
Chapter 8

Radical expressions

Vocabulary

• Quadratic equation

• Rational numbers

• Irrational numbers

• Radicand

• Rationalizing (a denominator)

• Imaginary unit

• Real numbers and complex numbers

8.1 Introduction: Quadratic equations and num-

ber systems

For the last two chapters, we have worked with polynomials as algebraic objects
on which we can perform “symbolic arithmetic.” We will now return to the
question of solving equations. Up to this point, we have developed an approach
to solving linear equations: degree one polynomial equations in one or two
variables.

In particular, we will attempt to solve quadratic equations, or polynomial
equations of degree two. However, we will see in this introductory section that
these equations—even simple ones—force us to face some fundamental problems
not just about algebra, but about the number systems we have been working
with. That will be the topic of this chapter.

Up to now, we have been working almost exclusively with rational num-
bers—numbers that can be expressed as a ratio of two integers. That means
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the “worst” numbers we have had to work with have been fractions or (repeat-
ing) decimals. We will see that the setting of rational numbers is not adequate
to solve any but the simplest quadratic equations. In fact, solving quadratic
equations will force us to face “numbers” that have properties that are quite
different from any we have seen up to now.

Let’s start our discussion of quadratic equations with a simple example of a
quadratic equation in one variable:

x2 = 9.

This equation (in one variable) is quadratic, since the highest power of x is 2. A
little bit of trial and error quickly reveals that 3 is a solution to this equation:
substituting, (3)2 = 9 is a true equation. After all, 9 is a perfect square; said in
a different way, 3 is a square root of 9.

However, remember that to solve the equation means to find all solutions.
So far we have found one. Keeping in mind, though, that the square of a
negative number is positive, we can see that −3 is also a solution to x2 = 9,
since (−3)2 = 9 is a true equation. We can already see a major difference
between quadratic equations and linear equations: a typical quadratic equation
may have more than one solution. (Recall that if a linear equation in one
variable has more than one solution, then every number is a solution to that
equation.) It shouldn’t be hard to convince yourself that no other number is a
solution.

Our first simple example points to a crucial fact about quadratic equations
that will be at the core of all of our strategies to solve quadratic equations in
Chapter 9:

Basic fact about quadratic equations: A typical quadratic equation in
one variable has no more than two solutions.

We will return to this fact shortly to state it in a more precise way. (It can
be proved with more detailed knowledge of polynomials, usually discussed in a
precalculus course.)

Let’s look at another simple example, which on the surface looks no different
from the last one:

x2 = 5.

The problem with this equation is that when we try to guess a solution, like we
did last time, no obvious solution appears. After all, unlike 9 that appeared in
the last equation, 5 is not a perfect square.

We might try a more refined version of guessing. We see, for example, that
(2)2 = 4 is less than 5, while (3)2 = 9 is greater than 5. So we might guess
a number between 2 and 3—say 2.5. With a little bit more work calculating,
we see that (2.5)2 = 6.25, still larger than 5. So we’ll guess again, this time
between 2 and 2.5—maybe 2.25. We see that (2.25)2 = 5.0625, close, but still
a little too large! If we try 2.24, we see that (2.24)2 = 5.0176—closer, but still
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too large. If we try 2.235, we see that (2.235)2 = 4.995225, which is less than
5 but closer still. We might say that a solution to x2 = 5 is “approximately
2.235.” That seems a little unsatisfying, though, as mathematics aims to be a
precise discipline.

At the core of this problem is a fundamental fact about whole numbers: If
a whole number is not a perfect square, than its square root is not a rational
number. Since rational numbers either have a terminating or a repeating decimal
expansion, this means that if x2 = 5 has a solution, its decimal expansion will
never terminate and it will never repeat. This is somewhat depressing from
the point of view of the last paragraph, where we tried to “guess” a solution of
x2 = 5. Having said that, our guessing attempts do seem to point to the fact
that a solution does, in fact, exist, even though it might be hard to pin down
exactly what that solution is.

Our discussion of the quadratic equation x2 = 5 has led us to numbers that
might be completely unnecessary from the point of view of linear equations. We
can rephrase the statement of the previous paragraph: The solutions to x2 = k,
where k represents a positive integer which is not a perfect square, are irra-
tional numbers.1 The next section will be devoted to working with irrational
numbers, which will play an essential role in solving quadratic equations.

One final example will reveal another basic problem in solving quadratic
equations. Consider the quadratic equation

x2 = −4.

We might have an initial glimmer of hope, seeing that 4 is a perfect square. But
we are looking for a number which, when multiplied by itself, gives a negative
number. This reveals a problem that is much more basic than the problem of
irrational numbers in the previous problem: No number, rational or irrational,
when squared, will give a negative number. This fact might tempt us to simply
say that the equation has no solution. In the Section 8.3, we give another way
to handle this problem by introducing a new kind of “number” called complex
numbers.

Let’s summarize what this short discussion of the most simple quadratic
equations in one variable has revealed.

1The discovery of irrational numbers—numbers which cannot be written as the ratio of two
integers—is usually credited to the ancient Greek school of thinkers known as the Pythagore-
ans nearly 2,500 years ago. It is an irony of history that this discovery, derived logically,
should have come from the Pythagoreans, according to whose world view all things could be
understood as a ratio of whole numbers.
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Important features of quadratic equations in one variable

• A typical quadratic equation in one variable will have two solutions.

• A quadratic equation may have irrational solutions (even if its coeffi-
cients are rational numbers).

• A quadratic equation may have solutions which are complex numbers.

8.2 Radical expressions

In this section, we will establish some conventions about how we will treat
the types of irrational numbers that arise in solving quadratic equations. In
particular, we will develop a way of writing square roots symbolically.

We already saw in the previous section that solutions to the equation x2 = a
are irrational numbers whenever a is a whole number that is not a perfect
square. In that discussion, we saw that solutions to this simple type of quadratic
equation is closely related to the notion of a square root, which we treated in
Chapter 1 as an operation. One way to treat irrational square roots would be to
agree, in advance, that we will estimate them to a given decimal accuracy. For
example, if we agree to estimate square roots to 8 decimal places, a calculator
might tell us that the square root of 5 is given by

√
5 ≈ 2.23606798. If, on

the other hand, we agree to estimate to 12 decimal places, we would write√
5 ≈ 2.236067977500.
We are going to handle irrational square roots in a different way. Instead of

estimating (which depends in practice on using a calculator), we will adopt a
symbolic approach.

The square root as a symbol

For any non-negative number k, the symbol
√
k (“the square root of k”)

represents the non-negative solution to the equation x2 = k.

Said in another way, the symbol
√
k represents the non-negative number

which satisfies
(
√
k)2 = k.

It is worthwhile pointing out what is new about this definition. In our
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previous understanding of square roots,
√
k actually consisted of two separate

symbols: k (representing a number) and the radical sign √, which represented
an operation performed on the number k. In our new definition, by contrast,√
k represents one symbol with two parts: the radical sign and the radicand, as

the quantity k inside the radical sign is known.
Keep in mind from the introductory section that the equation x2 = k typi-

cally has two solutions, one positive and one negative. In this case,
√
k represents

the positive solution.
From the point of view of solving quadratic equations, at least for simple

ones, this definition in a certain sense “cheats.” We have defined the symbol√
k to be the nonnegative solution of x2 = k; the other solution will then be its

opposite, written as −
√
k. The following examples illustrate this point.

In fact, we can write this as our first strategy to solve quadratic equations.

First strategy to solve quadratic equations of the form x2 = k

An equation having the form x2 = k has two solutions, written symbolically
as

√
k and −

√
k.

For now, we will be applying this strategy when k represents a nonnegative
number. In Section 8.3, we will consider what happens when k is negative.

Notice that in the special case x2 = 0, the “two” solutions
√
0 and −

√
0 are

the same—they are both 0. But rather than thinking of this as a special case
of a quadratic equation with only one solution, it is more convenient to think
of this as a quadratic equation with two solutions that just happen to be the
same.

Example 8.2.1. Solve the following quadratic equations:

(a) x2 = 7;

(b) x2 = 129;

(c) x2 = 15.

Answer. (a) The positive solution to x2 = 7 is
√
7 (by definition!). The nega-

tive solution is written −
√
7. So the solutions are

√
7 and −

√
7.

(b) The solutions are
√
129 and −

√
129.

(c) The solutions are
√
15 and −

√
15.

The point of these simple examples is not really to show how to solve a
quadratic equation—although we have technically done so. The point is to
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illustrate the fact that we have used a symbol to represent a solution to an
equation. It has the advantage of needing no estimation. For example,

√
129

is a symbol representing the exact value of the positive solution to x2 = 129.
It has the disadvantage, however, of hiding the fact that this symbol

√
129

is a symbol for an actual (irrational) number, whose value is approximately
11.357816691600547221 . . . .

There is another, more serious, disadvantage to this symbolic approach. If
we get too excited about this new notation, we would be tempted to say that
the solutions to the quadratic equation x2 = 9 are

√
9 and −

√
9, and done!

This seems like a wrong way to answer a question, when it is much more easily
understood to say that the solutions are 3 and −3. Unlike the examples above,
9 is a perfect square, and so there is no need to have to have a special notation
made specifically to address irrational numbers.

For these (and other related) reasons, we are going to agree to a series of
rules about how we write square roots symbolically. These rules have evolved
over the course of history and are generally accepted.

Simplified square root notation

The symbol
√
k is called simplified if the following conditions hold:

1. The radicand k has no perfect square factors;

2. The radicand k contains no fractions.

In addition, any expression containing radicals must satisfy a third condi-
tion:

3. No radical expression shall appear in a denominator.

What happens if we encounter a radical expression which is not simplified?
We will take the effort to simplify it, rewriting it in an equivalent form which
is simplified according to the conditions above. In order to do this, we will rely
on two basic properties of square roots.
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Some properties of square roots

If a and b represent non-negative numbers, then:

(S1)
√
a · b =

√
a ·

√
b;

(S2)

√

a

b
=

√
a√
b
.

(8.1)

These properties are really just versions of the properties of exponents we
discussed in Chapter 6. For example, the first property really says that the
number represented by

√
a·
√
b should be the (non-negative) solution to x2 = ab.

Is this true? Since (
√
a)2 = a and (

√
b)2 = b, (

√
a ·

√
b)2 = (

√
a)2 · (

√
b)2 = ab,

by property (E4) of exponents. So
√
a ·

√
b really is a solution to x2 = ab, and

the equality of Property (S1) is valid.
We now show through a series of examples how these properties can help us

to simplify square roots.

Example 8.2.2. Simplify the following square roots:

(a)
√
12;

(b)
√
72;

(c)
√
75.

Answer. Before applying the properties of square roots, let’s look at the three
square roots we are being asked to simplify. Notice that all three represent ir-
rational numbers, since neither 12, 72 nor 75 are perfect squares. However, all
three have perfect square factors. For this reason, none of the three square roots
are simplified; they all violate Rule 1 of our definition of a simplified square
root.

To simplify them, we will write the radicand as a product of a perfect square
(preferably as large as possible, if there are more than one) with another number,
and then apply Property (S1).

(a) 12 has a perfect square factor of 4. So

√
12 =

√
4 · 3 =

√
4 ·

√
3 = 2

√
3.

The answer is 2
√
3.
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(b) 72 has several perfect square factors, but the largest is 36.
√
72 =

√
36 · 2 =

√
36 ·

√
2 = 6

√
2.

The answer is 6
√
2. (What would have happened if we had factored out the

perfect square factor of 9?)

(c) 75 has a perfect square factor of 25.
√
75 =

√
25 · 3 =

√
25 ·

√
3 = 5

√
3.

The answer is 5
√
3.

The next example illustrates how to cope with a radical expression with a
fraction in the radicand.

Example 8.2.3. Simplify the following radical expressions:

(a)

√

3

4
;

(b)

√

50

9
;

Answer. These radical expressions violate Rule 2 for simplified square roots.
However, we can apply Property (S2) of square roots directly:

(a) Applying Property (S2):
√

3

4
=

√
3√
4
=

√
3

2
.

Notice we did not eliminate the fraction from the expression. However, the
only remaining radicand (which is 3) does not involve fractions.

The answer is

√
3

2
.(Now try this: Use a calculator to find an approximate

numerical value for the expression
√
3/2 (by finding an estimate for

√
3 and

dividing by 2). Square the result. What number do you obtain? Compare
your answer to the original expression.)

(b) Applying Property (S2):
√

50

9
=

√
50√
9

=

√
50

3
.

This time, although we have an expression that satisfies Rule 2 for simplified
square roots, the remaining radicand of 50 still has a perfect square factor
of 25. Hence √

50

3
=

√
25 · 2
3

=

√
25 ·

√
2

3
=

5
√
2

3
.

The answer is
5
√
2

3
.
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In the previous example, we were lucky to encounter fractions in the radicand
whose denominators were perfect squares. The next example illustrates how to
simplify when this is not the case. It involves a technique known as rationalizing
the denominator. Here, the word “rationalize” implies making an irrational
number rational by multiplying by an appropriate number.

Example 8.2.4. Simplify the following square roots:

(a)

√

1

2
;

(b)

√

3

8
.

Answer. The first thing we notice about both examples is that we have a fraction
in the radicand. As in the last example, we begin by using Property (S2) of square
roots.

(a) Applying Property (S2),
√

1

2
=

√
1√
2
=

1√
2
.

Unfortunately, this time, the radicand in the denominator is not a perfect
square. According to Rule 3, this expression is not yet completely simplified,
since there is a square root symbol remaining in the denominator.

Our strategy will be to multiply the numerator and denominator of the frac-
tion by the same quantity (in other words, multiply the expression by 1,
which does not change the expression). We will choose the quantity in such
a way that, after using Property (S1), the radicand in the denominator be-
comes a perfect square.

In particular, we will ask: what perfect square has the given radicand as a
divisor? In this example, the smallest perfect square that has 2 as a divisor
is 4. In order to obtain a radicand of 4 in the demoninator, we will multiply
the numerator and denominator by

√
2:

1√
2
=

1√
2
·
√
2√
2
=

√
2√
4
=

√
2

2
.

Notice that we chose what radical expression to multiply the denominator
(and the numerator) specifically in order to obtain a perfect square as a
radicand in the denominator, after applying Property (S1). Notice that this
process does not eliminate the radical expression completely. It only changes
the expression is written in such a way that the radical expression appears
in the numerator and not in the denominator, in compliance with our Rule
3 of simplified radical expressions.

The answer is

√
2

2
.
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(b) Again, we begin by applying Property (S2):

√

3

8
=

√
3√
8
.

As in Example (a), we are left with a radical expression in the denominator.
Although we notice that

√
8 can be simplified, since 8 has a perfect square

factor of 4, we will first address the more serious problem of the radical
expression in the denominator.

Our goal is to obtain a radicand in the denominator which is a perfect square.
We look for a perfect square which has 8 as a factor; the smallest such perfect
square is 16. In order to obtain the radicand of 16 in the denominator, we
multiply the denominator (and numerator) by

√
2:

√
3√
8
=

√
3√
8
·
√
2√
2
=

√
6√
16

=

√
6

4
.

The answer is

√
6

4
.

(In the challenge exercises at the end of Section 8.4, we will come back to
the question of rationalizing the denominator for more complicated cases.)

We close this section by incorporating our practice of simplifying radical
expressions into solving quadratic equations, following the approach of Example
8.2.1.

Example 8.2.5. Solve the following quadratic equations.

(a) x2 = 16.

(b) x2 = 98.

Answer. In each case, we will follow the approach of Example 8.2.1, finding
the positive solution and simplifying if necessary.

(a) By definition, the positive solution of x2 = 16 is
√
16. Since 16 is a perfect

square, we simplify
√
16 as 4. Since 4 is a solution, −4 is a solution as well.

The solutions are 4 and −4.

(b) The positive solution to x2 = 98 is
√
98. While 98 is not a perfect square,

it does have a perfect square factor of 49. Simplifying,

√
98 =

√
49 · 2 =

√
49 ·

√
2 = 7

√
2.

Since 7
√
2 is a solution, so is its opposite −7

√
2.

The solutions are 7
√
2 and −7

√
2.
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8.2.1 Exercises

Simplify the radical expressions below.

1.
√
32

2.
√
500

3.
√
98

4.
√
192

5.
√
50

6.

√

3

16

7.

√

8

25

8.

√

5

6

9.

√

1

12

10.

√

9

32

11. (*) Radical notation is also used to handle more general algebraic equa-
tions. The nth root of a (positive2) number k, written n

√
k is defined to

be the (positive) solution to the equation xn = k. For example, 3
√
64 = 4,

since (4)3 = 64, and 5
√
32 = 2, since (2)5 = 32.

(a) Evaluate 4
√
81 and 3

√
125.

(b) Using the rules for simplifying square roots as a guide, write the cor-
responding rules for “simplified nth roots.”

(c) Simplify: 3
√
24.

(d) Simplify: 3

√

1

2
.

(e) Find a positive solution to x3 = 120.

Solve the following quadratic equations.

12. x2 = 100

13. x2 = 12

14. x2 = 150

15. x2 =
3

4
2In this example, we will not discuss roots of negative numbers.
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8.3 Introduction to complex numbers

We already saw in the chapter introduction that certain quadratic equations
might have no “real” number as a solution. For example, for the quadratic
equation x2 = −1, no “real” number, when multiplied by itself, can result in
any negative number, and in particular cannot be −1.

However, rather than simply ending satisfied with the equation having no
solution, we will instead adopt the approach of the previous section: we will
suppose there is a solution, and denote this solution with a symbol.

The imaginary unit i

The symbol i will be used to denote one solution to the equation x2 = −1.

Stated differently, i is a symbolic “number” having the property that i2 =
−1.

Because of the similarity of this definition with the symbolic definition of
the square root

√
a as a solution to x2 = a, we sometimes write

i =
√
−1.

Why is i called an “imaginary unit?” The word “unit” (in the sense of
“one”) is due to the fact that i2 (= −1), by definition, has magnitude one. The
word “imaginary” (due to the mathematician–philosopher René Descartes) is
meant to emphasize that this symbol has different properties than the “real”
numbers we are used to working with, and in particular its square is negative.
In fact, the widely-used phrase “real number” arose (also due to Descartes)
to distinguish these numbers from “imaginary numbers.” We will adopt this
usage3. From now on, we will use the term real number to be any number
that does not involve the imaginary unit i. By contrast, we call a complex
number a “number” that may involve the imaginary unit i. (This terminology
is meant to be less judgmental than the phrase, “imaginary numbers.”)

We emphasize again that complex numbers (involving i) have some very
different properties from real numbers (not involving i). We already have seen
that it is possible for the square of a complex number to be negative. Another
difference, which is not so obvious, is that there is no way to order complex
numbers with the usual comparison relations of “less than” or “greater than.”

3The precise definition of a real number is quite technical. In fact, a rigorous definition of
a real number that included all the properties commonly accepted as “real” was only stated
toward the end of the 19th Century, some 250 years after Descartes first used the term. Most
students (all except some math majors) will never encounter the “real” definition of a real
number.
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In particular, it makes no sense to call a complex number positive (“greater
than zero”) or negative (“less than zero”).

Once we have made the definition of the imaginary unit, we will treat it
(symbolically) exactly as we have treated radical expressions up to now. In this
section, we will see how the imaginary unit arises in solving quadratic equations.
In the next section, we will see how it is manipulated in the most basic cases.

Notice first that once we have defined i to be a solution to the equation
x2 = −1, then we should also admit the symbol −i as another solution:

(−i)2 = (−1 · i)2 = (−1)2 · i2 = 1 · (−1) = −1,

assuming that the symbol i should behave in accordance with the properties
of exponents. In other words, once we allow for complex numbers, then the
equation x2 = −1 has two (complex) solutions, i and −i. (Remember, complex
numbers involving the imaginary are neither positive nor negative. The best we
can say is that i(= 1 · i) has a positive coefficient of 1, while −i(= −1 · i) has a
negative coefficient.)

The following examples show how the imaginary unit arises in a variety of
settings, once we introduce the rules of radical expressions that we have seen so
far.

Example 8.3.1. Simplify the following radical expressions.

(a)
√
−4

(b)
√
−7

(c)
√
−50

Answer. We adopt exactly the same approach to simplifying square roots with
negative radicands as we did in the previous section. The only extra ingredient
will be that we will use the symbol i to represent

√
−1.

(a) Separating the factor of −1 in anticipation of complex number notation,

√
−4 =

√

(−1) · 4 =
√

(−1) ·
√
4 = i · 2 = 2i.

The answer is 2i. (Notice that we will write the integer part as a “coeffi-
cient,” in the same way that we customarily write 2x instead of x · 2.)

(b) √
−7 =

√

(−1) · 7 =
√
−1 ·

√
7 = i

√
7.

The answer is i
√
7. (In this case, it is customary to write the radical expres-

sion second, even though
√
7 represents a real number “coefficient.” This

avoids writing
√
7i, where it might be misunderstood to indicate that the i

is part of the radicand.)
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(c) In this case, in addition to the presence of a complex number, we see that
the radicand contains a (real!) perfect square factor.

√
−50 =

√

(−1) · 50

=
√
−1 ·

√
50

= i
√
25 · 2

= i ·
√
25 ·

√
2

= i · 5 ·
√
2

= 5i
√
2.

The answer is 5i
√
2. (This notation, with the integer factor first, then the

imaginary unit, then the irrational radical symbol, is customary. However,
(5
√
2)i might be more in keeping with using a real number coefficient for the

imaginary unit.)

Complex numbers, really by definition, appear as solutions to quadratic
equations. In the following examples, we proceed exactly as in Example 8.2.1,
keeping in mind our convention of writing complex numbers using the imaginary
unit i.

Example 8.3.2. Solve the following quadratic equations.

(a) x2 = −15

(b) x2 + 18 = 0.

Answer. We will follow the same approach as Examples 8.2.1 and 8.2.5.

(a) One solution to x2 = −15 is, by definition,
√
−15. Simplifying to indicate

the imaginary unit,
√
−15 =

√

(−1) · 15 =
√
−1 ·

√
15 = i

√
15.

The other solution will be −i
√
15.

The solutions are i
√
15 and −i

√
15.

(b) The main thing to notice about this equation is that it does not have the
special form x2 = a that we have been relying on so far. Fortunately, that
is easy to fix in this case:

x2 + 18 = 0

−18
... −18

x2 = −18.

Now that the x2-term is by itself on one side of the equation, we can apply
our strategy.
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One solution to x2 = −18 is
√
−18. We see that in addition to being a

complex number, the radicand has a perfect square factor of 9. Simplifying,

√
−18 =

√

(−1) · 9 · 2 =
√
−1 ·

√
9 ·

√
2 = i · 3 ·

√
2 = 3i

√
2.

(Notice we performed several simplifications at once.)

One solution is 3i
√
2. Hence the other solution is −3i

√
2.

The solutions are 3i
√
2 and −3i

√
2.

8.3.1 Exercises

Simplify the following radical expressions using the imaginary unit i.

1.
√
−16

2.
√
−45

3.

√

−
5

8

4. (*) Assuming the rules of exponents apply to complex numbers, compute
the first 10 powers of i: i1, i2, i3, . . . , i10. (Hint: i3 = i2 · i1.)

Solve the following quadratic equations.

5. x2 = −36

6. x2 + 24 = 0

8.4 Arithmetic of radical expressions

We have seen so far that even simple quadratic equations in one variable may
have “complicated” solutions—they may be irrational numbers, for example,
or even complex numbers that have unusual properties compared to the real
numbers we grew up with. So far, we have emphasized a symbolic approach to
these numbers. In other words, we have used a symbol (a radical expression or
an expression involving i) to represent a solution to an equation of a particular
form (primarily of the form x2 = a). This has the advantage of sidestepping
the exact value of these solutions, but it carries the price of adhering to a set of
customary rules about how such symbols will be written.

In this section, we will discuss how to perform arithmetic with these symbols—
how to add them, subtract them, multiply them and divide them. In many ways,
this will be exactly like how we approached the arithmetic of polynomials, and
the reader will notice many similarities to how we approach the arithmetic of
radical expressions. That shouldn’t be a big surprise: polynomial arithmetic is
really a kind of symbolic arithmetic, where the symbols are the variables.
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The main difference between the arithmetic of radical expressions and the
arithmetic of polynomials is that polynomials involve indefinite symbols: the
variables are meant to represent an unknown or changing quantity. The sym-
bols we have been using for irrational and complex expressions, like

√
2 and

i, are definite symbols. They have a specific value or meaning (although it
may be hard to write down exactly what they are), and this value is fixed and
unchanging. This difference will show up repeatedly in the examples below.

Adding and subtracting radical expressions, like adding or subtracting poly-
nomials, is based on the principle of combining like terms. Two expressions
involving square roots are considered like terms if their radicands are the same.
Like terms are added by adding their coefficients (and leaving the radical symbol
the same). For example, the expression 5

√
3 + 3

√
3 consists of two like terms,

since their symbolic part is the same
√
3. We can write

5
√
3 + 3

√
3 = 8

√
3.

(Compare this to 5x+ 3x.) However, 4
√
2 + 6

√
5 involves two terms which are

not like terms, since the radicands are different, and so cannot be added or
further simplified. (Compare this to 4x+ 6y.)

The only thing that needs to be mentioned is that it is important to sim-
plify radical expressions before adding or subtracting, as the following examples
illustrate.

Example 8.4.1. Perform the indicated operations:

(a)
√
24− 3

√
150 + 2

√
3 + 15.

(b) 5
√
18− 2

√
2.

(c) (3 + 4i)− (2− 3i).

Answer. (a) None of the radicands appearing in the expression

√
24− 3

√
150 + 2

√
3 + 15

are the same, and so there do not appear to be like terms. However, the
first two (24 and 150) have perfect square factors. Simplifying,

√
24− 3

√
150 + 2

√
3 + 15

√
4 · 6− 3

√
25 · 6 + 2

√
3 + 15

√
4 ·

√
6− 3

(√
25 ·

√
6
)

+ 2
√
3 + 15

2
√
6− 3(5

√
6) + 2

√
3 + 15

2
√
6− 15

√
6 + 2

√
3 + 15

Notice that at the last step, we multiplied the coefficient in the term con-
taining 5

√
6 by −3.
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In any case, now there are like terms, namely, the
√
6-terms. None of the

other terms are like terms. Adding the coefficients for the
√
6-terms, we

obtain
−13

√
6 + 2

√
3 + 15.

The answer is −13
√
6 + 2

√
3 + 15.

(b) As in the previous example, the two radicands appearing in 5
√
18−2

√
2 are

not the same, and so do not appear to be like terms. However, 18 contains
a perfect square factor, and so can be simplified:

5
√
18− 2

√
2

5
√
9 · 2− 2

√
2

5
(√

9 ·
√
2
)

− 2
√
2

5(3
√
2)− 2

√
2

15
√
2− 2

√
2.

After simplifying, the two remaining terms are like terms, and so they can
be combined to obtain 13

√
2.

The answer is 13
√
2.

(c) Adding complex numbers, the real number parts are like terms and the imag-
inary parts (the terms containing i =

√
−1) are like terms. Proceeding

exactly like subtracting polynomials, we will change the problem to one of
“adding the opposite” and combine like terms:

(3 + 4i)− (2− 3i)

(3 + 4i) + (−2 + 3i)

(3 + (−2)) + (4i+ 3i)

1 + 7i.

The answer is 1 + 7i.

The complex numbers in part (c) of the last example are typical of how
complex numbers are written. In fact, any complex number can be written in
the form

a+ bi,

where a and b are real numbers.
Multiplying expressions involving radicals will typically involve the distribu-

tive law, exactly like multiplying polynomials. However, instead of relying on
the rules of exponents (which we needed to multiply powers of a variable), we
will use Property (S1) of roots.

Example 8.4.2. Multiply: (8
√
3 + 2

√
5)(

√
2− 4

√
5).
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Answer. Distributing, we obtain

(8
√
3 + 2

√
5)(

√
2− 4

√
5)

(8
√
3)(

√
2) + (8

√
3)(−4

√
5) + (2

√
5)(

√
2) + (2

√
5)(−4

√
5).

According to Property (S1) of square roots, which states that
√
a ·

√
b =

√
ab, we

will multiply the coefficients and the radicands of each term:

8
√
6− 32

√
15 + 2

√
10− 8

√
25.

All the radicands are different. However, one of the terms can be simplified,
since 25 is a perfect square:

8
√
6− 32

√
15 + 2

√
10− 8(5)

8
√
6− 32

√
15 + 2

√
10− 40.

After simplifying, there are no like terms.
The answer is 8

√
6− 32

√
15 + 2

√
10− 40.

In the preceding example, the factor of 5 in the last term (which first ap-
peared at the second-last step) arose after multiplying (

√
5)(

√
5). We chose to

apply Property (S1) to obtain
√
25, then simplified. Notice, though, that by

definition
(
√
5)(

√
5) = (

√
5)2 = 5.

Example 8.4.3. Multiply: (5− 3
√
2)(4 +

√
2).

Answer. We begin by distributing:

(5− 3
√
2)(4 +

√
2)

(5)(4) + (5)(
√
2) + (−3

√
2)(4) + (−3

√
2)(

√
2)

20 + 5
√
2− 12

√
2− 3

√
4

20 + 5
√
2− 12

√
2− 3(2) Simplifying

√
4

20 + 5
√
2− 12

√
2− 6

14− 7
√
2 Combining like terms

The answer is 14− 7
√
2.

The next example involves multiplying two complex numbers. We will use
the fact that i2 = −1.

Example 8.4.4. Multiply: (3− 2i)(−7 + 5i).

Answer. Since we are using the symbol i for the radical expression
√
−1, our

multiplication of complex numbers will look very much like multiplication of two
binomials involving one variable—until the last steps.
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(3− 2i)(−7 + 5i)

(3)(−7) + (3)(5i) + (−2i)(−7) + (−2i)(5i) Distributing

−21 + 15i+ 14i− 10i2 Multiplying term-by-term

−21 + 29i− 10i2 Combining like terms

−21 + 29i− 10(−1) Since i2 = −1

−21 + 29i+ 10

−11 + 29i. Combining like terms

The answer is −11 + 29i.

The reader should take a moment to compare Examples 8.4.3 and 8.4.4.
Both involve multiplying radical expressions with two terms, but one uses radical
notation while the other uses imaginary i notation instead of radical notation√
−1.
We will only consider the simplest examples of division of radical expressions.

Some more complicated examples will appear as challenge exercises at the end
of the section.

Example 8.4.5. Simplify:

√
3 ·

√
66√

2
.

Answer. In this context, the word “simplify” means to perform all operations,
and then simplify according to the rules of radical notation.

Since the only operations involved are multiplication and division, we can
rely on Properties (S1) and (S2) of square roots. In particular, combining the
two properties, we can perform all the operations inside the radicand:

√
3 ·

√
66√

2
=

√

3 · 66
2

.

For convenience, in performing the operations within the radicand, we will
take advantage of the fact that the 2 in the denominator divides the larger factor
66 in the numerator:

√

3 · 66
2

=
√
3 · 33 =

√
99.

All that remains is to simplify the result, noticing that 99 has a perfect square
factor of 9: √

99 =
√
9 · 11 =

√
9 ·

√
11 = 3

√
11.

The answer is 3
√
11.

For the record, there are several other approaches to the previous example,
due to some flexibility with the order of operations.
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8.4.1 Exercises

Perform the indicated operations. Simplify all radical expressions.

1. 2
√
50− 4

√
8 + 6

√
12

2. −
√
24 + 4

√
3−

√
27

3. 3
√
20 + 2

√
45

4. (3− 2i)− (5 + 7i)

5.
√
5(2

√
10− 1)

6.

√
5 ·

√
30√

3
.

7.
√
6(4

√
3− 5

√
2)

8. (1 + 5i)(3− 2i)

9. (1 +
√
2)(1−

√
2)

10. (2 + 3i)(2− 3i)

11. (
√
3−

√
2)2

12. (1 + i)2

13. (*) Use corresponding properties of nth roots (see Exercise 11 of the Sec-
tion 8.2.1) to simplify

5 3
√
16− 2 3

√
54 + 6 3

√
24.

14. (*) This exercise gives and indication of how to simplify expressions with
a binomial involving a radical in the denominator.

(a) Perform the following multiplication using properties of radicals:

3−
√
2

5 + 2
√
3
·
5− 2

√
3

5− 2
√
3
.

(Notice that we have really multiplied the expression
3−

√
2

5 + 2
√
3
by 1,

so have not changed the value of the expression.)

(b) Use the idea of the previous exercise to simplify the radical expression
√
2

4 +
√
5
.

The technique hinted at in this exercise is known as rationalizing the
denominator.
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15. (*) The technique in the previous exercise can be used to divide complex
numbers.

(a) Perform the following multiplication:

4 + i

2 + 3i
·
2− 3i

2− 3i
.

(Notice that just like in the last exercise, we are multiplying the

expression
4 + i

2 + 3i
by 1.)

(b) Use the idea in the previous exercise to write the quotient

3− 2i

1 + 6i

in standard complex form a+ bi.

16. (*) What is wrong with the following “proof” that −1 = 1?

1 =
√
1 =

√

(−1) · (−1) =
√
−1 ·

√
−1 = i · i = i2 = −1.

8.5 Chapter summary

• A typical quadratic equation in one variable will have two solutions.

• The solutions to a quadratic equation in one variable may be rational,
irrational, or complex (even when the coefficients of the equation are in-
tegers).

• Irrational and complex numbers are generally treated symbolically, ac-
cording to historically-evolved rules for what is considered “simplified.”


