

How can we find numbers to “fill in the blanks” so that, when we multiply
them, we obtain the correct product? Let’s try to use our example above for
clues. Was there any relationship between the numbers 4 and 2 in the factor-
ization, on the one hand, and the coefficients 6 and 8 in the original trinomial?
Actually, there are two relationships that you could notice: first, 6 = 4 + 2,
and second, 8 = (4)(2). Our method for factoring monic quadratic trinomials is
based on these two important relationships: If a quadratic trinomial x2+ bx+ c
can be factored as (x+ p)(x+ q) for some numbers p and q, then p · q = c and
p+ q = b.

These relationships are the key to the following method.

Factoring a monic quadratic trinomial

If a monic quadratic polynomial x2 + bx+ c with integer coefficients b and
c can be factored, the factorization has the form

(x+ p)(x+ q),

where p and q are integers satisfying p · q = c and p+ q = b. To find p and
q:

1. List all integer factors of c, positive and negative, in pairs;

2. From this list, find a pair of factors whose sum is b.

If no such integers exist, then the quadratic trinomial cannot be factored.

This technique, like the technique involving difference of squares, amounts
to a kind of “fill in the blank”-type formula, where the p and q in this technique
are exactly the numbers to “fill in the blanks” in the formula

(x+ )(x+ ).

Although it may not be obvious from the description, the signs of p and q
are crucial to the method. The remaining examples of the section will illustrate
this point.

Example 7.4.1. Factor completely: x2 + 7x+ 12.

Answer. The terms have no factor in common (other than 1). It is not a
difference of squares. It is, however, a monic quadratic trinomial, with b = 7
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and c = 12. According to the strategy, we will look for factors of 12 that add to
7.

Below we list the factors of 12 in pairs, along with the sums.

1, 12 (1 + 12 = 13) − 1,−12 ((−1) + (−12) = −13)

2, 6 (2 + 6 = 8) − 2,−6 ((−2) + (−6) = −8)

3, 4 (3 + 4 = 7) − 3,−4 ((−3) + (−4) = −7)

The pair we are looking for is 3 and 4, since their product (3)(4) is 12 and
their sum 3+ 4 is 7. These will be the values we will use to “fill in the blanks.”

The answer is (x+ 3)(x+ 4). (Again, we remind the reader that the orders
of the factors is not important, thanks to the commutative property of multipli-
cation. We could have also written the answer as (x+ 4)(x+ 3).)

Now that we have illustrated our method with an example, we turn to an
example involving negative coefficients.

Example 7.4.2. Factor completely: x2 − 8x+ 7.

Answer. We check whether we can factor out a common factor or apply the
difference of squares formula; neither apply. The polynomial is a quadratic
trinomial. In this case b = −8 and c = 7. Notice, as always with polynomials,
we are considering the polynomial as x2 + (−8x) + 7, and the coefficient of the
x-term is negative.

Listing the factors of 7 (there are less this time, since 7 is prime!):

1, 7 (1 + 7 = 8) − 1,−7 ((−1) + (−7) = −8)

We see that the pair of factors whose product is 7 and whose sum is −8 is
−1 and −7. When we use these numbers to “fill in the blanks,” we obtain (x+
(−1))(x+ (−7)). Normally, however, we will rewrite the “adding the opposite”
as subtraction.

The answer is (x− 1)(x− 7).

Example 7.4.3. Factor completely: x2 − 2x− 8.

Answer. The terms of the polynomial have no common factor other than 1,
and it is not a difference of squares. It is a quadratic trinomial, with b = −2
and c = −8.

Listing the pairs of factors of −8:

1,−8 (1 + (−8) = −7) − 1, 8 ((−1) + 8 = 7)

2,−4 (2 + (−4) = −2) − 2, 4 ((−2) + 4 = 2)

(Notice that when c is negative, we should choose our pairs of factors with
opposite signs.)
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The pair of factors of −8 we are looking for is 2 and −4, since their sum is
−2.

The answer is (x+ 2)(x− 4). (This is NOT the same as (x− 2)(x+ 4), as
you can see by multiplying!)

Example 7.4.4. Factor completely: x2 + 2x+ 6.

Answer. The terms of the polynomial have no common factor other than 1,
and it is not a difference of squares. It is a quadratic trinomial, with b = 2 and
c = 6.

Listing the pairs of factors of 6:

1, 6 (1 + 6 = 7) − 1,−6 ((−1) + (−6) = −7)

2, 3 (2 + 3 = 5) − 2,−3 ((−2) + (−3) = −5)

In this example, none of the pairs add up to the value of b, which was 2.
The polynomial cannot be factored.

Example 7.4.5. Factor completely: 2x3 − 10x2 − 48x.

Example 7.4.6. In this example, the three terms do have a common factor:
the GCF is 2x. The first step then will be to factor out the GCF:

2x(x2 − 5x− 24).

However, we cannot yet say that the polynomial is factored completely, since
the second factor is a quadratic trinomial (with b = −5 and c = −24). The next
step will be to attempt to factor x2 − 5x− 24.

Listing the pairs of factors of −24:

1,−24 (1 + (−24) = −23) − 1, 24 ((−1) + 24 = 23)

2,−12 (2 + (−12) = −10) − 2, 12 ((−2) + 12 = 10)

3,−8 (3 + (−8) = −5) − 3, 8 ((−3) + 8 = 5)

4,−6 (4 + (−6) = −2) − 4, 6 ((−4) + 6 = 2)

We see that the pair we are looking for is 3 and −8, since their sum is −5 .
We can use these to “fill in the blank” and factor the quadratic trinomial, not
forgetting about the factor of 2x we already found.

The answer is 2x(x+ 3)(x− 8).

7.4.1 Exercises

Factor the following quadratic trinomials.

1. x2 − 4x− 32

2. y2 + 3y − 18
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3. x2 + 8y + 12

4. x2 − 12x+ 20

5. x2 + 3x+ 15

6. y2 − y − 6

7. t2 + 6t+ 9

8. x2 − 6x+ 5

Factor the following polynomials using any technique.

9. 3x3 − 9x2 − 12x

10. 5x2 − 80

11. 6x3 − 2x

12. 2x2 + 8

13. 4x4 − 12x3 − 8x2

14. 3x3 − 12x

15. (*) Apply the method of this section to factor the following polynomials
that have “quadratic form.” In each case, an appropriate substitution will
help. Don’t forget to factor completely!

(a) x4 + 5x2 + 6 (Hint: Substitute u = x2).

(b) x4 − x2 − 12

(c) x6 + 2x3 − 8 (Hint: Substitute u = x3).

(d) x64 − 10x32 + 9

7.5 Quadratic trinomials II. The ac-method

The previous section showed that, at least for monic quadratic trinomials, the
coefficients of the terms give important information as to how to factor the
trinomial into a product of linear factors.

Why was it so important in the previous section that the quadratic trinomial
be monic? Since the leading coefficient was 1, the coefficients of x in the linear
factors were also forced to be 1, and so there were only two numbers left to find
in the “formula” (x+ )(x+ ).

In the case of a non-monic quadratic trinomial ax2 + bx + c (a 6= 1), we
have no guarantee about the coefficients of x in the linear factors. One way to
proceed would be to try to make a more elaborate “fill-in-the-blank” strategy,
now having the form

( x+ )( x+ ).
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In fact, this would be a reasonable approach. Of course, it would have to involve
a, b and c, not just b and c like in the monic case.

We will follow a different strategy, however. Instead of the brute-force guess-
ing and checking that the fill-in-the-blank approach would involve, we will follow
a strategy that is designed to genuinely reverse the distributive law involved in
multiplying two binomials. This method will be a little longer, but it involves no
guessing at all. It is called the ac-method for reasons that will be clear shortly.

We will illustrate this method with an example. Let’s try to factor the
quadratic trinomial

6x2 + 19x+ 10.

The terms have no factors in common, and it is clearly not a difference of
squares. And while the polynomial is a quadratic trinomial, it is not monic,
since a = 6. A quick check will reveal that the fill-in-the-blank procedure of the
previous section will lead nowhere in this case.

We will present the steps in the context of this example, then summarize
the steps at the end.

Example 7.5.1. Factor completely: 6x2 + 19x+ 10.

Answer. We follow a four-step approach.
Step 1. Form the product ac. In this case, a = 6 and c = 10, so the

product ac is (6)(10) = 60.
Step 2. Find a pair of factors of ac whose sum is b. We are looking

for factors of 60 (from Step 1) whose sum is b = 19. This is exactly the process
we used in the previous section; a little work will show that the pair of numbers
we are looking for is 4 and 15 (since (4)(15) = 60 and 4 + 15 = 19).

Step 3. Use the pair of factors from Step 2 to “split” the x-term.

We are going to rewrite the middle term using the two numbers we found in
Step 2:

6x2 + 4x+ 15x+ 10.

Notice we have not changed the polynomial in any way, since 15x + 4x is 19x.
We have only changed the way the polynomial is written.

Step 4. Factor by grouping. The heart of the ac-method is the following
procedure. First, we will group the four terms from Step 3 into two groups:

(6x2 + 4x) + (15x+ 10).

We are going to try to factor each group separately. For example, the first
group 6x2+4x has a common factor of 2x, which we can factor out: 2x(3x+2).
Likewise, the second group has a common factor of 5, which can be factored out
to obtain 5(3x+ 2). In other words, our polynomial now has the form

2x(3x+ 2) + 5(3x+ 2).

Written in this way, the polynomial has two terms, one from each group. Notice
that these two terms have a common factor of (3x+2)! Even though this common
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factor looks more complicated that our usual monomial common factors, we treat
it the same way: we factor it out. We will write the common factor 3x + 2
outside, and we will be left with a factor of 2x (from the first term) and 5 (from
the second term):

(3x+ 2)(2x+ 5).

The answer is (3x+ 2)(2x+ 5).

At this point, the reader should look back at Example 6.32, where we per-
formed the multiplication (2x + 5)(3x + 2) (the same as our final answer with
the order of factors reversed) to obtain 6x2 + 19x + 10. The steps involved in
that multiplication example were exactly the same as the steps of this method
of factorization, but in reverse! The ac-method is designed to mimic (in reverse)
the process of distributing in the case of multiplying a binomial by a binomial.

One thing should be pointed out right away. The order of the pair in splitting
the middle term in Step 3 does not matter. The reader can verify this fact in
the previous example, writing 6x2+15x+4x+10 instead of 6x2+4x+15x+10.
The result should be the same, with the order of factors reversed. (We will see,
however, that sometimes one way of splitting the middle term will give an easier
result than the other.)

For the reader’s reference, we repeat the four-step ac-method here.

Factoring a quadratic trinomial: The ac-method

If a quadratic polynomial ax2 + bx + c with integer coefficients a, b and c
can be factored as a product of linear factors having integer coefficients,
then the following procedure will give the factorization:

1. Form the product ac;

2. Find a pair of factors of ac whose sum is b;

3. Use the pair from Step 2 to “split” the x-term into a sum of two terms
having the pair of numbers as coefficients;

4. Factor the resulting polynomial by grouping.

If there is no pair of factors of ac whose sum is b, then the quadratic
trinomial cannot be factored into a product of linear factors with integer
coefficients.

For the rest of this section, we will write our quadratic polynomials in de-
scending order (as we usually do anyway). For this reason, we will sometimes
refer to the x-term as the “middle term.”



188 CHAPTER 7. FACTORING

We will now illustrate the ac-method with several examples. Along the way,
we will point out three “tips” to make using the ac-method easier.

Example 7.5.2. Factor completely: 3x2 − 8x+ 4.

Answer. First, notice that the three terms have no common factor other than
1, and that the polynomial is not a difference of squares. It is a quadratic
trinomial, and it is not monic, since a = 3. We will use the ac-method.

The product ac in this example is 12. So we need to find a pair of factor of
12 whose sum is −8. The pair is −6 and −2.

We use this pair to split the middle term:

3x2 − 6x− 2x+ 4.

There is a small but important difference in this example from the previous
one: the coefficient of the second x-term is negative (of course, so is the coef-
ficient of the first x-term, but that matters less). In this case, we are going to
factor out a negative number.

We group the polynomials:

(3x2 − 6x) + (−2x+ 4).

The first group has a common factor of 3x. Factoring out we obtain 3x(x−2).
The second group has a common factor of 2. However, as we mentioned, we
will factor out −2 instead to obtain −2(x − 2). (Be careful of the signs when
factoring out a negative number!) In other words, we obtain:

3x(x− 2)− 2(x− 2).

Because we made the effort to factor out a negative number from the second
group, we see the factor (x − 2) in common to the two groups, giving a factor-
ization of (x− 2)(3x− 2).

The answer is (x− 2)(3x− 2).

The previous example contains an important lesson:

Helpful hint # 1: When factoring a polynomial whose leading coefficient
is negative, it is usually a good idea to factor out a negative common factor.

The next example shows that this hint also leads to another tactic to make
factoring simpler.

Example 7.5.3. Factor completely: 2x2 − x− 10.

Answer. We check to see that the three terms have no common factor, and
that the polynomial is not a difference of squares. It is a quadratic trinomial
which is not monic (since a = 2), suggesting the ac-method.

We first form the product ac, with a = 2 and c = −10, so ac = −20.
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We now try to find a pair of factors of −20 whose sum is −1. Listing the
factors if necessary, we find that 4 and −5 are factors of −20 whose sum is −1,
as required.

As mentioned earlier, the order of this pair does not matter when splitting
the middle term. This time, though, the factors have different signs. As we saw
in the previous example, if we write the term with the negative coefficient second
(to obtain 2x2 + 4x − 5x − 10), we should aim to factor out a negative factor.
Since this requires special care about the sign of the other term, we will instead
write the term with the negative coefficient first:

2x2 − 5x+ 4x− 10.

Grouping the terms as (2x2 − 5x) + (4x − 10), we see that the first group
has a common factor of x, while the second group has a common factor of 2.
Factoring the two groups separately, we obtain

x(2x− 5) + 2(2x− 5).

As we expect in the ac-method, we see that the two resulting terms have a com-
mon factor of 2x− 5. Factoring it out, we obtain

(2x− 5)(x+ 2).

The answer is (2x− 5)(x+ 2).

Exercise 7.5.4. For practice, re-do the previous example, splitting the middle
term as

2x2 + 4x− 5x− 10.

The lesson of the previous example can be summarized in the following tip.

Helpful hint # 2: If the pair of factors used to split the middle term in
the ac-method have different signs, it is usually more convenient to write
the term with the negative coefficient first.

Example 7.5.5. Factor completely: 4x3 + 4x2 + 2x.

Answer. Notice first that this polynomial is not a quadratic trinomial. It is a
trinomial, of course, but it is not quadratic since the leading term has degree 3.

However, the three terms have a common factor of 2x. So we immediately
factor out the (greatest) common factor to obtain

2x(2x2 + 2x+ 1).

Although we now have a factorization, since we have written the polynomial
as a product of two factors, we need to decide whether the polynomial is factored
completely. In particular, since the second factor 2x2 + 2x + 1 is a quadratic
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trinomial which is not monic (since a = 2), we should try to apply the ac-method
to determine whether it can be factored further.

To apply the ac-method to factor 2x2 + 2x + 1, we see that the product ac
is 2, since a = 2 and c = 1. So we need to find factors of 2 whose sum is 2
(since b = 2). It shouldn’t take long to check that there is no pair of factors that
satisfy this property. In this case, the ac-method determines that the polynomial
2x2 + 2x+ 1 cannot be factored into a product of linear factors.

The answer is 2x(2x2 + 2x+ 1).

The final example of this section will lead to one last hint to keep in mind
when applying the ac-method.

Example 7.5.6. Factor completely: 12x2 − 33x− 9.

Answer. Looking at the three terms, there is a common factor of 3. The first
step will be to factor it out:

3(4x2 − 11x− 3).

As in the previous example, we need to determine whether the remaining
quadratic trinomial 4x2 − 11x− 3 can be factored further as a product of linear
factors. We will apply the ac-method, using a = 4, b = −11 and c = −3. (Notice
that to do this, the common factor of 3 no longer needs to be considered, although
it will remain in the final factorization.)

The product ac in this case is −12. We will look for a pair of factors of −12
whose sum is −11; such a pair is −12 and 1. Using this pair to split the middle
term (writing the factor with the negative coefficient first), we obtain

4x2 − 12x+ x− 3.

Grouping the factors as (4x2 − 12x) + (x − 3), we see that the first group
has a common factor of 4x. The second group, however, normally would not be
factored, since the only common factor of x and −3 is 1. However, to make the
factorization more clear, we are going to factor out the common factor of 1! In
other words, factoring the two groups separately we obtain

4x(x− 3) + 1(x− 3).

Written in this way, we see that the two terms have a common factor of
x − 3. Factoring out this common factor, we obtain (x − 3)(4x + 1). In other
words, the factor 4x2 − 11x− 3 can be factored as a product of linear factors.

The answer is 3(x− 3)(4x+ 1).

There are two things to notice about the previous example. First, taking
the time to factor out the common factor first, apart from being good general
practice, made the ac-method much smoother. After all, if we had applied the
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ac-method to the quadratic trinomial 12x2 − 33x− 9 without factoring out the
3 first, we would need to find factors of −108 whose sum is −33. That can be
done, but who wants to go through the list of 12 pairs of factors of −108? Even
if we did that, we would still see that one of the linear (binomial) factors would
have a common factor of 3 that we would still have to factor out in order to
factor completely. Always look for common factors first!

The second thing to notice is more particular to the ac-method.

Helpful hint # 3: When factoring by grouping using the ac-method, if
one of the groups has no common factor other than 1, take the time to
factor out the common factor of 1.

To close this section, we point out that even though we have developed the
ac-method as a method of factoring non-monic quadratic trinomials, the method
also works for the monic trinomials in the previous section. (We don’t normally
use the method for monic trinomials, though, since the “shortcut” presented in
the previous section is so much faster.) In the challenge exercises, we give some
other examples of situations where the ac-method can help.

7.5.1 Exercises

Factor the following polynomials completely.

1. 2x2 − x− 55

2. 3x2 + 4x+ 1

3. 6x2 + x− 2

4. 15x2 + x− 2

5. 5x2 − 3x− 1

6. 2x2 − x− 10

7. 6x2 − 22x+ 20

8. 2x4 − 4x3 − 16x2

9. (*) Factor completely the following polynomials that have “quadratic
form.” In each case, an appropriate substitution will help.

(a) 2x4 + 5x2 + 3 (Hint: Substitute x2 = u, so x4 = u2).

(b) 4x4 + x2 − 5

(c) 3x6 − 10x3 + 3 (Hint: Substitute u = x3).

(d) 2x6 + 5x3 − 7

(e) 4x1000 − 9x500 − 9
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10. (*) Use the ac-method to factor the following quadratic trinomials in two
variables.

(a) x2 − xy − 12y2

(b) x2 + 3xy + 2y2

(c) 2x2 − 5xy − 3y2

(d) 3x2 − 2xy − y2

7.6 Factoring by grouping

We will end our discussion of factoring by noticing that the technique of factoring
by grouping, which we used as a key component of the ac-method, can be applied
in a wider setting.

In each of the following examples, you will notice that none of the methods
we have discussed so far can be applied: they have no factors (other than 1)
common to all terms, they are not differences of squares, and they are not
quadratic trinomials. However, because they have four terms involving pairs
of variables, there is hope that they may be factored into a product of two
binomials.

Example 7.6.1. Factor completely: 3ax+ 2ay + 12bx+ 8by.

Answer. The reader should first check that none of the preceding factoring
techniques can be applied to this polynomial (in four variables!).

Let’s try to factor by grouping. Write the polynomial in two groups:

(3ax+ 2ay) + (12bx+ 8by).

We notice that the first group has a common factor of a, while the second group
has a common factor of 4b. So factoring the two groups separately, we obtain

a(3x+ 2y) + 4b(3x+ 2y).

Since the two terms now have a common factor of 3x+ 2y, we can factor it
out to obtain (3x+ 2y)(a+ 4b).

The answer is (3x+ 2y)(a+ 4b).

The reader should notice that the procedure in this example is exactly the
same as the one we encountered every time we apply the ac-method. There
is an important difference, though. In applying the ac-method, the two terms
obtained by factoring a common factor from the two groups separately will
always have a common factor (as long as the middle term is split by using the
factors of ac whose sum is b). For arbitrary polynomials like the ones we are
looking at now, the two terms might not have a common factor even if the two
groups can be factored separately.
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Example 7.6.2. Factor completely: 6np+ 4nq − 15mp− 10mq.

Answer. First check that none of the preceding factoring techniques can be
applied to this polynomial.

Again, we group the terms:

(6np+ 4nq) + (−15mp− 10mq).

We see that the first group 6np+4nq has a common factor of 2n. In the sec-
ond group −15mp− 10mq, notice that the first term is negative. As in Example
7.5.2 above, we will factor out a common factor with a negative coefficient—in
this case −5m. So we obtain

2n(3p+ 2q)− 5m(3p+ 2q).

(Notice again that factoring out the −5 in the second group changes the signs
of both terms in the group.)

Like last time, the two terms have a common factor of 3p + 2q. Factoring
out, we obtain

(3p+ 2q)(2n− 5m).

The answer is (3p+ 2q)(2n− 5m).

There is one thing worth mentioning about the preceding example. Instead
of grouping the first two terms and the last two terms, we could have rearranged
the terms first as 6np− 15mp+ 4nq − 10mq. The reader should check that the
result after factoring by grouping is the same as the result above (with the order
of the factors possibly different). The difference is that written in this different
order, there is no need to factor out a negative factor in the second group, which
might eliminate some difficulty with signs.

Reordering the terms in the last example might have been helpful, but it
was optional. The next example shows that sometimes reordering the terms is
essential to apply the method of factoring by grouping we have described.

Example 7.6.3. Factor completely: 3sx+ 2ty − 3tx− 2sy.

Answer. As usual, we check to see that none of the preceding factoring tech-
niques can be applied to this polynomial.

This time, if we try to group in the most obvious way, as (3sx + 2ty) +
(−3tx − 2sy), neither term has any common factor at all (except 1 of course).
However, before giving up, let’s try to rearrange the terms. For example, let’s
try rewriting the polynomial as

3sx− 3tx+ 2ty − 2sy.

Now, grouping as usual, we get

(3sx− 3tx) + (2ty − 2sy).
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Written this way, we see that the first group has a common factor of 3x
while the second group has a common factor of 2y. Factoring the two groups
separately, we get

3x(s− t) + 2y(s− t).

These two terms have a common factor of s − t. Factoring out this common
factor, we get

(s− t)(3x+ 2y).

The answer is (s− t)(3x+ 2y).

We end this section on a pessimistic note.

Example 7.6.4. Factor completely: 6ax+ 2ay + 5bx− 3by.

Answer. This polynomial has no factor common to all four terms. It is not a
difference of squares or a quadratic trinomial. Since there are four terms with
pairs of variables, we will try to factor by grouping.

Grouped in the obvious way

(6ax+ 2ay) + (5bx− 3by),

we see that the first group has a common factor of 2a while the second group
has a common factor of b. Factoring the groups separately, we get

2a(3x+ y) + b(5x− 3y).

However, the two resulting terms have no factor in common! This obstacle
is serious, since even though the groups have been factored, we still have not
written the whole original polynomial as a product of two factors, since there
are still two terms.

Before we give up, we remember from the last example that sometimes re-
ordering the terms can be helpful. So let’s try rewriting the original polynomial
as 6ax+ 5bx+ 2ay − 3by. Now, grouping as

(6ax+ 5bx) + (2ay − 3by),

we see that the first group has a common factor of x and the second group has
a common factor of y. Factoring the two groups separately, we obtain

x(6a+ 5b) + y(2a− 3b).

Again, these two terms have no common factor.
The reader should try other ways to reorder the terms to convince themself

that in no case can we obtain two terms with a common factor, as we have
above.

The polynomial cannot be factored.
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7.6.1 Exercises

Factor by grouping, if possible.

1. 6xz + 9xw − 8yz − 12yw

2. 45cw + 63cz − 20dw − 28dz

3. 20ax− 24ay + 15bx+ 18by

4. 4ac− 9bd− 3ad+ 12bc

5. 20ax− 15ay − 8bx+ 6by

6. 3mx+ 6my − 2nx− 4ny

7.7 Chapter summary

• To factor a polynomial means to write it as a product of two or more
factors, none of which are 1.

• Not every polynomial can be factored.

• In order to factor a polynomial, we have the following checklist to apply:

Factoring checklist

To factor a polynomial, answer the following questions in the given order:

1. Do the terms have any factors in common?

– If so, “factor out” the greatest common factor.

2. Is the polynomial a difference of squares?

– If so, apply the “formula” a2 − b2 = (a+ b)(a− b).

3. Is the polynomial a quadratic trinomial of the form ax2 + bx+ c?

– If so, and a = 1, find factors of c whose sum is b to “fill in the
blanks”

(x+ )(x+ ).

– If so, and a 6= 1, apply the ac-method.

4. Can the method of factoring by grouping be applied?

If the above list gives a factorization of the polynomial, make sure to apply
the checklist to the each of the factors to make sure the polynomial is
factored completely.
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Part IV

Quadratic equations and

radical expressions
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Chapter 8

Radical expressions

Vocabulary

• Quadratic equation

• Rational numbers

• Irrational numbers

• Radicand

• Rationalizing (a denominator)

• Imaginary unit

• Real numbers and complex numbers

8.1 Introduction: Quadratic equations and num-

ber systems

For the last two chapters, we have worked with polynomials as algebraic objects
on which we can perform “symbolic arithmetic.” We will now return to the
question of solving equations. Up to this point, we have developed an approach
to solving linear equations: degree one polynomial equations in one or two
variables.

In particular, we will attempt to solve quadratic equations, or polynomial
equations of degree two. However, we will see in this introductory section that
these equations—even simple ones—force us to face some fundamental problems
not just about algebra, but about the number systems we have been working
with. That will be the topic of this chapter.

Up to now, we have been working almost exclusively with rational num-
bers—numbers that can be expressed as a ratio of two integers. That means

199
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the “worst” numbers we have had to work with have been fractions or (repeat-
ing) decimals. We will see that the setting of rational numbers is not adequate
to solve any but the simplest quadratic equations. In fact, solving quadratic
equations will force us to face “numbers” that have properties that are quite
different from any we have seen up to now.

Let’s start our discussion of quadratic equations with a simple example of a
quadratic equation in one variable:

x2 = 9.

This equation (in one variable) is quadratic, since the highest power of x is 2. A
little bit of trial and error quickly reveals that 3 is a solution to this equation:
substituting, (3)2 = 9 is a true equation. After all, 9 is a perfect square; said in
a different way, 3 is a square root of 9.

However, remember that to solve the equation means to find all solutions.
So far we have found one. Keeping in mind, though, that the square of a
negative number is positive, we can see that −3 is also a solution to x2 = 9,
since (−3)2 = 9 is a true equation. We can already see a major difference
between quadratic equations and linear equations: a typical quadratic equation
may have more than one solution. (Recall that if a linear equation in one
variable has more than one solution, then every number is a solution to that
equation.) It shouldn’t be hard to convince yourself that no other number is a
solution.

Our first simple example points to a crucial fact about quadratic equations
that will be at the core of all of our strategies to solve quadratic equations in
Chapter 9:

Basic fact about quadratic equations: A typical quadratic equation in
one variable has no more than two solutions.

We will return to this fact shortly to state it in a more precise way. (It can
be proved with more detailed knowledge of polynomials, usually discussed in a
precalculus course.)

Let’s look at another simple example, which on the surface looks no different
from the last one:

x2 = 5.

The problem with this equation is that when we try to guess a solution, like we
did last time, no obvious solution appears. After all, unlike 9 that appeared in
the last equation, 5 is not a perfect square.

We might try a more refined version of guessing. We see, for example, that
(2)2 = 4 is less than 5, while (3)2 = 9 is greater than 5. So we might guess
a number between 2 and 3—say 2.5. With a little bit more work calculating,
we see that (2.5)2 = 6.25, still larger than 5. So we’ll guess again, this time
between 2 and 2.5—maybe 2.25. We see that (2.25)2 = 5.0625, close, but still
a little too large! If we try 2.24, we see that (2.24)2 = 5.0176—closer, but still
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too large. If we try 2.235, we see that (2.235)2 = 4.995225, which is less than
5 but closer still. We might say that a solution to x2 = 5 is “approximately
2.235.” That seems a little unsatisfying, though, as mathematics aims to be a
precise discipline.

At the core of this problem is a fundamental fact about whole numbers: If
a whole number is not a perfect square, than its square root is not a rational
number. Since rational numbers either have a terminating or a repeating decimal
expansion, this means that if x2 = 5 has a solution, its decimal expansion will
never terminate and it will never repeat. This is somewhat depressing from
the point of view of the last paragraph, where we tried to “guess” a solution of
x2 = 5. Having said that, our guessing attempts do seem to point to the fact
that a solution does, in fact, exist, even though it might be hard to pin down
exactly what that solution is.

Our discussion of the quadratic equation x2 = 5 has led us to numbers that
might be completely unnecessary from the point of view of linear equations. We
can rephrase the statement of the previous paragraph: The solutions to x2 = k,
where k represents a positive integer which is not a perfect square, are irra-

tional numbers.1 The next section will be devoted to working with irrational
numbers, which will play an essential role in solving quadratic equations.

One final example will reveal another basic problem in solving quadratic
equations. Consider the quadratic equation

x2 = −4.

We might have an initial glimmer of hope, seeing that 4 is a perfect square. But
we are looking for a number which, when multiplied by itself, gives a negative
number. This reveals a problem that is much more basic than the problem of
irrational numbers in the previous problem: No number, rational or irrational,
when squared, will give a negative number. This fact might tempt us to simply
say that the equation has no solution. In the Section 8.3, we give another way
to handle this problem by introducing a new kind of “number” called complex
numbers.

Let’s summarize what this short discussion of the most simple quadratic
equations in one variable has revealed.

1The discovery of irrational numbers—numbers which cannot be written as the ratio of two
integers—is usually credited to the ancient Greek school of thinkers known as the Pythagore-
ans nearly 2,500 years ago. It is an irony of history that this discovery, derived logically,
should have come from the Pythagoreans, according to whose world view all things could be
understood as a ratio of whole numbers.
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Important features of quadratic equations in one variable

• A typical quadratic equation in one variable will have two solutions.

• A quadratic equation may have irrational solutions (even if its coeffi-
cients are rational numbers).

• A quadratic equation may have solutions which are complex numbers.

8.2 Radical expressions

In this section, we will establish some conventions about how we will treat
the types of irrational numbers that arise in solving quadratic equations. In
particular, we will develop a way of writing square roots symbolically.

We already saw in the previous section that solutions to the equation x2 = a
are irrational numbers whenever a is a whole number that is not a perfect
square. In that discussion, we saw that solutions to this simple type of quadratic
equation is closely related to the notion of a square root, which we treated in
Chapter 1 as an operation. One way to treat irrational square roots would be to
agree, in advance, that we will estimate them to a given decimal accuracy. For
example, if we agree to estimate square roots to 8 decimal places, a calculator
might tell us that the square root of 5 is given by

√
5 ≈ 2.23606798. If, on

the other hand, we agree to estimate to 12 decimal places, we would write√
5 ≈ 2.236067977500.

We are going to handle irrational square roots in a different way. Instead of
estimating (which depends in practice on using a calculator), we will adopt a
symbolic approach.

The square root as a symbol

For any non-negative number k, the symbol
√
k (“the square root of k”)

represents the non-negative solution to the equation x2 = k.

Said in another way, the symbol
√
k represents the non-negative number

which satisfies
(
√
k)2 = k.

It is worthwhile pointing out what is new about this definition. In our
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previous understanding of square roots,
√
k actually consisted of two separate

symbols: k (representing a number) and the radical sign
√
, which represented

an operation performed on the number k. In our new definition, by contrast,√
k represents one symbol with two parts: the radical sign and the radicand, as

the quantity k inside the radical sign is known.
Keep in mind from the introductory section that the equation x2 = k typi-

cally has two solutions, one positive and one negative. In this case,
√
k represents

the positive solution.
From the point of view of solving quadratic equations, at least for simple

ones, this definition in a certain sense “cheats.” We have defined the symbol√
k to be the nonnegative solution of x2 = k; the other solution will then be its

opposite, written as −
√
k. The following examples illustrate this point.

In fact, we can write this as our first strategy to solve quadratic equations.

First strategy to solve quadratic equations of the form x2 = k

An equation having the form x2 = k has two solutions, written symbolically
as

√
k and −

√
k.

For now, we will be applying this strategy when k represents a nonnegative
number. In Section 8.3, we will consider what happens when k is negative.

Notice that in the special case x2 = 0, the “two” solutions
√
0 and −

√
0 are

the same—they are both 0. But rather than thinking of this as a special case
of a quadratic equation with only one solution, it is more convenient to think
of this as a quadratic equation with two solutions that just happen to be the
same.

Example 8.2.1. Solve the following quadratic equations:

(a) x2 = 7;

(b) x2 = 129;

(c) x2 = 15.

Answer. (a) The positive solution to x2 = 7 is
√
7 (by definition!). The nega-

tive solution is written −
√
7. So the solutions are

√
7 and −

√
7.

(b) The solutions are
√
129 and −

√
129.

(c) The solutions are
√
15 and −

√
15.

The point of these simple examples is not really to show how to solve a
quadratic equation—although we have technically done so. The point is to
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illustrate the fact that we have used a symbol to represent a solution to an
equation. It has the advantage of needing no estimation. For example,

√
129

is a symbol representing the exact value of the positive solution to x2 = 129.
It has the disadvantage, however, of hiding the fact that this symbol

√
129

is a symbol for an actual (irrational) number, whose value is approximately
11.357816691600547221 . . . .

There is another, more serious, disadvantage to this symbolic approach. If
we get too excited about this new notation, we would be tempted to say that
the solutions to the quadratic equation x2 = 9 are

√
9 and −

√
9, and done!

This seems like a wrong way to answer a question, when it is much more easily
understood to say that the solutions are 3 and −3. Unlike the examples above,
9 is a perfect square, and so there is no need to have to have a special notation
made specifically to address irrational numbers.

For these (and other related) reasons, we are going to agree to a series of
rules about how we write square roots symbolically. These rules have evolved
over the course of history and are generally accepted.

Simplified square root notation

The symbol
√
k is called simplified if the following conditions hold:

1. The radicand k has no perfect square factors;

2. The radicand k contains no fractions.

In addition, any expression containing radicals must satisfy a third condi-
tion:

3. No radical expression shall appear in a denominator.

What happens if we encounter a radical expression which is not simplified?
We will take the effort to simplify it, rewriting it in an equivalent form which
is simplified according to the conditions above. In order to do this, we will rely
on two basic properties of square roots.
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Some properties of square roots

If a and b represent non-negative numbers, then:

(S1)
√
a · b = √

a ·
√
b;

(S2)

√

a

b
=

√
a√
b
.

(8.1)

These properties are really just versions of the properties of exponents we
discussed in Chapter 6. For example, the first property really says that the
number represented by

√
a·
√
b should be the (non-negative) solution to x2 = ab.

Is this true? Since (
√
a)2 = a and (

√
b)2 = b, (

√
a ·

√
b)2 = (

√
a)2 · (

√
b)2 = ab,

by property (E4) of exponents. So
√
a ·

√
b really is a solution to x2 = ab, and

the equality of Property (S1) is valid.

We now show through a series of examples how these properties can help us
to simplify square roots.

Example 8.2.2. Simplify the following square roots:

(a)
√
12;

(b)
√
72;

(c)
√
75.

Answer. Before applying the properties of square roots, let’s look at the three
square roots we are being asked to simplify. Notice that all three represent ir-
rational numbers, since neither 12, 72 nor 75 are perfect squares. However, all
three have perfect square factors. For this reason, none of the three square roots
are simplified; they all violate Rule 1 of our definition of a simplified square
root.

To simplify them, we will write the radicand as a product of a perfect square
(preferably as large as possible, if there are more than one) with another number,
and then apply Property (S1).

(a) 12 has a perfect square factor of 4. So

√
12 =

√
4 · 3 =

√
4 ·

√
3 = 2

√
3.

The answer is 2
√
3.
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(b) 72 has several perfect square factors, but the largest is 36.
√
72 =

√
36 · 2 =

√
36 ·

√
2 = 6

√
2.

The answer is 6
√
2. (What would have happened if we had factored out the

perfect square factor of 9?)

(c) 75 has a perfect square factor of 25.
√
75 =

√
25 · 3 =

√
25 ·

√
3 = 5

√
3.

The answer is 5
√
3.

The next example illustrates how to cope with a radical expression with a
fraction in the radicand.

Example 8.2.3. Simplify the following radical expressions:

(a)

√

3

4
;

(b)

√

50

9
;

Answer. These radical expressions violate Rule 2 for simplified square roots.
However, we can apply Property (S2) of square roots directly:

(a) Applying Property (S2):
√

3

4
=

√
3√
4
=

√
3

2
.

Notice we did not eliminate the fraction from the expression. However, the
only remaining radicand (which is 3) does not involve fractions.

The answer is

√
3

2
.(Now try this: Use a calculator to find an approximate

numerical value for the expression
√
3/2 (by finding an estimate for

√
3 and

dividing by 2). Square the result. What number do you obtain? Compare
your answer to the original expression.)

(b) Applying Property (S2):
√

50

9
=

√
50√
9

=

√
50

3
.

This time, although we have an expression that satisfies Rule 2 for simplified
square roots, the remaining radicand of 50 still has a perfect square factor
of 25. Hence √

50

3
=

√
25 · 2
3

=

√
25 ·

√
2

3
=

5
√
2

3
.

The answer is
5
√
2

3
.
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In the previous example, we were lucky to encounter fractions in the radicand
whose denominators were perfect squares. The next example illustrates how to
simplify when this is not the case. It involves a technique known as rationalizing
the denominator. Here, the word “rationalize” implies making an irrational
number rational by multiplying by an appropriate number.

Example 8.2.4. Simplify the following square roots:

(a)

√

1

2
;

(b)

√

3

8
.

Answer. The first thing we notice about both examples is that we have a fraction
in the radicand. As in the last example, we begin by using Property (S2) of square
roots.

(a) Applying Property (S2),

√

1

2
=

√
1√
2
=

1√
2
.

Unfortunately, this time, the radicand in the denominator is not a perfect
square. According to Rule 3, this expression is not yet completely simplified,
since there is a square root symbol remaining in the denominator.

Our strategy will be to multiply the numerator and denominator of the frac-
tion by the same quantity (in other words, multiply the expression by 1,
which does not change the expression). We will choose the quantity in such
a way that, after using Property (S1), the radicand in the denominator be-
comes a perfect square.

In particular, we will ask: what perfect square has the given radicand as a
divisor? In this example, the smallest perfect square that has 2 as a divisor
is 4. In order to obtain a radicand of 4 in the demoninator, we will multiply
the numerator and denominator by

√
2:

1√
2
=

1√
2
·
√
2√
2
=

√
2√
4
=

√
2

2
.

Notice that we chose what radical expression to multiply the denominator
(and the numerator) specifically in order to obtain a perfect square as a
radicand in the denominator, after applying Property (S1). Notice that this
process does not eliminate the radical expression completely. It only changes
the expression is written in such a way that the radical expression appears
in the numerator and not in the denominator, in compliance with our Rule
3 of simplified radical expressions.

The answer is

√
2

2
.



208 CHAPTER 8. RADICAL EXPRESSIONS

(b) Again, we begin by applying Property (S2):

√

3

8
=

√
3√
8
.

As in Example (a), we are left with a radical expression in the denominator.
Although we notice that

√
8 can be simplified, since 8 has a perfect square

factor of 4, we will first address the more serious problem of the radical
expression in the denominator.

Our goal is to obtain a radicand in the denominator which is a perfect square.
We look for a perfect square which has 8 as a factor; the smallest such perfect
square is 16. In order to obtain the radicand of 16 in the denominator, we
multiply the denominator (and numerator) by

√
2:

√
3√
8
=

√
3√
8
·
√
2√
2
=

√
6√
16

=

√
6

4
.

The answer is

√
6

4
.

(In the challenge exercises at the end of Section 8.4, we will come back to
the question of rationalizing the denominator for more complicated cases.)

We close this section by incorporating our practice of simplifying radical
expressions into solving quadratic equations, following the approach of Example
8.2.1.

Example 8.2.5. Solve the following quadratic equations.

(a) x2 = 16.

(b) x2 = 98.

Answer. In each case, we will follow the approach of Example 8.2.1, finding
the positive solution and simplifying if necessary.

(a) By definition, the positive solution of x2 = 16 is
√
16. Since 16 is a perfect

square, we simplify
√
16 as 4. Since 4 is a solution, −4 is a solution as well.

The solutions are 4 and −4.

(b) The positive solution to x2 = 98 is
√
98. While 98 is not a perfect square,

it does have a perfect square factor of 49. Simplifying,

√
98 =

√
49 · 2 =

√
49 ·

√
2 = 7

√
2.

Since 7
√
2 is a solution, so is its opposite −7

√
2.

The solutions are 7
√
2 and −7

√
2.
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8.2.1 Exercises

Simplify the radical expressions below.

1.
√
32

2.
√
500

3.
√
98

4.
√
192

5.
√
50

6.

√

3

16

7.

√

8

25

8.

√

5

6

9.

√

1

12

10.

√

9

32

11. (*) Radical notation is also used to handle more general algebraic equa-
tions. The nth root of a (positive2) number k, written n

√
k is defined to

be the (positive) solution to the equation xn = k. For example, 3
√
64 = 4,

since (4)3 = 64, and 5
√
32 = 2, since (2)5 = 32.

(a) Evaluate 4
√
81 and 3

√
125.

(b) Using the rules for simplifying square roots as a guide, write the cor-
responding rules for “simplified nth roots.”

(c) Simplify: 3
√
24.

(d) Simplify:
3

√

1

2
.

(e) Find a positive solution to x3 = 120.

Solve the following quadratic equations.

12. x2 = 100

13. x2 = 12

14. x2 = 150

15. x2 =
3

4
2In this example, we will not discuss roots of negative numbers.
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8.3 Introduction to complex numbers

We already saw in the chapter introduction that certain quadratic equations
might have no “real” number as a solution. For example, for the quadratic
equation x2 = −1, no “real” number, when multiplied by itself, can result in
any negative number, and in particular cannot be −1.

However, rather than simply ending satisfied with the equation having no
solution, we will instead adopt the approach of the previous section: we will
suppose there is a solution, and denote this solution with a symbol.

The imaginary unit i

The symbol i will be used to denote one solution to the equation x2 = −1.

Stated differently, i is a symbolic “number” having the property that i2 =
−1.

Because of the similarity of this definition with the symbolic definition of
the square root

√
a as a solution to x2 = a, we sometimes write

i =
√
−1.

Why is i called an “imaginary unit?” The word “unit” (in the sense of
“one”) is due to the fact that i2 (= −1), by definition, has magnitude one. The
word “imaginary” (due to the mathematician–philosopher René Descartes) is
meant to emphasize that this symbol has different properties than the “real”
numbers we are used to working with, and in particular its square is negative.
In fact, the widely-used phrase “real number” arose (also due to Descartes)
to distinguish these numbers from “imaginary numbers.” We will adopt this
usage3. From now on, we will use the term real number to be any number
that does not involve the imaginary unit i. By contrast, we call a complex
number a “number” that may involve the imaginary unit i. (This terminology
is meant to be less judgmental than the phrase, “imaginary numbers.”)

We emphasize again that complex numbers (involving i) have some very
different properties from real numbers (not involving i). We already have seen
that it is possible for the square of a complex number to be negative. Another
difference, which is not so obvious, is that there is no way to order complex
numbers with the usual comparison relations of “less than” or “greater than.”

3The precise definition of a real number is quite technical. In fact, a rigorous definition of
a real number that included all the properties commonly accepted as “real” was only stated
toward the end of the 19th Century, some 250 years after Descartes first used the term. Most
students (all except some math majors) will never encounter the “real” definition of a real
number.
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In particular, it makes no sense to call a complex number positive (“greater
than zero”) or negative (“less than zero”).

Once we have made the definition of the imaginary unit, we will treat it
(symbolically) exactly as we have treated radical expressions up to now. In this
section, we will see how the imaginary unit arises in solving quadratic equations.
In the next section, we will see how it is manipulated in the most basic cases.

Notice first that once we have defined i to be a solution to the equation
x2 = −1, then we should also admit the symbol −i as another solution:

(−i)2 = (−1 · i)2 = (−1)2 · i2 = 1 · (−1) = −1,

assuming that the symbol i should behave in accordance with the properties
of exponents. In other words, once we allow for complex numbers, then the
equation x2 = −1 has two (complex) solutions, i and −i. (Remember, complex
numbers involving the imaginary are neither positive nor negative. The best we
can say is that i(= 1 · i) has a positive coefficient of 1, while −i(= −1 · i) has a
negative coefficient.)

The following examples show how the imaginary unit arises in a variety of
settings, once we introduce the rules of radical expressions that we have seen so
far.

Example 8.3.1. Simplify the following radical expressions.

(a)
√
−4

(b)
√
−7

(c)
√
−50

Answer. We adopt exactly the same approach to simplifying square roots with
negative radicands as we did in the previous section. The only extra ingredient
will be that we will use the symbol i to represent

√
−1.

(a) Separating the factor of −1 in anticipation of complex number notation,

√
−4 =

√

(−1) · 4 =
√

(−1) ·
√
4 = i · 2 = 2i.

The answer is 2i. (Notice that we will write the integer part as a “coeffi-
cient,” in the same way that we customarily write 2x instead of x · 2.)

(b) √
−7 =

√

(−1) · 7 =
√
−1 ·

√
7 = i

√
7.

The answer is i
√
7. (In this case, it is customary to write the radical expres-

sion second, even though
√
7 represents a real number “coefficient.” This

avoids writing
√
7i, where it might be misunderstood to indicate that the i

is part of the radicand.)
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(c) In this case, in addition to the presence of a complex number, we see that
the radicand contains a (real!) perfect square factor.

√
−50 =

√

(−1) · 50
=

√
−1 ·

√
50

= i
√
25 · 2

= i ·
√
25 ·

√
2

= i · 5 ·
√
2

= 5i
√
2.

The answer is 5i
√
2. (This notation, with the integer factor first, then the

imaginary unit, then the irrational radical symbol, is customary. However,
(5
√
2)i might be more in keeping with using a real number coefficient for the

imaginary unit.)

Complex numbers, really by definition, appear as solutions to quadratic
equations. In the following examples, we proceed exactly as in Example 8.2.1,
keeping in mind our convention of writing complex numbers using the imaginary
unit i.

Example 8.3.2. Solve the following quadratic equations.

(a) x2 = −15

(b) x2 + 18 = 0.

Answer. We will follow the same approach as Examples 8.2.1 and 8.2.5.

(a) One solution to x2 = −15 is, by definition,
√
−15. Simplifying to indicate

the imaginary unit,
√
−15 =

√

(−1) · 15 =
√
−1 ·

√
15 = i

√
15.

The other solution will be −i
√
15.

The solutions are i
√
15 and −i

√
15.

(b) The main thing to notice about this equation is that it does not have the
special form x2 = a that we have been relying on so far. Fortunately, that
is easy to fix in this case:

x2 + 18 = 0

−18
... −18

x2 = −18.

Now that the x2-term is by itself on one side of the equation, we can apply
our strategy.
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One solution to x2 = −18 is
√
−18. We see that in addition to being a

complex number, the radicand has a perfect square factor of 9. Simplifying,

√
−18 =

√

(−1) · 9 · 2 =
√
−1 ·

√
9 ·

√
2 = i · 3 ·

√
2 = 3i

√
2.

(Notice we performed several simplifications at once.)

One solution is 3i
√
2. Hence the other solution is −3i

√
2.

The solutions are 3i
√
2 and −3i

√
2.

8.3.1 Exercises

Simplify the following radical expressions using the imaginary unit i.

1.
√
−16

2.
√
−45

3.

√

−5

8

4. (*) Assuming the rules of exponents apply to complex numbers, compute
the first 10 powers of i: i1, i2, i3, . . . , i10. (Hint: i3 = i2 · i1.)

Solve the following quadratic equations.

5. x2 = −36

6. x2 + 24 = 0

8.4 Arithmetic of radical expressions

We have seen so far that even simple quadratic equations in one variable may
have “complicated” solutions—they may be irrational numbers, for example,
or even complex numbers that have unusual properties compared to the real
numbers we grew up with. So far, we have emphasized a symbolic approach to
these numbers. In other words, we have used a symbol (a radical expression or
an expression involving i) to represent a solution to an equation of a particular
form (primarily of the form x2 = a). This has the advantage of sidestepping
the exact value of these solutions, but it carries the price of adhering to a set of
customary rules about how such symbols will be written.

In this section, we will discuss how to perform arithmetic with these symbols—
how to add them, subtract them, multiply them and divide them. In many ways,
this will be exactly like how we approached the arithmetic of polynomials, and
the reader will notice many similarities to how we approach the arithmetic of
radical expressions. That shouldn’t be a big surprise: polynomial arithmetic is
really a kind of symbolic arithmetic, where the symbols are the variables.
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The main difference between the arithmetic of radical expressions and the
arithmetic of polynomials is that polynomials involve indefinite symbols: the
variables are meant to represent an unknown or changing quantity. The sym-
bols we have been using for irrational and complex expressions, like

√
2 and

i, are definite symbols. They have a specific value or meaning (although it
may be hard to write down exactly what they are), and this value is fixed and
unchanging. This difference will show up repeatedly in the examples below.

Adding and subtracting radical expressions, like adding or subtracting poly-
nomials, is based on the principle of combining like terms. Two expressions
involving square roots are considered like terms if their radicands are the same.
Like terms are added by adding their coefficients (and leaving the radical symbol
the same). For example, the expression 5

√
3 + 3

√
3 consists of two like terms,

since their symbolic part is the same
√
3. We can write

5
√
3 + 3

√
3 = 8

√
3.

(Compare this to 5x+ 3x.) However, 4
√
2 + 6

√
5 involves two terms which are

not like terms, since the radicands are different, and so cannot be added or
further simplified. (Compare this to 4x+ 6y.)

The only thing that needs to be mentioned is that it is important to sim-
plify radical expressions before adding or subtracting, as the following examples
illustrate.

Example 8.4.1. Perform the indicated operations:

(a)
√
24− 3

√
150 + 2

√
3 + 15.

(b) 5
√
18− 2

√
2.

(c) (3 + 4i)− (2− 3i).

Answer. (a) None of the radicands appearing in the expression

√
24− 3

√
150 + 2

√
3 + 15

are the same, and so there do not appear to be like terms. However, the
first two (24 and 150) have perfect square factors. Simplifying,

√
24− 3

√
150 + 2

√
3 + 15

√
4 · 6− 3

√
25 · 6 + 2

√
3 + 15

√
4 ·

√
6− 3

(√
25 ·

√
6
)

+ 2
√
3 + 15

2
√
6− 3(5

√
6) + 2

√
3 + 15

2
√
6− 15

√
6 + 2

√
3 + 15

Notice that at the last step, we multiplied the coefficient in the term con-
taining 5

√
6 by −3.
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In any case, now there are like terms, namely, the
√
6-terms. None of the

other terms are like terms. Adding the coefficients for the
√
6-terms, we

obtain
−13

√
6 + 2

√
3 + 15.

The answer is −13
√
6 + 2

√
3 + 15.

(b) As in the previous example, the two radicands appearing in 5
√
18−2

√
2 are

not the same, and so do not appear to be like terms. However, 18 contains
a perfect square factor, and so can be simplified:

5
√
18− 2

√
2

5
√
9 · 2− 2

√
2

5
(√

9 ·
√
2
)

− 2
√
2

5(3
√
2)− 2

√
2

15
√
2− 2

√
2.

After simplifying, the two remaining terms are like terms, and so they can
be combined to obtain 13

√
2.

The answer is 13
√
2.

(c) Adding complex numbers, the real number parts are like terms and the imag-
inary parts (the terms containing i =

√
−1) are like terms. Proceeding

exactly like subtracting polynomials, we will change the problem to one of
“adding the opposite” and combine like terms:

(3 + 4i)− (2− 3i)

(3 + 4i) + (−2 + 3i)

(3 + (−2)) + (4i+ 3i)

1 + 7i.

The answer is 1 + 7i.

The complex numbers in part (c) of the last example are typical of how
complex numbers are written. In fact, any complex number can be written in
the form

a+ bi,

where a and b are real numbers.
Multiplying expressions involving radicals will typically involve the distribu-

tive law, exactly like multiplying polynomials. However, instead of relying on
the rules of exponents (which we needed to multiply powers of a variable), we
will use Property (S1) of roots.

Example 8.4.2. Multiply: (8
√
3 + 2

√
5)(

√
2− 4

√
5).
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Answer. Distributing, we obtain

(8
√
3 + 2

√
5)(

√
2− 4

√
5)

(8
√
3)(

√
2) + (8

√
3)(−4

√
5) + (2

√
5)(

√
2) + (2

√
5)(−4

√
5).

According to Property (S1) of square roots, which states that
√
a ·

√
b =

√
ab, we

will multiply the coefficients and the radicands of each term:

8
√
6− 32

√
15 + 2

√
10− 8

√
25.

All the radicands are different. However, one of the terms can be simplified,
since 25 is a perfect square:

8
√
6− 32

√
15 + 2

√
10− 8(5)

8
√
6− 32

√
15 + 2

√
10− 40.

After simplifying, there are no like terms.
The answer is 8

√
6− 32

√
15 + 2

√
10− 40.

In the preceding example, the factor of 5 in the last term (which first ap-
peared at the second-last step) arose after multiplying (

√
5)(

√
5). We chose to

apply Property (S1) to obtain
√
25, then simplified. Notice, though, that by

definition
(
√
5)(

√
5) = (

√
5)2 = 5.

Example 8.4.3. Multiply: (5− 3
√
2)(4 +

√
2).

Answer. We begin by distributing:

(5− 3
√
2)(4 +

√
2)

(5)(4) + (5)(
√
2) + (−3

√
2)(4) + (−3

√
2)(

√
2)

20 + 5
√
2− 12

√
2− 3

√
4

20 + 5
√
2− 12

√
2− 3(2) Simplifying

√
4

20 + 5
√
2− 12

√
2− 6

14− 7
√
2 Combining like terms

The answer is 14− 7
√
2.

The next example involves multiplying two complex numbers. We will use
the fact that i2 = −1.

Example 8.4.4. Multiply: (3− 2i)(−7 + 5i).

Answer. Since we are using the symbol i for the radical expression
√
−1, our

multiplication of complex numbers will look very much like multiplication of two
binomials involving one variable—until the last steps.
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(3− 2i)(−7 + 5i)

(3)(−7) + (3)(5i) + (−2i)(−7) + (−2i)(5i) Distributing

−21 + 15i+ 14i− 10i2 Multiplying term-by-term

−21 + 29i− 10i2 Combining like terms

−21 + 29i− 10(−1) Since i2 = −1

−21 + 29i+ 10

−11 + 29i. Combining like terms

The answer is −11 + 29i.

The reader should take a moment to compare Examples 8.4.3 and 8.4.4.
Both involve multiplying radical expressions with two terms, but one uses radical
notation while the other uses imaginary i notation instead of radical notation√
−1.
We will only consider the simplest examples of division of radical expressions.

Some more complicated examples will appear as challenge exercises at the end
of the section.

Example 8.4.5. Simplify:

√
3 ·

√
66√

2
.

Answer. In this context, the word “simplify” means to perform all operations,
and then simplify according to the rules of radical notation.

Since the only operations involved are multiplication and division, we can
rely on Properties (S1) and (S2) of square roots. In particular, combining the
two properties, we can perform all the operations inside the radicand:

√
3 ·

√
66√

2
=

√

3 · 66
2

.

For convenience, in performing the operations within the radicand, we will
take advantage of the fact that the 2 in the denominator divides the larger factor
66 in the numerator:

√

3 · 66
2

=
√
3 · 33 =

√
99.

All that remains is to simplify the result, noticing that 99 has a perfect square
factor of 9: √

99 =
√
9 · 11 =

√
9 ·

√
11 = 3

√
11.

The answer is 3
√
11.

For the record, there are several other approaches to the previous example,
due to some flexibility with the order of operations.
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8.4.1 Exercises

Perform the indicated operations. Simplify all radical expressions.

1. 2
√
50− 4

√
8 + 6

√
12

2. −
√
24 + 4

√
3−

√
27

3. 3
√
20 + 2

√
45

4. (3− 2i)− (5 + 7i)

5.
√
5(2

√
10− 1)

6.

√
5 ·

√
30√

3
.

7.
√
6(4

√
3− 5

√
2)

8. (1 + 5i)(3− 2i)

9. (1 +
√
2)(1−

√
2)

10. (2 + 3i)(2− 3i)

11. (
√
3−

√
2)2

12. (1 + i)2

13. (*) Use corresponding properties of nth roots (see Exercise 11 of the Sec-
tion 8.2.1) to simplify

5
3
√
16− 2

3
√
54 + 6

3
√
24.

14. (*) This exercise gives and indication of how to simplify expressions with
a binomial involving a radical in the denominator.

(a) Perform the following multiplication using properties of radicals:

3−
√
2

5 + 2
√
3
· 5− 2

√
3

5− 2
√
3
.

(Notice that we have really multiplied the expression
3−

√
2

5 + 2
√
3
by 1,

so have not changed the value of the expression.)

(b) Use the idea of the previous exercise to simplify the radical expression

√
2

4 +
√
5
.

The technique hinted at in this exercise is known as rationalizing the
denominator.
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15. (*) The technique in the previous exercise can be used to divide complex
numbers.

(a) Perform the following multiplication:

4 + i

2 + 3i
· 2− 3i

2− 3i
.

(Notice that just like in the last exercise, we are multiplying the

expression
4 + i

2 + 3i
by 1.)

(b) Use the idea in the previous exercise to write the quotient

3− 2i

1 + 6i

in standard complex form a+ bi.

16. (*) What is wrong with the following “proof” that −1 = 1?

1 =
√
1 =

√

(−1) · (−1) =
√
−1 ·

√
−1 = i · i = i2 = −1.

8.5 Chapter summary

• A typical quadratic equation in one variable will have two solutions.

• The solutions to a quadratic equation in one variable may be rational,
irrational, or complex (even when the coefficients of the equation are in-
tegers).

• Irrational and complex numbers are generally treated symbolically, ac-
cording to historically-evolved rules for what is considered “simplified.”
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Chapter 9

Quadratic equations

Vocabulary

• Plus-or-minus (±) notation

• Hypotenuse

• Pythagorean theorem

• Completing the square

• Quadratic formula

• Discriminant

• Zero product property

• Parabola

9.1 Solving quadratic equations I. A first strat-

egy

In the last chapter, we introduced the notation and manipulation of symbols
representing irrational square roots and complex numbers. Both of these types
of numbers arise from the simplest quadratic equations, and we will meet them
over and over again for the remainder of this chapter.

Now we are ready to return to the main theme: solving quadratic equations
in one variable. So far, we have seen one strategy to solve the simplest quadratic
equations. Let us recall that strategy, which we repeat again here for emphasis:

221
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First strategy to solve quadratic equations of the form x2 = k

An equation having the form x2 = k has two solutions, written symbolically
as

√
k and −

√
k.

This first strategy only applies to quadratic equations in a very special form.
In particular, the x2 term is by itself on one side of the equation, and the other
side has no variable terms. The main point in this section is to see that the
first strategy can in fact be modified to solve other quadratic equations in one
variable, as long as there is any perfect square involving the variable on one side
of the equation and no variable terms on the other.

Recall that two algebraic statements are equivalent when they have the same
solutions. Most of the statements we have seen up to now have been simple
statements, in the sense that they involve just one equation or inequality. A
compound statement is formed by several simple statements, joined by the words

AND, OR or NOT. For example, the system of linear equations

{

x+ y = 1

x− y = 5

is a compound statement of the form x + y = 1 AND x − y = 5; a solution to
the system (a compound statement) must be a solution BOTH x+ y = 1 AND
x − y = 5. As another example, a solution to the statement “Either x = 5 or
x = 2” must be EITHER a solution to the simple statement x = 5 OR it must
be a solution to x = 2.

With this is mind, we will introduce a new notation. The symbol ± (which
is unfortunately1 read “plus or minus”) will be used to indicate an either/or
statement:

Plus-or-minus (±) notation

±k means the same as “either k or −k.”

So, for example, ±3 means “either 3 or −3.” Similarly, ±
√
5 means the same

as “either
√
5 or −

√
5.

The “plus-or-minus” notation is often seen in the context of equations.

1It should really be read as “positive or negative.”
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Compound plus-or-minus statements

The statement x = ±k means the same as the compound statement
“either x = k or x = −k.”

With this new notation, we can rephrase our basic strategy to solve simple
quadratic equations in one variable:

First strategy to solve quadratic equations of the form x2 = k
(revisited)

The equation x2 = k is equivalent to the statement x = ±
√
k.

In particular, it has two solutions,
√
k and −

√
k. (When k = 0, the two

solutions are the same.)

The reader may refer to Example 8.2.1, where this strategy was illustrated
in the simplest cases.

The rephrasing of our basic strategy for solving quadratic equation is useful
because it can be applied to any equation having the form 2 = k: one side
of the equation (represented by the box) is a perfect square, while the other
side is a constant. The next example shows this principle in action, in a sightly
more complicated setting.

Example 9.1.1. Solve: 16x2 = 25.

Answer. We will show two ways that our “first strategy” can be used to solve
this equation, which is should be noticed involves more than just x2 on the left
side of the equation.

Method 1: “Solve for x2”

Although the x2 is not “by itself,” we can use the multiplication principle to
write an equivalent equation in the special form to apply the basic strategy.

16x2 = 25
16x2

16 = 25
16

x2 = 25
16

The resulting equivalent equation is in the special form to apply our basic strat-

egy. The equation x2 = 25/16 is equivalent to the compound statement x =

√

25

16

or x = −
√

25

16
.
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The solutions are (after simplifying the radical expressions) 5/4 and −5/4.
Method 2: Perfect square form

Notice that even though original equation 16x2 = 25 is not in the simplest
form (with x2 by itself on one side of the equation), the left hand side involving
the variable is, in fact, a perfect square!

16x2 = 25
(4x)2 = 25 Emphasizing the perfect square

We can apply our basic strategy. The quadratic equation (4x)2 = 25 is
equivalent to the compound statement

4x =
√
25 OR 4x = −

√
25.

After simplifying the radicals, we see that we have a compound statement in-
volving two linear equations: 4x = 5 or 4x = −5. Each of them is easily solved.

The solutions are 5/4 and −5/4.

The next example gives another illustration of Method 2, where we apply
our basic strategy to a perfect square more complicated than just x2.

Example 9.1.2. Solve: (x+ 4)2 = 7.

Answer. The left side of the equation is a perfect square, so we may apply
the same basic strategy we have seen in the simpler case. Namely, the equation
(x+ 4)2 = 7 is equivalent to the statement

x+ 4 = ±
√
7,

or, what is the same, to the compound statement

x+ 4 =
√
7 OR x+ 4 = −

√
7.

Each of the two equations are linear, and can be solved using our standard
techniques for solving linear equations:

x + 4 =
√
7

−4
... −4

x = −4 +
√
7

The solution to x + 4 =
√
7 is −4 +

√
7. Similarly, solving the other equation

in the compound statement:

x + 4 = −
√
7

−4
... −4

x = −4 −
√
7

The solution to x+ 4 = −
√
7 is −4−

√
7.

Combining to obtain the solutions to the compound equation, the solutions
to (x+ 4)2 = 7 are −4 +

√
7 and −4−

√
7.
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It is common, although a little lazy, to combine the two solving steps in the
previous example as follows:

x + 4 = ±
√
7

−4
... −4

x = −4 ±
√
7,

and then to say that the solutions are −4 ±
√
7. Keep in mind these are two

different solutions!

9.1.1 The Pythagorean theorem

Even though we have only been dealing with quadratic equations of the sim-
plest form, these simple equations occur naturally in the context of using the
Pythagorean theorem. Given the importance of this theorem in a wide variety
of contexts (it is used to obtain a formula for measuring distances, for example),
we illustrate the theorem and several examples of its application here.

The Pythagorean2 theorem is a theorem—a mathematical statement which
can be proved, or deduced, from definitions and previously-proved statements—
about right triangles. Recall that a right triangle is a triangle which includes
one right angle. The side opposite to the right angle is called the hypotenuse.
The other two sides are referred to as the legs of the right triangle. See Figure
9.1.

hypotenuse

leg

leg

Figure 9.1: A right triangle. The right angle is indicated with the small square
symbol.

2Although the theorem is named after Pythagorus and his followers, the relationship it
describes had been noticed by the earliest civilizations in Egypt, Mesopotamia, India and
China. The oldest proof of the statement is from Euclid, around 300 BCE.
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The Pythagorean theorem

Given a right triangle whose hypotenuse has length h and whose legs have
lengths a and b, the following relationship holds:

h2 = a2 + b2.

In fact, if the lengths of the three sides of a triangle satisfy this equation,
then the triangle must be a right triangle.

Notice that in the equation relating the side lengths in the theorem, the
square of the length of the special side, the hypotenuse, is by itself on one side.
The squares of the lengths of the other two sides that are not the hypotenuse
are added (in either order) on the other side of the equation.

As a consequence of the Pythagorean theorem, the hypotenuse must be the
longest side of a right triangle. (In fact, sometimes the hypotenuse is defined to
be the longest side of a right triangle. In that case, the Pythagorean theorem
would emphasize that the hypotenuse must be opposite the right angle.)

For our purposes, the main consequence of the Pythagorean theorem is that
if the lengths of two sides of a right triangle are known, then the length of the
third side can be found as well. We illustrate this fact with several examples.

Example 9.1.3. In a right triangle, the length of the hypotenuse is 13 inches,
while the length of one of the legs is 5 inches. Find the length of the remaining
side.

Answer. In this example, we use the values h = 13 and a = 5 in the Pythagorean
theorem and attempt to solve for b.

(13)2 = (5)2 + b2

169 = 25 + b2

The resulting equation (in the variable b) can be written in the special form
we have been considering by subtracting 25 from both sides:

169 = 25 + b2

−25
... −25

144 = b2.

The solutions to this equation (in which b2 is by itself on one side of the
equation) are

√
144 and −

√
144, or 12 and −12. However, since b is to repre-

sent a length, we ignore the negative solution as being meaningless in the given
problem.

The length of the remaining side is 12 inches.
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Example 9.1.4. In a right triangle, one leg has length 4 cm and the other has
length 6 cm. Find the length of the hypotenuse.

Answer. We substitute the values a = 4 and b = 6 into the equation h2 = a2+b2

in order to solve for the value of h.

h2 = (4)2 + (6)2

h2 = 16 + 36

h2 = 52.

According to our basic strategy, the solutions to this equation are
√
52 and

−
√
52; we ignore the negative solution since our answer is to represent a length,

which is always a positive quantity. We will simplify our result:

√
52 =

√
4 · 13 =

√
4 ·

√
13 = 2

√
13.

The length of the hypotenuse is 2
√
13 cm. (This is approximately 7.21 cm.)

Example 9.1.5. In the figure below, find the value of x so that the triangle is
a right triangle.

8

4

x+ 2

Answer. Since we require the triangle to be a right triangle, the Pythagorean
theorem must hold:

(8)2 = (4)2 + (x+ 2)2

64 = 16 + (x+ 2)2.

We will rewrite the equation so that the perfect square involving x, (x+2)2,
is by itself on one side of the equation, and then proceed as in Example 9.1.2.

64 = 16 + (x+ 2)2

−16
... −16

48 = (x+ 2)2.
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According to our basic strategy, this equation is equivalent to the compound
statement x+ 2 = ±

√
48, or x = −2±

√
48. Simplifying the radical expression√

48 =
√
16 · 3, this is equivalent to x = −2 ± 4

√
3, which has two solutions,

−2+ 4
√
3 and −2− 4

√
3. However, the second solution would make one side of

the triangle have a length of −4
√
3, which makes no geometric sense.

The value of x which makes the triangle a right triangle is −2+4
√
3. (Check

on your calculator that this is approximately 4.93.)

9.1.2 Exercises

Solve the following quadratic equations.

1. x2 = 150

2. 4x2 = 3

3. x2 = −49

4. x2 + 18 = 0

5. 12x2 = 75

6. (x+ 3)2 = 12

7. (2x− 1)2 = 144

8. (x− 5)2 = −18

Find the length of the third of the right triangle whose other two side lengths
are given. (Here h represents the length of the hypotenuse and a and b represent
the lengths of the other two sides, as shown in Figure 9.2.)

h

a

b

Figure 9.2: Diagram for Exercises 8–10. (Not drawn to scale)

9. a = 4, b = 6.

10. h = 10, b = 5.

11. a = 12, b = 4.



9.2. COMPLETING THE SQUARE 229

9.2 Solving quadratic equations II. Completing

the square

We saw in the previous section that even if a quadratic equation was not as
simple as x2 = k, we can still apply the same basic strategy as long as we have
a perfect square on one side of the equation and a constant on the other. But
what about equations like

x2 + 6x− 4 = 0?

Because of the 6x term, there is little hope that we can obtain a perfect square on
one side and a constant on the other by the same kind of simple manipulations
as in the previous section.

We will now develop a procedure where any quadratic equation of the form
ax2 + bx+ c = 0 can be written in the special form 2 = k, where one side
is a perfect square and the other side is a constant.

Consider the following identities (which you can confirm my multiplication):

(x+ 1)2 = x2 + 2x+ 1

(x+ 2)2 = x2 + 4x+ 4

(x+ 3)2 = x2 + 6x+ 9

(x+ 4)2 = x2 + 8x+ 16

(x+ 5)2 = x2 + 10x+ 25

(x+ 6)2 = x2 + 12x+ 36

...

Do you see any patterns on the right hand side? There are several: the
constant terms are all perfect squares, and the coefficient of x is always an even
number. To be more specific,

• The constant term in the expansion of (x+ n)2 is n2;

• The coefficient of x in the expansion of (x+ n)2 is 2n (twice the value of
n).

Can you use these two facts to write down the next five expansions in the list,
without actually multiplying polynomials?

Now, using the patterns we noticed above, let’s try to answer the following
question: How can I fill in the blank with a number in the expression

x2 + 56x+

is a perfect square of the form (x+n)2? We see the coefficient of x is 56, which
according to the pattern above, should be twice the value of n. In other words, n
should be 56/2 = 28. But that tells us what to fill in as the constant, according
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to the other pattern: the constant terms should be (28)2 = 784. In other words,
the polynomial

x2 + 56x+ 784

is a perfect square: it is (x+ 28)2. No other constant would have worked other
than 784; our choice was determined by the coefficient of x. This process of
determining a constant to add to a quadratic expression to obtain a perfect
square is known as completing the square.

The next example shows how this technique, combined with the strategy we
have already developed, can be used to solve a quadratic equation which is not
initially written in the special form (x+ n)2 = k.

Example 9.2.1. Solve: x2 − 6x+ 4 = 0.

Answer. If the goal is to write the equation in the form (x+ n)2 = k, the first
step will be to arrange to write the constant term by itself on one side of the
equation. This is not hard to do:

x2 − 6x+ 4 = 0

−4
... −4

x2 − 6x = −4

We are now in a position to complete the square on the left side. To illustrate
what we are about to do, let’s write

x2 − 6x + = −4 +

to indicate that we will “fill in the blanks” to complete the square on the left side,
and add the same quantity to the right side to guarantee that the new equation
will be equivalent. The coefficient of x on the left side is −6. As before, we find
half of −6:

−6

2
= −3.

We square the result:
(−3)2 = 9.

In other words, we will add 9 to both sides (to “fill in the blank”):

x2 − 6x + 9 = −4 + 9.

The left-hand side is now a perfect square of the form (x+n)2, where n = −3.
The right-hand side can be combined to obtain:

(x− 3)2 = 5.

We are now in a position to apply our basic strategy. The equation (x−3)2 =
5 is equivalent to the compound statement

x− 3 = ±
√
5.
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Using the shorthand notation discussed above, we can solve this compound state-
ment:

x − 3 = ±
√
5

+3
... +3

x = 3 ±
√
5

The two solutions are 3 +
√
5 and 3−

√
5.

Exercise 9.2.2. Before continuing, apply the completing the square method to
solve the following quadratic equations. Be sure to simplify square roots when
possible.

(a) x2 − 8x+ 12 = 0

(b) x2 + 4x+ 5 = 0

(c) x2 − 2x− 6 = 0

With a little thinking, we can see that here was nothing really special about
the equation that we started with in the previous example. It was written at the
outset in general form ax2+ bx+ c = 0. The technique of completing the square
was applied to write it in the general form (x+n)2 = k. From there we applied
our basic strategy, which had started off as a special strategy only for equations
involving x2 by itself on one side of the equation. In fact, the technique of
completely the square can be used to solve any quadratic equation in
one variable.

The next two examples show that the calculations involved in completing
the square can become tedious.

Example 9.2.3. Solve: x2 + 5x+ 7 = 0.

Answer. As before, we begin by arranging the equation so that the variable
terms are on one side of the equation and the constant term is on the other:

x2 + 5x+ 7 = 0

−7
... −7

x2 + 5x = −7

Write
x2 + 5x+ = −7 + .

The coefficient of x this time is an odd number, which means that half of it
will be a fraction. This doesn’t stop us, though: we find half of 5:

1

2
· 5 =

5

2
.

We square the result:
(

5

2

)2

=
25

4
.
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We add this quantity to both sides to both sides (to “fill in the blank”):

x2 + 5x + 25
4 = −7 + 25

4 .

The left-hand side is by design a perfect square of the form (x+ n)2, where
now n = 5/2 (notice this was the result of the first calculation, finding half of
the coefficient of x). The right-hand side can be combined by finding a common
denominator:

−7 +
25

4
= −28

4
+

25

4
= −3

4
.

Hence our original equation is equivalent to
(

x+
5

2

)2

= −3

4
.

Applying our basic strategy, this equation is equivalent to the compound state-
ment

x+
5

2
= ±

√

−3

4
,

which, after simplifying the right side, becomes

x+
5

2
= ± i

√
3

2
.

Solving the compound statement:

x + 5
2 = ± i

√
3

2

− 5
2

... − 5
2

x = − 5
2 ± i

√
3

2 .

The right hand side, while a little complicated, at least has the virtue of
having a common denominator. It is customary to combine this sum into a
single fraction:

x =
−5± i

√
3

2
.

The two solutions (which are complex numbers!) are
−5 + i

√
3

2
and

−5− i
√
3

2
.

Example 9.2.4. Solve 2x2 − 5x = 3.

Answer. The first thing to notice is that the coefficient of x2 is not 1. Although
we have not made a point of it until now, the fact that we are aiming for an
equation involving an expression of the form (x+n)2 makes it essential that the
coefficient of the x2 term is 1. In order to address this problem, we will simply
divide both sides of the equation by the coefficient 2:

2x2 − 5x

2
=

3

2

x2 − 5

2
x =

3

2
.
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(Despite the fractions, notice that we already have the constant on one side of
the equation with the variable terms on the other.)

We are aiming to complete the square on the left side:

x2 − 5
2x + = 3

2 + .

The coefficient of x is now −5

2
. We will still aim to find half of this coeffi-

cient:
1

2

(

−5

2

)

= −5

4
.

When we square the result we obtain

(

−5

4

)2

=
25

16
.

This is the number we add to both sides to obtain a perfect square:

x2 − 5

2
x+

25

16
=

3

2
+

25

16
.

The left side is a perfect square by design: it is

(

x− 5

4

)2

. The right side

can be combined:
3

2
+

25

16
=

24

16
+

25

16
=

49

16
.

Hence our equation now has the form

(

x− 5

4

)2

=
49

16
.

According to our basic strategy, this is equivalent to the statement

x− 5

4
= ±

√

49

16
.

Notice that the square root on the right side can be simplified:

x− 5

4
= ±7

4
.

Solving the compound statement

x − 5
4 = ± 7

4

+ 5
4

... + 5
4

x = 5
4 ± 7

4 .

In this case, though, we can do better; since no radicals appear in the expression,
we can look at the two solutions separately to write them in simpler form:

5

4
+

7

4
=

12

4
= 3,
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and
5

4
− 7

4
= −2

4
= −1

2
.

The two solutions are 3 and −1/2.

We end this section by summarizing the method of completing the square.

Solving quadratic equations by completing the square

To apply the technique of completing the square to solve a quadratic equa-
tion of the form

ax2 + bx+ c = 0 :

1. Divide both side of the equation by the coefficient of x2 to obtain an
equivalent equation whose leading coefficient is 1;

2. Use the addition principle to obtain an equivalent equation having all
variable terms on one side and the constant term on the other;

3. Complete the square based on the new coefficient of the x-term: Add
the square of half the coefficient of x to both sides;

4. Apply the basic strategy of solving equations of the form x2 = k to
obtain two solutions.

9.2.1 Exercises

Solve the following quadratic equations by completing the square.

1. x2 − 4x− 5 = 0

2. x2 + 2x = 24

3. x2 − 6x = 6

4. x2 + 10x+ 21 = 0

5. x2 + 5x+ 6 = 0

6. x2 − 6x+ 3 = 0

7. x2 + 3x = 0

8. 2x2 + x = 6

9. x2 + 4x+ 6 = 0

10. 3x2 − 4x = 1
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9.3 Solving quadratic equations III. The quadratic

formula

Completing the square is a powerful tool for solving quadratic equations in one
variable. In fact, if our only goal was to solve quadratic equations, we could
stop here: completing the square will always work. However, because quadratic
equations occur relatively frequently, both in algebra and its applications, sev-
eral other techniques have been developed to solve them.

One of the most well-known techniques arises directly from completing the
square. The quadratic formula is a formula which expresses the solutions to a
quadratic equation completely in terms of the equations’ coefficients. To derive
this formula, let’s apply the technique of completing the square to the quadratic
equation

ax2 + bx+ c = 0, (a 6= 0). (9.1)

We begin by ensuring a leading coefficient of 1;

ax2 + bx+ c

a
=

0

a

x2 +

(

b

a

)

x+
c

a
= 0.

Arranging the constant on the right side and the variable terms on the left:

x2 +
(

b
a

)

x + c
a = 0

−
(

c
a

) ... − c
a

x2 +
(

b
a

)

x + = − c
a+

To complete the square, we find half the coefficient of x and square the
result:

1

2
·
(

b

a

)

=
b

2a
,

(

b

2a

)2

=
b2

4a2
.

(We used properties of exponents in the squaring operation.)
Completing the square:

x2 +
(

b
a

)

x + b2

4a2 = − c
a + b2

4a2

(

x+ b
2a

)2
= b2−4ac

4a2 .

(On the right side of the last equation, we rewrote the first fraction using com-
mon denominator 4a2 by multiplying numerator and denominator by 4a. We
also reordered the terms in the numerator.)
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According to our basic strategy, the resulting equation is equivalent to the
compound statement

x+
b

2a
= ±

√

b2 − 4ac

4a2
.

This can be simplified using properties of square roots:

x+
b

2a
= ±

√
b2 − 4ac√

4a2

x+
b

2a
= ±

√
b2 − 4ac

2a
.

Solving the resulting (compound) linear equation:

x + b
2a = ±

√
b2−4ac
2a

− b
2a

... − b
2a

x = − b
2a ±

√
b2−4ac
2a

x = −b±
√
b2−4ac
2a .

Let’s summarize the result of this somewhat tedious calculation.

The quadratic formula

The quadratic equation
ax2 + bx+ c = 0

(where the coefficient a 6= 0) is equivalent to the compound statement

x =
−b±

√
b2 − 4ac

2a
.

In particular, the two solutions are
−b+

√
b2 − 4ac

2a
and

−b−
√
b2 − 4ac

2a
.

Notice: The quadratic equation was derived from a quadratic equation hav-
ing a very particular form, the standard form Equation 9.1 above. In particular,
to use the quadratic formula, one side of the quadratic equation must be equal
to 0 !

The quadratic equation is not particularly pleasant-looking. That is not
surprising, given the fact that we began from a general quadratic equation with
arbitrary coefficients. However, an enormous amount of material can be learned
just from studying this formula:
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• The solutions to a quadratic equation can be expressed completely as
algebraic expressions involving its coefficients a, b and c.

• The nature of the solutions of a quadratic equation depend on its discrim-
inant b2 − 4ac:

– If the discriminant is positive, the two solutions will be real numbers.

– If the discriminant is negative, the two solutions will be complex
numbers.

– If the discriminant is zero, the two solutions will coincide, so that
there is only one distinct solution.

– If the discriminant is a (non-negative) perfect square, the solutions
will be rational; otherwise, they will be irrational.

We illustrate the quadratic formula by solving the same three examples we
solved in the last section by completing the square. Keep in mind that the
quadratic formula involves nine separate operations. A look back at Chapter 1
should remind you that some of these operations can be performed at the same
step.

Example 9.3.1. Solve: x2 − 6x+ 4 = 0.

Answer. We see that the equation is in standard form, since one side is equal
to zero, with a = 1, b = −6 and c = 4.

Substituting into the quadratic formula and evaluating:

x =
−(−6)±

√

(−6)2 − 4(1)(4)

2(1)

=
6±

√
36− 16

2

=
6±

√
20

2

=
6±

√
4 · 5

2
Simplifying the square root

=
6± 2

√
5

2

=
6

2
± 2

√
5

2

= 3±
√
5.

The solutions are 3 +
√
5 and 3−

√
5.

Example 9.3.2. Solve: x2 + 5x+ 7 = 0.

Answer. The equation is in standard form, since one side is equal to zero, with
a = 1, b = 5 and c = 7.
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Substituting into the quadratic formula and evaluating:

x =
−(5)±

√

(5)2 − 4(1)(7)

2(1)

=
−5±

√
25− 28

2

=
−5±

√
−3

2

=
−5±

√
−1 · 3

2
Simplifying the square root

=
−5± i

√
3

2

(Notice that compared to the previous example, the numerator and denomi-
nator have no factors in common, so there is no need to take an extra step to
divide.

The solutions are
−5 + i

√
3

2
and

−5− i
√
3

2
.

Example 9.3.3. Solve: 2x2 − 5x = 3.

Answer. In this example, the quadratic equation is not in standard form, since
neither side is equal to zero. This is not hard to fix, though, using the addition
principle:

2x2 − 5x = 3

−3
... −3

2x2 − 5x − 3 = 0.

We can now apply the quadratic formula with a = 2, b = −5 and c = −3.

Substituting and evaluating:

x =
−(−5)±

√

(−5)2 − 4(2)(−3)

2(2)

=
5±

√
25 + 24

4

=
5±

√
49

4

=
5± 7

4

In the case when the discriminant is a perfect square, as in this example, it
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is useful to write the compound statement more explicitly:

x =
5 + 7

4
OR x =

5− 7

4

x =
12

4
OR x =

−2

4

x = 3 OR x = −1

2
.

The solutions are 3 and −1/2.

9.3.1 Exercises

Solve each of the following quadratic equations by using the quadratic formula.
(These are the same equations as in Exercises 9.2.1. Compare your answers
obtained by using the quadratic formula with those you obtained by completing
the square.)

1. x2 − 4x− 5 = 0

2. x2 + 2x = 24

3. x2 − 6x = 6

4. x2 + 10x+ 21 = 0

5. x2 + 5x+ 6 = 0

6. x2 − 6x+ 3 = 0

7. x2 + 3x = 0

8. 2x2 + x = 6

9. x2 + 4x+ 6 = 0

10. 3x2 − 4x = 1

9.4 Solving quadratic equations IV. Factoring

In this section, we describe a completely different approach to solving quadratic
equations by using the techniques of factoring developed in Chapter 7. The
factoring technique has the advantage of being less tedious (in many cases)
than using either the quadratic formula or completing the square. In addition,
unlike the methods we have seen so far, the new method can be applied to solve
polynomial equation of higher degree (a few examples are given in the challenge
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exercises at the end of the section). It has the disadvantage, however, that it
cannot be applied to solve every quadratic equation.

Solving quadratic equations by factoring is based on the following property
of numbers, sometimes called the zero product property : If a and b are two
numbers having the property that a · b = 0, then either a or b is 0. Said in
another way, the only way that the product of two numbers can be zero is if
one of the two numbers is zero.

This property of numbers leads immediately to the following strategy for
solving polynomial equations, including quadratic equations. We will state this
strategy using function notation (see Chapter 1).

Solving polynomial equations by factoring

Suppose P (x) is a polynomial which can be factored as a product of two
polynomials, P (x) = F (x) ·G(x). Then then polynomial equation

P (x) = 0

is equivalent to the compound polynomial statement

F (x) = 0 OR G(x) = 0.

In other words, the solutions to P (x) = 0 are exactly the solutions to
F (x) = 0 and the solutions to G(x) = 0.

The idea behind this strategy is that instead of solving a quadratic polyno-
mial equation (having degree 2), we will try to factor the polynomial and then
solve two linear equations (of degree 1).

Notice: As in the situation when we solved a quadratic equation using the
quadratic formula, it is essential that the polynomial be set equal to zero! After
all, the strategy is based on the zero product property.

The following examples illustrate the technique of factoring to solve a quadratic
equation.

Example 9.4.1. Solve: x2 − 3x− 10 = 0.

Answer. The quadratic equation does have zero on one side of the equation.
So we will decide whether it is possible to factor the polynomial x2 − 3x − 10.
In fact, factoring the monic quadratic trinomial yields (x+ 2)(x− 5).

Hence, using our factoring strategy, the equation x2−3x−10 = 0 is equivalent
to the compound statement

x+ 2 = 0 OR x− 5 = 0.
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Each of the two linear equations is quite simple to solve:

x + 2 = 0

−2
... −2

x = −2

and
x − 5 = 0

+5
... +5

x = 5.

The solutions of x2 − 3x− 10 = 0 are −2 and 5.

Example 9.4.2. Solve: 16x2 = 25.

Answer. We solved this equation (two different ways!) in Example 9.1.1. How-
ever, we will now see that it can also be solved by factoring.

First, the equation is not in the required form, having zero on one side of
the equation. We apply the addition principle:

16x2 = 25

−25
... −25

16x2 − 25 = 0.

Notice that the left side of the equivalent equation 16x−25 = 0 can be factored
as a difference of squares:

(4x+ 5)(4x− 5) = 0.

So, using the zero product property, the equation is equivalent to the compound
statement

4x+ 5 = 0 OR 4x− 5 = 0.

The first equation has solution −5/4, while the second has solution 5/4.
The solutions are 5/4 and −5/4.

Example 9.4.3. Solve: 4x2 + 12x = 0

Answer. The quadratic equation does have zero on one side, so we can ask
whether it is possible to factor the polynomial 4x2 + 12x. In fact, the terms of
this polynomial have a common factor of 4x, giving a factorization of 4x(x+3).

So the solutions of 4x2 + 12x = 0 are the same as those of

4x = 0 OR x+ 3 = 0.

The first equation has solution 0; the second equation has solution −3.
The solutions are 0 and −3.

Example 9.4.4. Solve: 2x2 + 5x = 3.
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Answer. In this case, the quadratic equation is not in standard form, since
neither side of the equation is zero. However, we can rewrite the equation by
subtracting 3 from both sides:

2x2 + 5x− 3 = 0.

We attempt to factor the polynomial 2x2 + 5x − 3. This is a non-monic
quadratic trinomial; we will need to rely on the ac-method. We look for factors
of (2)(−3) = −6 whose sum is 5. Such a pair is 6 and −1. Splitting the middle
term we obtain

2x2 + 6x− 1x− 3.

Factoring by groups yields

2x(x+ 3)− 1(x+ 3)

(x+ 3)(2x− 1).

All this, combined with our strategy to solve by factoring, means that the
solutions of 2x2 + 5x− 3 = 0 are the same as those of the compound statement

x+ 3 = 0 OR 2x− 1 = 0.

The solutions are −3 and 1/2.

The reader might compare this example with Example 9.3.3, where we
solved the same equation by using the quadratic formula, to see which method
is more comfortable.

Example 9.4.5. Solve: x2 − 6x+ 4 = 0.

Answer. The quadratic equation is in standard form, with one side being zero.
We try to factor the polynomial x2−6x+4. Its terms have no factor in common,
but it is a monic quadratic trinomial. However, there are no factors of 4 whose
sum is −6. This polynomial cannot be factored.

In this case, our quadratic equation cannot be solved by factoring. We are
forced to rely on either completing the square or the quadratic formula. Fortu-
nately, we already did that in Example 9.2.1.

The solutions (which did not come from factoring!) are 3+
√
5 and 3−

√
5.

As the reader might guess from the last example, when solving quadratic
equations with integer coefficients, the factoring technique is only helpful when
the solutions are rational numbers.

9.4.1 Exercises

Solve the following quadratic equations by factoring and using the zero product
property.

1. x2 − 4x+ 3 = 0
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2. x2 − x− 12 = 0

3. x2 + 7x = 0

4. x2 + 9x = −20

5. 2x2 − 3x− 2 = 0

6. 4x2 + 12x+ 8 = 0

7. 4x2 + 4x = 15

8. 9x2 − 25 = 0

The following exercises explore the zero product property further.

9. (*) The zero product property may be applied to polynomials in any de-
gree. Use it to solve the following cubic (degree 3) polynomial equations.

(a) x3 − 6x2 + 8x = 0

(b) (x+ 3)(x− 1)(2x+ 7) = 0

10. (*) The zero product property is crucial to solving polynomial equations
by factoring. To see what happens without it, consider the “clock number
system.” In this number system, the only numbers allowed are the integers
from 0 (represented by 12 on the clock) to 11. We can add and multiply
these numbers normally, except if the result is greater than or equal to
12, we use instead the remainder when the result is divided by 12. For
example, in the clock number system, 9 + 8 = 5, since 17 divided by 12
has remainder 5. Likewise, 5 · 8 = 4, since 40÷ 12 = 3 R 4. Note that in
the clock number system, the zero product property does not hold. For
example, 3 · 4 = 0, but neither 3 nor 4 is zero.

Solve the following quadratic equations by guessing and checking all pos-
sible solutions. Remember, only numbers from 0 to 11 are allowed!

(a) x2 − 6x = 0

(b) x2 + 4x+ 3 = 0

(c) x2 + x+ 1 = 0.

9.5 Summary and applications

In the previous sections, we have seen a number of different strategies to solve
quadratic equations in one variable. Broadly speaking, these strategies fall into
two categories. On the one hand, there are the strategies based on the basic
principle that equations of the form x2 = k have two solutions, ±

√
k. Under

this broad principle are included the strategies of completing the square and
the quadratic formula, both of which apply to any quadratic equation in one
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variable. On the other hand, there is the strategy of factoring, based on the
zero product property of numbers. While this strategy cannot be applied to
every quadratic equation in one variable, it is generally more efficient in the
cases where it can be applied.

Only practice can guide the student to an intuition as to which strategy best
applies in solving a given equation. With that said, the following can be used
as a rough guide toward solving quadratic equations in one variable.

Guide to solving quadratic equations in one variable

To solve a quadratic equation in one variable x, first write the equation in
the standard form

ax2 + bx+ c = 0,

that is, with one side of the equation being zero. Consider the following
questions:

1. Can the equation be easily written in the form x2 = k? This is always
the case when b = 0.

• If so, apply the basic strategy to write the solutions
√
k and

−
√
k.

2. Can the quadratic expression be easily factored? Look especially for
common factors and monic trinomials with integer coefficients.

• If so, solve the equation by factoring.

3. If neither of the two preceding cases hold, either apply the completing
the square technique, or use the quadratic formula.

• Completing the square is most practical when a = 1 and b is an
even integer; otherwise the quadratic formula is more efficient.

Always make sure that radical expressions are simplified!

At the end of this section, there are more exercises with which to practice
deciding which technique to apply to solve quadratic equations.

We conclude our discussion of quadratic equations in one variable with some
examples of how these equations arise in the context of word problems. The
reader should review the four-step strategy for handling word problems in Sec-
tion 5.3.5.

Example 9.5.1. One number is three more than twice another number. Their
product is seven more than their sum. Find the two numbers.

Answer. Step 1: Create a dictionary. The problem involves two unknown
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quantities. As usual, one of them will be denoted x, in this case the quantity
referred to as “another number” in the first sentence. In that case, the first
sentence describes the other quantity as three more than twice x, or 2x+3. The
dictionary can be written as

One number 2x+ 3
Another number x

Step 2: Write an equation. We have used the first sentence to create
the dictionary. The second sentence describes a relationship between them as an
equation (“is”):

(2x+ 3)(x) = [(2x+ 3) + (x)] + 7.

Step 3: Solve the equation. We will first simplify both sides of the
equation separately, distributing and combining like terms where possible:

(2x+ 3)(x) = (2x+ 3) + (x) + 7

(2x)(x) + (3)(x) = 2x+ 3 + x+ 7

2x2 + 3x = 3x+ 10.

It is clear now we are working with a quadratic equation. Let’s rewrite it in
standard form, so that one side is zero.

2x2 + 3x = 3x + 10

−3x −10
... −3x −10

2x2 − 10 = 0.

Since the x-term does not appear, we can rewrite this equation again in the
special form x2 = k:

2x2 − 10 = 0

+10
... +10

2x2 = 10

2x2

2 = 10
2

x2 = 5.

(The reader may have noticed that the work we did to rewrite the equation in
the standard form 2x2 − 10 = 0 was really unnecessary in this problem. We
could have proceeded to isolate the x2 term as soon as we noticed that there was
no linear term, in other words no term involving x1.)

Now that the equation is written in the special form x2 = 5, we can apply
the basic strategy directly.

The solutions are
√
5 and −

√
5.

Step 4: Answer the question. Notice right away: The two solutions to
the equation in Step 3 are not the two numbers we are looking for! The solu-
tions represented the value of x, which, according to our dictionary, represent
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“another number.” In other words, each solution to the quadratic equation will
correspond to a pair of numbers as an answer.

To find the other number in each pair, we rely on the dictionary: the “one
number” is given by 2x+3. So for the solution

√
5, the corresponding “one num-

ber” would be 2(
√
5) + 3, or 3 + 2

√
5. For the solution −

√
5, the corresponding

“one number” would be 2(−
√
5) + 3, or 3− 2

√
5.

The problem has two possible answers. Either one number is 3 + 2
√
5 and

another number is
√
5, or one number is 3− 2

√
5 and another number is −

√
5.

Example 9.5.2. The length of a rectangle is four feet less than twice the width.
The area of the rectangle is 70 square feet. Find the dimensions of the rectangle.

Answer. Step 1: Create a dictionary. The problem involves two unknown
quantities, the length and the width. The first sentence relates the two. We will
denote the width by x, so that according to the first sentence, the length will be
2x− 4. The dictionary can be written as

Length 2x− 4
Width x

Step 2: Write an equation. We recall from geometry that the area of a
rectangle is given by the formula

Area = (Length)(Width).

Using the dictionary and the second sentence, we substitute the information into
this formula to obtain the equation

70 = (2x− 4)(x).

Step 3: Solve the equation. Let’s simplify the right-hand side first by
distributing:

70 = (2x− 4)(x)

70 = (2x)(x) + (−4)(x)

70 = 2x2 − 4x.

We see that this is a quadratic equation. We write it in standard form by
subtracting 70 from both sides:

70 = 2x2 − 4x

−70
... −70

0 = 2x2 − 4x − 70.

The right-hand side can be factored:

0 = 2x2 − 4x− 70

0 = 2(x2 − 2x− 35)

0 = 2(x+ 5)(x− 7).
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Applying the zero product property, this equation is equivalent to the com-
pound statement

x+ 5 = 0 OR x− 7 = 0.

(Notice the factor of 2 does not contribute any solutions to the equation.) This
statement has solutions −5 and 7.

The solutions are −5 and 7.
Step 4: Answer the question. Recall from our dictionary that x repre-

sents the width of the rectangle. For that reason, we will ignore the negative
solution to the equation as being physically meaningless, and only consider the
solution 7. From the dictionary, we know that the length is expressed by 2x− 4.
Substituting the solution 7, we find that the length is 2(7)− 4 = 14− 4 = 10.

The width is 7 and the length is 10.

Example 9.5.3. An object is thrown straight upwards from the ground with
an initial velocity of 60 ft/sec. It’s height h above the ground is related to the
number t of seconds that pass by the equation h = −16t2 + 60t. When will the
object be 12 feet above the ground?

Answer. Step 1: Create a dictionary. In this case, the only unknown
quantity is the time t. (The height is also unknown, but the problem specifically
asks for the time (“when”).) Writing the dictionary would simply mean writing

Time t

Step 2: Write an equation. The problem gives a relationship between
the height h and the time t. Using the fact that the problem asks specifically
about the object when the height is 12 feet, we substitute to obtain the quadratic
equation

12 = −16t2 + 60t.

Step 3: Solve the equation. We begin by writing the equation in standard
form with one side being zero. For the sake of having the leading coefficient
positive, we will add 16t2 − 60t to both sides:

12 = −16t2 + 60t

+16t2 −60t
... +16t2 −60t

16t2 − 60t + 12 = 0.

The terms on the left side have a common factor of 4:

4(4t2 − 15t+ 3) = 0.

By the zero product property (or by dividing both sides of the equation by 4),
this is equivalent to the equation

4t2 − 15t+ 3 = 0.
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Since the quadratic trinomial cannot be factored any further, we will apply
the quadratic formula with a = 4, b = −15 and c = 3:

t =
−(−15)±

√

(−15)2 − 4(4)(3)

2(4)

=
15±

√
225− 48

8

=
15±

√
177

8
.

The solutions are
15 +

√
177

8
and

15−
√
177

8
Step 4: Answer the question. Since

√
177 ≈ 13.304, both solutions are

positive numbers and so are physically meaningful in the problem. Using the
approximate value (again rounding to three decimal places), substituting, and
evaluating, we find that both after 0.212 seconds and again after 3.538 seconds,
the object is 12 feet above ground. (This corresponds to the object “going up”
and then “coming down.”)

9.5.1 Exercises

Solve the following quadratic equations by any method.

1. x2 − 4x+ 4 = 0

2. 3x2 + 5x− 2 = 0

3. 6x2 − 6x = 6

4. 2x2 + 6x+ 2 = 0

5. 4b2 + 8b = 0

6. (x+ 6)(x− 4) = −9

7. x2 = −16

8. 2x2 − 3x = 2

9. 6x2 + 15x− 9 = 0

10. (x− 2)2 = 3

11. 3x2 + 24 = 0

12. 4x2 − 3x = 1

In each of the following, solve a quadratic equation to answer the question.
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13. A rectangular apartment is designed so that the length is 10 feet more
than three times the width. If the area enclosed is 800 square feet, find
the dimensions of the apartment.

14. In an isosceles triangle, two of the three sides of the triangle have equal
length. If the hypotenuse of an isosceles right triangle measures 10 units
more than the length of either side, find the lengths of all three sides.

15. The product of the first two of three consecutive integers is 16 more than
10 times the third. Find the three integers.

16. The length of a rectangle measures 6 inches longer than twice the width.
Find the perimeter of the rectangle if the length of the diagonal is 25
inches.

17. An object is tossed straight upwards from the ground with an initial ve-
locity of 25 ft/sec. It’s height h above the ground is related to the number
t of seconds that pass by the formula h = −16t2 + 25t. How long will it
take for the object to fall back to the ground?

18. Taissha is standing on top of a building 100 feet tall. She drops her
cell phone, whose height from the ground after t seconds is given by the
formula h = −16t2 + 100. How long does it take for her phone to hit the
ground?

19. (*) If you want to divide a line segment into two parts (not necessarily
equal), what is the perfect way to do it? For centuries, many artists and
mathematicians thought the answer was the related to “golden ratio:” the
ratio of the length of the larger part to the smaller part should be the same
as the ratio of the length of the whole segment to the length of the larger
part. If a segment of length 10 is divided according to the golden ratio,
find the length of the two parts.

9.6 Introduction to quadratic equations in two

variables

In this section, we will consider the simplest type of quadratic equations in two
variables. As might be expected after Chapter 5, these equations will generally
have infinitely many solutions, which we will graph in the xy-plane. The main
feature of these equations that we want to point out in this section is that their
graphs have a distinct shape which is not a line.

The simplest case of such an equation already illustrates the essential fea-
tures of these graphs. Consider the equation

y = x2.
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This equation is quadratic (degree 2) in the variable x, but linear (degree 1)
in the variable y. Nevertheless, the equation is a quadratic equation since the
highest degree of any term is 2.

We will start off exactly as we did in the case of linear equations in two
variables. We will begin finding solutions by choosing values for x (since the
equation is written with y by itself on one side of the equation) and finding the
corresponding value of y. By considering the resulting ordered pairs, we will
plot the solutions and see if we can determine a pattern to “connect the dots.”

Choosing 0 for x, we substitute:

y = (0)2

y = 0.

Choosing 1 for x, we obtain

y = (1)2

y = 1.

Choosing 2 for x,
y = (2)2

y = 4.

So far, we can summarize our results in the following chart:

x y Solution

0 0 (0, 0)

1 1 (1, 1)

2 4 (2, 4)

(Recall we write a box around the values we chose, as opposed to those we
obtained by solving the equation for the chosen values.)

In Figure 9.3, we plot these three solutions.
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x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5
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−1
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4

5

•(0, 0)

•(1, 1)

•(2, 4)

Figure 9.3: Three solutions of y = x2.

We can notice one thing right away about Figure 9.3: no line will pass
through all three of these points on the graph! Since it is not clear what the
relationship is between these three solutions, we will continue to find more
solutions until a pattern begins to emerge.

So far, we have chosen positive values for x. Let’s see what happens when
we chose some negative values. Choosing −1 for x, for example, we obtain

y = (−1)2

y = 1.

Choosing −2 for x,
y = (−2)2

y = 4.

Our table of solutions now appears as

x y Solution

0 0 (0, 0)

1 1 (1, 1)

2 4 (2, 4)

−1 1 (−1, 1)

−2 1 (−2, 4)

The graph of these five solutions is given in Figure 9.4.
At this point, some patterns start to take shape. First, there is some symme-

try to the solutions: the y-axis appears to be a “mirror,” with pairs of solutions
appearing at equal distances from this axis. Furthermore, the origin (0, 0), which
is a solution to the equation, appears to be a “turning point” for the graph of the
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•(0, 0)

•(1, 1)

•(2, 4)

(−1, 1) •

(−2, 4) •

Figure 9.4: Five solutions of y = x2.

solutions: the y-values seem to be decreasing as the x-values increase (through
negative values) to 0, then begin to increase as the x-values increase past zero
(through positive values).

Based on this information, we might “connect the dots” as in Figure 9.5.

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5
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−3
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0

1

2

3

4

5

•(0, 0)

•(1, 1)

•(2, 4)

(−1, 1) •

(−2, 4) •

Figure 9.5: All solutions of y = x2.

The shape of this graph is what is known as a parabola. For our purposes,
the important features of a parabola is that it has one turning point (called
the vertex ) and a line (or axis) of symmetry. It is worth pointing out that the
parabola’s “U” shape does not make it a parabola; there are graphs that also
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have a “U” shape but are not parabolas.

Parabolas

The graph of solutions to a quadratic equation of the form

y = ax2 + bx+ c (a 6= 0)

is a parabola.

In a more detailed study of these equations, we could ask whether it is
possible, given such an equation, we could find the essential features of its graph,
namely its vertex and axis of symmetry. For our limited purposes, though, our
strategy will be to simply find enough solutions until the vertex and axis of
symmetry are apparent, then connect the solutions by drawing a parabola. In
general, we will choose at least five solutions, although if a pattern does not
emerge, we may even choose to find more.

Example 9.6.1. Graph the solutions: y = −x2 + 2x.

Answer. We begin by finding solutions by choosing values of x close to 0,
keeping the previous example in mind.

Choosing −2 for x:

y = −(−2)2 + 2(−2)
y = −4 + (−4)
y = −8.

Choosing −1 for x:

y = −(−1)2 + 2(−1)
y = −1 + (−2)
y = −3.

Choosing 0 for x:

y = −(0)2 + 2(0)
y = 0.

Choosing 1 for x:

y = −(1)2 + 2(1)
y = −1 + (2)
y = 1.

Choosing 2 for x:

y = −(2)2 + 2(2)
y = −4 + (4)
y = 0.
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So for our first five choices of values of x, we have obtained the following
table:

x y Solution

−2 −8 (−2,−8)

−1 −3 (−1,−3)

0 0 (0, 0)

1 1 (1, 1)

2 0 (2, 0)

We plot these five solutions in Figure 9.6.
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2
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4

5

•(2, 0)

•(1, 1)

•(0, 0)

(−1,−3) •

(−2,−8) •

Figure 9.6: Five solutions of y = −x2 + 2x.

Judging from the solutions plotted so far, we might guess that the vertex is
the point corresponding to (1, 1). We might confirm that by checking that (3,−3)
and (4,−8) are also solutions. We also see that unlike the previous example, a
parabola joining these solutions will face downwards.

We conclude by drawing the parabola as in Figure 9.7.
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Figure 9.7: All solutions of y = −x2 + 2x.

9.6.1 Exercises

Graph the solutions to the following equations.

1. y = x2 + 2

2. y = x2 − 1

3. y = 2x2

4. y = −x2

5. y = x2 − 4x

6. y = 1− x2

9.7 Chapter summary

• A typical quadratic equation in one variable will have two solutions.

• Quadratic equations of the form x2 = k have two solutions, represented
symbolically as

√
k and −

√
k. (The two solutions are the same when

k = 0.)
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• Any quadratic equation in one variable can be solved by either the tech-
nique of completing the square or by using the quadratic formula.

• Some quadratic equations (but not all!) can be solved by the alternate
technique of factoring and using the zero product property of numbers.

• The graph of an equation of the form y = ax2 + bx + c in the xy-plane
(with a 6= 0) will be a parabola.



Glossary

Absolute value The absolute value of a number is its magnitude. It is
represented symbolically by two bars around a number | · |.

Addition principle The addition principle expresses the fact that when
the same quantity is added to (or subtracted from) each side of an algebraic
statement, the resulting statement is equivalent to (has the same solutions
as) the original one.

Algebraic expression An algebraic expression is an expression formed
by combining numbers and variables using the operations of addition,
subtraction, multiplication, division, (numerical) exponents, and roots.

Algebraic statement An algebraic statement is a comparison of two
algebraic expressions using the relations of equality, greater than, or less
than. An algebraic statement may be true or false.

Associative law The associative law (of addition or of multiplication)
expresses the fact that when performing the same operation several times,
the way in which quantities are grouped, and hence the order that the
operations are performed, does not affect the outcome of performing the
operations. It is usually expressed symbolically as (a+ b)+ c = a+(b+ c)
(for addition) or (a · b) · c = a · (b · c) (for multiplication).

Base (of an exponential expression) In an exponential expression, the
base is the quantity which is written immediately to the left of the expo-
nent (which is written as a superscript). For natural number exponents,
the base is the quantity which is multiplied a repeated number of times.

Coefficient The coefficient of a term is the “number part” of the term,
or the constant by which the variable part is multiplied.

Commutative law The commutative law (of addition or of multiplica-
tion) expresses the fact that the order in which the quantities are expressed
does not affect the outcome of performing the operation. It is usually ex-
pressed symbolically as a + b = b + a (for addition) or a · b = b · a (for
multiplication).

257
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Completing the square Completing the square is a process by which an
appropriate quantity is added to an algebraic expression in such a way that
the result is a perfect square. (The quantity added must be compensated
for in such a way that the new expression or statement is equivalent to
the old one, for example by adding the same quantity to both sides of an
equation.)

Complex numbers A complex number is a symbolic expression involving
(real) numbers as well as the imaginary unit i. Symbolically, a complex
number has the form a+ bi, where a and b are (real) numbers.

Conditional statement An algebraic statement is conditional if it may
be true or false, depending on the values assigned to the variables involved.

Constants Constants are numbers, or symbols that represent a definite
value.

Contradiction A contradiction is an algebraic statement which is false
for all values of the variables involved. A contradiction therefore has no
solution.

Denominator The denominator of a fraction is the number written below
the bar, and represents the divisor of the quotient.

Descending order A polynomial is written in descending order if terms
having higher degree are written to the left of terms having lower degree.

Difference of squares A difference of squares is a binomial involving
the difference of two terms which are each perfect squares. Symbolically,
a difference of squares has the form a2 − b2, where a and b represent any
algebraic expression.

Discriminant The discriminant of a quadratic formula of the form ax2+
bx + c = 0 is the quantity b2 − 4ac. The discriminant allows one to
determine if the solutions of the given equation are rational or irrational,
real or complex, and how many distinct solutions the equation has.

Equivalent fractions Two fractions are equivalent if they represent the
same quotient.

Fraction in reduced form A fraction is written in reduced form if the
numerator and denominator are integers that have no factor in common
(other than 1).

Integer An integer is either a whole number or the opposite of a whole
number. The set of all integers can be expressed as
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

Degree (of a polynomial) The degree of a polynomial is the highest
degree of any of its terms.
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Degree (of a term) The degree of a term in a polynomial in one variable
is the exponent of the variable part.

Distributive law The distributive law expresses a relationship between
the operations of addition and multiplication. It states that the product
of a quantity with a sum is the same as the sum of the product of the
quantity with each of the summands. It is usually expressed symbolically
as a · (b+ c) = a · b+ a · c.

Equation An equation is an algebraic statement involving the relation of
equality (=). An equation is true if both sides of the statement have the
same value.

Equivalent equations Two equations are equivalent if they have the
same solutions.

Evaluate To evaluate an expression means to find its value, generally
after performing all indicated operations.

Factor (verb) To factor an expression means to write it as a product of
two or more factors (usually different than 1).

Factor (of an integer) A factor of an integer is another integer which,
when multiplied by a third integer, is equal to the original integer. (This
is sometimes stated as, “A number which divides the original number
evenly.”)

Factor (of a polynomial) A factor of a polynomial is another poly-
nomial which, when multiplied by a third polynomial, gives the original
polynomial.

Factor completely To factor a polynomial completely means to write it
as a product of two or more factors, none of which can be factored and
further.

Fraction A fraction is a symbolic way of writing a quotient that involves
two numbers separated by a bar representing the operation of division.

Function notation Function notation gives a symbolic way of referring
to algebraic expressions. It involves naming the expression with a single
letter (like f , g, or P ), and indicating the variables on which the expression
depends. The notation f(x) (read “f of x”) is meant to indicate the
expression named f with variable x; f(3) indicates the value of f(x) when
x is assigned the value 3.

Graph To graph an algebraic statement means to plot all solutions, either
on a number line (statements involving one variable) or on an xy-plane
(statements involving two variables).
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Greatest common divisor The greatest common factor (GCF) of mono-
mials (with integer coefficients) is the product of the GCF of the coeffi-
cients with the lowest power of each variable appearing in any of the terms.

Horizontal lines A line in an xy-plane is called horizontal if it is parallel
to the x-axis. Horizontal lines have slope 0.

Hypotenuse In a right triangle, the hypotenuse is the side opposite to
the right angle. Due to the Pythagorean theorem, it is also the longest
side of a right triangle.

Identity An identity is an algebraic statement which is true for all values
of the variables involved.

Imaginary unit The imaginary unit, denoted i, is the symbol defined to
have the property that i2 = −1.

Inequality An inequality is an algebraic statement involving the relations
of “greater than” (>) or “less than” (<). An inequality is true when the
inequality symbol “points” in the direction of the side with the smaller
value. Inequalities include the compound inequalities “greater than or
equal to” (≥) and “less than or equal to” (≤), which are true when either
the inequality is true or when the sides have the same value.

Intercepts (x– and y–intercept of a line in an xy-plane) The intercepts
of a line drawn in an xy-plane are the points where the line intersects the
x-axis (the x-intercept) and where the line intersects the y-axis (the y-
intercept). The ordered pair corresponding to the x-intercept will have 0
as a y-coordinate, while the ordered pair corresponding to the y-intercept
will have 0 as an x-coordinate.

Irrational numbers A real number is irrational if it is impossible to rep-
resent it as a ratio of two integers. The decimal expansion of an irrational
number never terminates and never repeats.

Leading term The leading term of a polynomial is the term with the
highest degree. (Hence, when a polynomial is written in descending order,
the leading term is the first term written.)

Like terms Like terms have the same variable part. For a linear equation
in one variable, two terms are like terms if they either both involve the
variable or both do not involve the variable. For a polynomial in one
variable, like terms are those having the same degree.

Linear equation An algebraic statement is linear if the only operations
performed on a variable are addition, subtraction, and multiplication by
a constant. As a consequence, every term of a linear equation involves at
most one variable, and the highest exponent of any variable is 1. In the
language of polynomials, an equation is linear if it only involves polynomial
expressions of degree 1.
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Literal equation A literal equation (or formula) is an equation that
relates several variables, usually meant to express relationships between
measured quantities.

Magnitude The magnitude of a number is a non-negative number that
represents how “big” a number is, regardless of sign. On a number line,
the magnitude of a number is the distance from the point representing the
number to the point representing 0.

Monic polynomial A polynomial is called monic if the coefficient of the
leading term is 1.

Multiplication principle The multiplication principle expresses the fact
that when the same non-zero quantity is multiplied by (or divided by)
each side of an algebraic equation, the resulting equation is equivalent to
(has the same solutions as) the original one. The multiplication principle
also applies to inequalities when multiplying by positive quantities. When
multiplying an algebraic inequality by a negative, the original inequality is
equivalent to the new inequality with the opposite sense of the inequality.

Natural number A natural number is a number which occurs in the “nat-
ural” operation of counting, and are sometimes called “counting numbers.”
The set of all natural numbers can be expressed as {1, 2, 3, . . . }.

Negative number A negative number is a number which is less than
zero. On a number line, negative numbers are represented by points to
the left of the point representing zero.

Non-negative number A non-negative number is either positive or zero.
Said differently, a non-negative number is a number greater than or equal
to zero.

Numerator The numerator of a fraction is the number written above the
bar, and represents the dividend of the quotient.

Opposite of a number The opposite of a number is the number which,
when added to the original number, gives zero. The opposite of a number
is also called the “additive inverse” of a number. The opposite of a num-
ber has the same magnitude, but opposite sign as the original number.
Symbolically, the opposite of a number a is −a.

Order of operations The order of operations is the conventional order
in which operations are performed when there is more than one operation
involved.

Ordered pair An ordered pair is a notation that is well-suited to describe
solutions of algebraic statements in two variables. It involves two numbers
(called coordinates) separated by a comma and enclosed in parentheses, for
example (3, 2). The first number is traditionally called the x-coordinate
while the second number is traditionally called the y-coordinate.
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Parabola The shape of the graph of solutions to equations of the form
y = ax2 + bx+ c is called a parabola. A parabola has a vertex (or turning
point) and an axis of symmetry.

Parallel lines Two lines in a plane are parallel if they do not intersect.
In an xy-plane, parallel lines have the same slope.

Parentheses (and other grouping symbols) Parentheses, along with
other symbols like brackets, are used in a mathematical expression to
indicate grouping. In the order of operations, grouped operations are
performed before other operations.

Perpendicular lines Two lines in a plane are perpendicular if they meet
at a right angle. In an xy-plane, the product of the slopes of perpendicular
lines is −1.

Plotting an ordered pair To plot an ordered pair is the process of
representing an ordered pair with a point in an xy-plane. The coordinates
represent distances to the axes, with the distance measured in a direction
corresponding to whether the coordinate is positive or negative.

Plus-or-minus (±) notation The symbol ±k denoted the compound
expression, “Either k or −k.” An equation x = ±k is the same as the
compound statement, “Either x = k or x = −k.

Point-slope form of a linear equation in two variables An equation
derived from the formula defining the slope of a line in an xy-plane, which
makes explicit the slope of the line and the coordinates of one point. It is
written

y − y0 = m(x− x0),

where m is the slope and (x0, y0) represent the (constant) coordinates of
one point on the line. The point-slope form of a line is generally used as
a “formula” to write the equation describing a line in an xy-plane with
some given geometric data.

Polynomial A polynomial (in one variable) is an algebraic expression,
each of whose terms have the form axn where a is a constant coefficient
and n is a whole number.

Positive number A positive number is a number which is greater than
zero. On a number line, positive numbers are represented by points to the
right of the point representing zero.

Pythagorean theorem The Pythagorean theorem expresses a relation-
ship between the lengths of the sides of a right triangle. Specifically, it
states that a triangle with hypotenuse with length h and with the two other
sides having lengths a and b is a right triangle if and only if h2 = a2 + b2.
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Quadratic equation A quadratic equation is an equation involving poly-
nomials of degree 2. In particular, a polynomial in one variable x must
have an x2 term (with nonzero coefficient), and no term may have degree
higher than 2.

Quadratic formula The quadratic formula expresses the solutions to a
quadratic equation of the form ax2+bx+c = 0 in terms of the coefficients
a, b and c. Specifically, it states that the equation ax2 + bx + c = 0 is
equivalent to the (compound) statement

x =
−b±

√
b2 − 4ac

2a
.

Quadratic trinomial A quadratic trinomial is a polynomial with three
terms with degree two. Symbolically, a quadratic trinomial in one vari-
able x can be written ax2 + bx + c, where a, b and c represent constant
coefficients.

Radicand The radicand of a radical symbol is the quantity enclosed by
the radical sign

√
. Symbolically, the radicand of the symbol

√
k is k.

Rational number A number is said to be rational if can be expressed as
a ratio of two integers. The decimal expansion of a rational number either
terminates or repeats.

Rationalizing (a denominator) The process of multiplying the numer-
ator and denominator of a fraction by (the same) appropriate quantity
so that the resulting denominator does not involve a radical symbol after
simplifying is called rationalizing the denominator.

Real numbers Any number or numerical expression not involving the
imaginary unit i is called a real number.

Reciprocal The reciprocal of a number is the number which, when multi-
plied by the original number, has product 1. The reciprocal is also called
the “multiplicative inverse” or just “inverse.” Symbolically, the reciprocal
of a number a is 1/a.

Scientific notation A number is written in scientific notation if it has
the form a × 10n, where a is a number whose magnitude is greater than
or equal to 1, but strictly less than 10, and where n is an integer.

Slope of a line The slope of a line is a number measuring the steepness
of the line. In an xy-plane, it is given by the ratio of the change in the y-
coordinates of any two points on the line to the change in the x-coordinates
of the same two points.

Slope-intercept form of a linear equation in two variables A linear
equation in two variables x and y is said to be written in slope-intercept
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form if the y variable is by itself on one side of the equation. An equation
in slope-intercept form is often written y = mx+ b, since the coefficient of
the variable x represents the slope of the line obtained by plotting solutions
to the equation, and b represents the y-coordinate of the y-intercept.

Solution A solution to a conditional statement is a value for each variable
in the statement which, when substituted into the expressions involved,
yield a true statement.

Solve To solve a (conditional) algebraic statement means to find all solu-
tions of the statement.

Strict inequality An inequality is strict if it involves only the relations
of < or >, and not the compound inequalities ≤ and ≥.

System of linear equations A system of linear equations consists of
two or more equations which are taken as part of a compound statement,
usually indicated by writing a brace symbol ({). A solution to a system
must be a solution to all of the equations involved in the system.

Term A term is an algebraic expression which is not itself the sum of two
or more expressions. A general algebraic expression can be written as a
sum of terms.

Variables Variables are mathematical symbols, usually indicated by let-
ters, that indicate an unknown number, or a number that changes with
time.

Vertical lines A line in an xy-plane is called vertical if it is parallel to
the y-axis. Vertical lines do not have a slope (or the slope is undefined).

Whole number A whole number is either a natural number or 0. The set
of all whole numbers can be expressed as {0, 1, 2, 3, . . . }. Whole numbers
answer the question, “How many?”

xy-plane An xy-plane is a method for representing ordered pairs as points
in a plane. It involves two fixed perpendicular lines (called axes) which
intersect at one point (called the origin).

Zero product property The zero product property of numbers expresses
the fact that for any two numbers a and b, a · b = 0 implies that either a
or b is 0.
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Chapter 1

Exercises 1.2.1
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2.
1

6

3.
11

10

4.
1

12

5.
13

3

6.
11

12
.

Chapter 2

Exercises 2.3.3

1. −7

2. −7

3. 1.45

4. −14

5. 0

6. −13

20

7.
1

24

8. −3

9. −7

10. −8

11. −1.93

12. −1

13.
7

12

14. − 3

14

15. −1

8

Exercises 2.4.1

1. −36

2. 25

3. −3

4. 80

5. − 4
7

6. 21
16

Exercises 2.5.1

1. 81

2. −8

3. 32

4. −9

5. Not a real number

Chapter 3

Exercises 3.1.1

1. −12

2. 5

3. 2

4. −7

5. 27/16

6. 5

7. 5/6
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8. 3

Exercises 3.3.2

1. −115

2. 13

3. 1

4. 1875

5. 53/9

6. (a) 2

(b) −2

(c) 2

(d) −15

(e) 13/5

7. (a) 3

(b) 3

(c) 2

(d) 1

(e) −3/2

8. (a) −40

(b) 5

(c) 50

(d) 77

(e) 448/5

9. (a) 24

(b) 5/4

(c) −1

10. (a) −12

(b) −8

(c) 10

Exercises 3.4.1

1. 2(x+ 8)

2.
1

2
x− 7

3.

(

1

4

)

(x− 12)

4. Thirty less than seven times a
number.

5. Three times the sum of a number
and two.

6. The sum of three times a number
and the square of five less than
the same number

7. The quotient of one less than two
times a number and three

8. The quotient of three less than
seven times a number and three
less than the same number

Chapter 4

Exercises 4.1.1

1. Yes.

2. Yes.

3. Yes.

4. No.

5. Yes.

6. No.

7. No.

8. Yes.

9. Yes.

10. No.

11. Yes.

12. Yes.

13. Yes.

14. Yes.
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15. No.

Exercises 4.2.6

1. 2

2. 10/3

3. −1

4. 1/5

5. No solution

6. 15/8

7. All real numbers

8. 0

9. 15/8

10. 9

11. 14/3

12. 5/3

13. 30, 31, and 32

14. 131 and 133

15. 9/4 and 51/4

16. $ 1,500 per week

17. −1, 1 and 3.

18. 17/4 and 43/4

Exercises 4.3.1

1. y =
3

2
x− 3

2. y = −5

4
x+

5

2

3. r =
I

P t

4. C =
5

9
(F − 32)

5. m =
y0 − y

x0 − x

Exercises 4.4.3

1. 3x− 4 > 6

| | | | | |

1 2 3 4 5
bc

10
3

2. 2(x− 3) + 4 ≤ x− 5

| | | | | |

−6 −5 −4 −3 −2
b

−3

3.
3(2x− 1) + 4(3x+ 5) > 2(x− 6)

| | | | | |

−2 −1 0 1 2
bc

− 29
16

4. x− 5(2x+ 1) ≤ 6

| | | | | |

−2 −1 0 1 2
b

− 11
9

5. No solution

−2(x− 3) ≥ −4(x+ 1) + 2x

| | | | | |

−2 −1 0 1 2
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6. All real numbers

2x+ 3(x− 2) > 5(x− 1)− 1

| | | | | |

−2 −1 0 1 2

Chapter 5

Exercises 5.1.3

1. x− y = 4

x

y

−2 −1 0 1 2 3 4 5 6

−5

−4

−3

−2

−1

0

1

2

3

4

5

•

•

2. 2x+ 3y = −6

x

y

−2 −1 0 1 2 3 4 5 6 7 8 9 10

−8

−7

−6

−5

−4

−3

−2

−1

0

1

•

•

3. 5x− y = 2

x

y

−4 −3 −2 −1 0 1 2

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

•

•

4. −4x+ 3y = 12

x

y

−5 −4 −3 −2 −1 0 1 2 3 4

−2

−1

0

1

2

3

4

5

6

7

8

•

•

5. −x+ 3y = 9

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

−2

−1

0

1

2

3

4

5

•

•

6. y = 2x− 1

x

y

−3 −2 −1 0 1 2 3 4

−5

−4

−3

−2

−1

0

1

2

3

4

5

•

•

7. y = 1
3x− 2

x

y

−4 −3 −2 −1 0 1 2 3 4 5 6 7

−5

−4

−3

−2

−1

0

1

2

3

4

5

•

•

8. y = − 3
4x+ 1
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x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

•

•

Exercises 5.2.4

1. (a) −2

(b) 2

(c) Undefined

(d) 1/3

(e) −2/3

(f) 5

(g) 2

(h) 1/3

(i) −3/4

(j) 0

(k) −1

2. Slope −3/4, y-intercept (0, 1)

3. Slope 5, y-intercept (0,−2)

4. y =
3

4
x− 17

4

5. y =
2

3
x− 7

3

6. y =
3

4
x− 5

7. y = 4x− 4

8. Find the slopes and compare.

9. 3x+ 5y = −9

10. Find the slopes and use the slope
interpretation of perpendicular.

11. −5x− y = 0

Exercises 5.3.1

1. −x− y > 6

x

y

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

2. 2x+ 5y ≤ 10

x

y

−3 −2 −1 0 1 2 3 4 5 6 7

−4

−3

−2

−1

0

1

2

3

4

3. 3x− 2y ≥ 12

x

y

−3 −2 −1 0 1 2 3 4 5 6 7 8

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

4. −4x+ y > 4
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x

y

−2 −1 0 1 2

−4

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

12

5. y ≥ −1

2
x+ 4

x

y

−1 0 1 2 3 4 5 6 7 8 9 10

−3

−2

−1

0

1

2

3

4

5

6. y < 1

x

y

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

Exercises 5.4.2

1. (3,−5)

2. (−1,−1)

3.

(

15

8
,−17

16

)

4.

(

48

11
,
10

11

)

5. (0, 2)

6.

(

13

7
,
10

7

)

7. No solution

8.

(

14

3
,
13

3

)

Chapter 6

Exercises 6.1.1

1. Polynomial

2. Polynomial

3. Polynomial

4. Not polynomial

5. Not polynomial

6. (a)-(b) Terms: 3 (degree 0, co-
efficient 3), −x (degree 1, coeffi-
cient −1); (c)-(d) −x+3 (degree
1)

7. (a)-(b) Terms: 5 (degree 0, co-
efficient 3), x2 (degree 2, coef-
ficient 1), −3x (degree 1, coef-
ficient −3); (c)-(d) x2 − 3x + 5
(degree 2)

8. (a)-(b) Terms: 1 (degree 0, co-
efficient 1), −x (degree 1, coef-
ficient −1), x2 (degree 2, coef-
ficient 1), −x3 (degree 3, coeffi-
cient −1), x4/2 (degree 4, coeffi-

cient 1/2); (c)-(d) x4

2 −x3+x2−
x+ 1 (degree 4)

Exercises 6.2.3

1. 3x2 − 3x− 2

2. 4x3 − x2 − x+ 7

3. 4y2 + 3y + 3

4. −3x3 + 2x2 − 3x− 3

5. 4x3 + 3x2 − 4x− 3
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6. −5x+ 13

7. x2 + 2x+ 6

Exercises 6.3.2

1. x7

2. z12

3. x−6/16

4. ab

5. x5y−4 or x5/y4

6. y

7. (a) 25 (b) 13

8. (a) 1 (b) 5

Exercises 6.4.2

1. 7.5× 1018

2. 2.75× 10−10

3. 602, 200, 000, 000, 000, 000, 000, 000

4. 0.001

5. 1.8× 108

6. 2× 10−2

7. 9.1× 10−14

8. 5.1× 103

9. 7.14× 103

10. 5× 10−9

11. 1.2555× 101

12. −2.5× 109

Exercises 6.5.1

1. x2 − x− 6

2. 6x2 − 11x+ 4

3. 4x2 + 12x+ 9

4. x3 − 1

5. x4 + 6x3 + 3x2 − 11x− 6

6. x4 − x3 − 4x2 − 11x− 3

7. 9x2 − 12x+ 4

8. 8x3 + 6x2 − 7x+ 6

9. 2x3 + 3x2 − 32x+ 30

10. 8x3 − 12x2 + 6x− 1

11. Distribute.

12. a = 0 or b = 0.

Exercises 6.6.1

1. −5x+ 10

2.
x

3
− 1 + 3x−1

3. x4 − 4x3 − 3x

4. x4 − x− 4

5. −5x2 + 7x− 1

Chapter 7

Exercises 7.2.1

1. 2x(3x2 − 1)

2. 4x2(x3 − 3x− 2)

3. 9(2x− 1)

4. −3x2(x2 − 5x+ 3)

5. 6ab2(b− 2a)

6. −xy(y3 + 2xy2 + 15x4)

Exercises 7.3.1

1. (a+ 3)(a− 3)

2. (x+ 5)(x− 5)

3. Cannot be factored
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4. 4(x+ 3)(x− 3)

5. (5x2 + 9y3)(5x2 − 9y3)

6. x2(x+ 2)(x− 2)

7. 3x(x+ 5)(x− 5)

8. (a) (x+ y)2

(b) (x+ 5)2

(c) (x+ 6)2

9. Remember (a− b)2 = (a− b)(a−
b).

10. (a) (x− 1)2

(b) (x− 9)2

(c) (x− 4)2

11. Combine like terms!

12. (a) (x− 2)(x2 + 2x+ 4)

(b) y(x− 5y)(x2 + 5y + 25y2)

13. Combine like terms!

14. (a) (x+ 4)(x2 − 4x+ 16)

(b) (2x+ 3)(4x2 − 6x+ 9)

Exercises 7.4.1

1. (x+ 4)(x− 8)

2. (y + 6)(y − 3)

3. (x+ 2)(x+ 6)

4. (x− 2)(x− 10)

5. Cannot be factored

6. (y + 2)(y − 3)

7. (t+ 3)2

8. (x− 1)(x− 5)

9. 3x(x+ 1)(x− 4)

10. 5(x+ 4)(x− 4)

11. 2x(3x2 − 1)

12. 2(x2 + 4)

13. 4x(x2 − 3x− 2)

14. 3x(x+ 2)(x− 2)

15. (a) (x2 + 2)(x2 + 3)

(b) (x2 + 3)(x+ 2)(x− 2)

(c) (x3 + 4)(x3 − 2)

(d) (x16 + 3)(x16 − 3)(x16 +
1)(x8+1)(x4+1)(x2+1)(x+
1)(x− 1)

Exercises 7.5.1

1. (x+ 5)(2x− 11)

2. (3x+ 1)(x+ 1)

3. (3x+ 2)(2x− 1)

4. (5x+ 2)(3x− 1)

5. Cannot be factored

6. (x+ 2)(2x− 5)

7. 2(3x− 5)(x− 2)

8. 2x2(x− 4)(x+ 2)

9. (a) (2x2 + 1)(x1 + 3)

(b) (4x2 + 5)(x+ 1)(x− 1)

(c) (3x3 − 1)(x3 − 3)

(d) (2x3 + 7)(x3 − 1)

(e) (4x500 + 3)(x500 − 3)

10. (a) (x+ 3y)(x− 4y)

(b) (x+ 2y)(x+ y)

(c) (2x+ y)(x− 3y)

(d) (3x+ y)(x− y)

Exercises 7.6.1

1. (2z + 3w)(3x− 4y)

2. (5w + 7z)(9c− 4d)

3. Cannot be factored
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4. (a+ 3b)(4c− 3d)

5. (5a− 2b)(4x− 3y)

6. (3m− 2n)(x+ 2y)

Chapter 8

Exercises 8.2.1

1. 4
√
2

2. 10
√
5

3. 7
√
2

4. 8
√
3

5. 5
√
2

6.

√
3

4

7.
2
√
2

5

8.

√
30

6

9.

√
3

6

10.
3
√
2

8

11. (a) 3 and 5

(b) “No nth powers in the radi-
cand.”

(c) 2 3
√
3

(d)
3
√
4

2

(e) 2 3
√
15

12. 10 and −10

13. 2
√
3 and −2

√
3

14. 5
√
6 and −5

√
6

15.
√
3/2 and −

√
3/2

Exercises 8.3.1

1. 4i

2. 3i
√
5

3.
i
√
10

4

4. i,−1,−i,1,i,−1,−i,1,i,−1

5. 6i and −6i

6. 2i
√
6 and −2i

√
6

Exercises 8.4.1

1. 2
√
2 + 12

√
3

2. −2
√
6 +

√
3

3. 12
√
5

4. −2− 9i

5. 10
√
2−

√
5

6. 12
√
2− 10

√
3

7. 5
√
2

8. 13 + 13i

9. −1

10. 13

11. 5− 2
√
6

12. 2i

13. 4 3
√
2 + 12 3

√
3

14. (a)
15− 5

√
2 + 6

√
3− 2

√
6

13

(b)
4
√
2−

√
10

21

15. (a)
11− 10i

13

(b) − 9

37
− 20

37
i



275

16. Read the fine print in the proper-
ties of square roots listed in Box
8.1.

Chapter 9

Exercises 9.1.2

1. 5
√
6 and −5

√
6

2.
√
3/2 and −

√
3/2

3. 7i and −7i

4. 3i
√
2 and −3i

√
2

5. 5/2 and −5/2

6. 3 + 2
√
3 and 3− 2

√
3

7. 13/2 and −11/2

8. 5 + 3i
√
2 and 5− 3i

√
2

9. h = 2
√
13

10. a = 5
√
3

11. h = 4
√
10

Exercises 9.2.1

1. −1 and 5

2. −6 and 4

3. 3 +
√
15 and 3−

√
15

4. −7 and −3

5. −3 and −2

6. 3 +
√
6 and 3−

√
6

7. −3 and 0

8. 3/2 and −2

9. −2 + i
√
2 and −2− i

√
2

10.
2 +

√
7

3
and

2−
√
7

3

Exercises 9.3.1

Same as previous section.

Exercises 9.4.1

1. 1 and 3

2. −3 and 4

3. −7 and 0

4. −5 and −4

5. −1/2 and 2

6. −2 and −1

7. −5/2 and 3/2

8. −5/3 and 5/3

9. (a) 0, 2 and 4

(b) −3, −7/2 and 1

10. (a) 0 and 6 (two solutions)

(b) 3, 5, 9, and 11 (four solu-
tions)

(c) 3 (one solution)

Exercises 9.5.1

1. 2

2. −2 and 1/3

3. −2 and 0

4.
1 +

√
5

2
and

1−
√
5

2

5.
−3 + i

√
3

2
and

−3− i
√
3

2

6. −5 and 3

7. 4i and −4i

8. −1/2 and 2

9.
−5 +

√
71

6
and

−5−
√
71

6



276 ANSWERS TO EXERCISES

10. 2 +
√
3 and 2−

√
3

11. 2i
√
2 and −2i

√
2

12. −1/4 and 1

13. Width
−5 + 5

√
97

3
≈ 14.748 ft,

length 5 + 5
√
97 ≈ 54.244 ft.

14. Both legs have length 10 +
10
√
2 ≈ 24.142 units, and the hy-

potenuse has length 20+10
√
2 ≈

34.142 units.

15. Either 12, 13 and 14, or −3, −2
and −1.

16. The perimeter is
−12 + 6

√
3089

5
≈ 64.295 inches.

17. The object will hit the ground af-
ter 5/4 = 1.25 seconds.

18. The phone will hit the ground af-
ter 5/2 = 2.5 seconds.

19. The segment should be divided
into parts having length −5 +
5
√
5 ≈ 6.18 units and 15−5

√
5 ≈

3.82 units.

Exercises 9.6.1

1. y = x2 + 2

x

y

−2 −1 0 1 2

−1

0

1

2

3

4

5

6

7

8

2. y = x2 − 1

x

y

−2 −1 0 1 2

−2

−1

0

1

2

3

4

5

3. y = 2x2

x

y

−2 −1 0 1 2

−1

0

1

2

3

4

5

6

7

8

4. y = −x2

x

y

−2 −1 0 1 2

−5

−4

−3

−2

−1

0

1

5. y = x2 − 4x

x

y

−2 −1 0 1 2 3 4 5 6

−5

−4

−3

−2

−1

0

1

2

3

6. y = 1− x2

x

y

−2 −1 0 1 2

−5

−4

−3

−2

−1

0

1

2
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