BRONX COMMUNITY COLLEGE of the City University of New York

DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

MTH 05 Review Sheet

Go to http://www.cuny.edu/testing for more information on the CUNY Elementary Algebra final exam, including sample finals such as http://www.cuny.edu/academics/testing/Sample-CEAFE-A.pdf

I. Operations with signed numbers and fractions

1. Evaluate:

(a)
$$\frac{2}{5} - \frac{3}{4}$$

(b)
$$\left(-\frac{3}{8} \div \frac{9}{4}\right)$$

(c)
$$4 - \frac{3}{5}$$

(d)
$$\frac{2}{3}(95) - \left(\frac{1}{6}\right)$$

(e)
$$-\frac{3}{4}\left(3-\frac{1}{3}\right)$$

(a)
$$\frac{2}{5} - \frac{3}{4}$$
 (b) $\left(-\frac{3}{8} \div \frac{9}{4}\right)$ (c) $4 - \frac{3}{5}$ (d) $\frac{2}{3}(95) - \left(\frac{1}{6}\right)^2$ (e) $-\frac{3}{4}\left(3 - \frac{1}{3}\right)$ (f) $\left(-\frac{2}{3}\right)^2 + \left(-\frac{1}{3}\right)^3$

2. Evaluate:

(a)
$$\sqrt{b^2 - 4ac}$$
 when $a = 1, b = -7, c = 6$.

(b)
$$\sqrt{b^2 - 4ac}$$
 when $a = 1, b = \frac{1}{2}, c = -\frac{1}{2}$.

(c)
$$-\frac{b}{2a}$$
 when $a = -\frac{2}{3}$, $b = -4$

(d)
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 when $x_1 = 4$, $x_2 = -2$, $y_1 = 3$, $y_2 = -9$.

(e)
$$2x^2 - 4xy$$
 when $x = -3$, $y = -2$

II. Linear equations and systems

3. Solve:

(a)
$$6x - 4 = 18$$

(b)
$$5y - 3(y+2) = y+4$$

(b)
$$5y - 3(y+2) = y+4$$
 (c) $3(2t-4) - t + 5 = 5t - 7$

(d)
$$10(z-2) = -4(z+1)$$

(d)
$$10(z-2) = -4(z+1)$$
 (e) $\frac{x}{3} - 5 = \frac{2x+7}{6} + 6$ (f) $\frac{2w-3}{4} + \frac{w}{3} = \frac{1}{6}$

(f)
$$\frac{2w-3}{4} + \frac{w}{3} = \frac{1}{6}$$

4. Solve for the indicated variable:

(a)
$$I = P \cdot r \cdot t$$
 for

(a)
$$I = P \cdot r \cdot t$$
 for t (b) $F = \frac{9}{5}C + 32$ for C (c) $2x - 3y = 8$ for $y = 0$

(c)
$$2x - 3y = 8$$
 for g

5. Sketch the graphs of the following linear equations:

(a)
$$2x - 3y = 0$$

(b)
$$x + 4y = 8$$

(a)
$$2x - 3y = 6$$
 (b) $x + 4y = 8$ (c) $y = -\frac{1}{2}x + 4$ (d) $y = 2x - 3$

$$(d) \quad y = 2x - 3$$

6. Find the slope of the lines described by the following information:

(a) With equation
$$y = \frac{2}{3}x + 4$$

(b) With equation
$$2x - 3y = 8$$

(c) Passing through the points
$$(4, -2)$$
 and $(5, 1)$

(d) Perpendicular to the line with equation
$$x - 4y = 1$$

- 7. Write an equation of the line described by the following information:
 - (a) With slope $-\frac{1}{2}$ and passing through the point (3,-2)
 - (b) Passing through the points (2,-1) and (-4,-3)
 - (c) Parallel to the line with equation y = 3x 4 and passing through (1,9).
 - (d) Parallel to the line with equation 3x 5y = 4 and having the same y-intercept as the line with equation x - 4y - 8 = 0.
- 8. Solve the systems:

(a)
$$\begin{cases} x+y = 1\\ 2x-y = 8 \end{cases}$$

(a)
$$\begin{cases} x+y = 1 \\ 2x-y = 8 \end{cases}$$
 (b)
$$\begin{cases} 5x-2y = 10 \\ 2x-7y = 14 \end{cases}$$
 (c)
$$\begin{cases} 2x+y = 4 \\ 2x-3y = 1 \end{cases}$$

(c)
$$\begin{cases} 2x + y = 4 \\ 2x - 3y = 1 \end{cases}$$

- 9. Write an algebraic equation in order to solve the following questions:
 - (a) Ojanay has 39 coins. If she has a total of \$6.30 and the coins are only dimes and quarters, how many of each type of coin does she have?
 - (b) The length of a rectangle is three centimeters more than twice its width. The perimeter is 54 cm. Find the length and the width of the rectangle.
 - (c) One number is six more than three times another number. Their sum is 75. Find the two numbers.
 - (d) Find two consecutive integers such that three times the first is seven more than two times the
 - (e) Three consecutive integers have the property that the sum of the first two is 21 less than three times the third. Find the three integers.

III. Inequalities

- 10. Solve and graph the solution set of the inequalities:
 - (a) x 3 > 2
 - (b) $2x 7 \le 5x 1$
- 11. Graph the solution set of the following inequalities:
 - (a) $5x + 2y \ge 10$
 - (b) x 3y < 6

IV. Operations with polynomials

- 12. Perform the indicated operations:
 - (3x-1)(4x+5)
 - (b) $(2x-3)^2$
 - (c) $(2x-1)(x^2-x+2)$
 - (d) $(y^2 3y + 5) (2y^2 + y 5)$
 - (e) $\frac{4x^7 16x^5 + 24x^4}{4x^3}$
- 13. Factor completely:

- (a) $4p^2q^5 12p^2q^3$ (b) $x^2 15x + 56$ (c) $2y^2 + y 1$ (d) $4x^2 36$ (e) $y^4 16$ (f) $6x^5 + x^4 12x^3$ (g) $4x + 10xy 6y 15y^2$

V. Operations with radicals rational exponents and complex numbers

- 14. Simplify the following radical expressions:

- (a) $\sqrt{75}$ (b) $\sqrt[3]{54}$ (c) $\sqrt{-9}$ (d) $\sqrt{-12}$ (e) $\sqrt[3]{\frac{8}{27}}$ (f) $\sqrt{\frac{1}{2}}$
- 15. Perform the indicated operations and express the answers in simplest radical form:
 - (a) $-3\sqrt{50} + 2\sqrt{27} + \sqrt{8}$
 - (b) $\sqrt{3} \left(\sqrt{28} \sqrt{7} \right)$
 - (c) $(\sqrt{5} \sqrt{3})(\sqrt{5} + \sqrt{3})$

VI. Quadratic Equations

- 16. Solve. Write all solutions in simplest radical or standard complex form a + bi:
 - (a) $x^2 + 3x 10 = 0$
 - (b) $x^2 6x = 16$
 - (c) $y^2 3y + 3 = 0$
 - (d) $4y^2 + 2y = 1$
 - (e) $2x^2 5x + 3 = 0$
 - (f) $x^2 = 2x + 4$
- 17. Graph the following parabolas. Make a table of values showing at least five solutions.
 - (a) $y = x^2 5$
 - (b) $y = x^2 + 4x$
 - (c) $y = 4 x^2$
- 18. Solve the following problems by writing and using an algebraic equation:
 - (a) A rectangle has perimeter 48 feet and area 80 square feet. Find the dimensions of the rectangle.
 - (b) One leg of a right triangle measures three inches more than the other leg. Find the length of both legs if the hypotenuse is 15 inches long.
 - (c) The product of two consecutive integers is 29 more than their sum. Find the two integers.

Answers

- 1. A. $-\frac{7}{20}$ B. $-\frac{1}{6}$ C. $\frac{17}{5}$ D. $\frac{2279}{36}$ E. -2 F. $\frac{11}{27}$
- 2. A. 5 B. $\frac{3}{2}$ C. -3 D. 2 E. -6
- 3. A. $\frac{11}{3}$ B. 10 C. $(-\infty, \infty)$, i.e., all real numbers D. $\frac{8}{7}$ E. \emptyset , i.e., no solution F. $\frac{11}{10}$
- 4. A. $t = \frac{I}{pr}$ B. $C = \frac{5F 160}{9}$ C. $y = \frac{2x 8}{3}$

6. A. $\frac{2}{3}$ B. $\frac{2}{3}$ C. 3 D. -4

- 7. A. x + 2y = -1 B. x 3y = 5 C. y = 3x + 6 D. $y = \frac{3}{5}x 2$
- 8. A. (3,-2) B. $\left(\frac{42}{31}, -\frac{50}{31}\right)$ C. $\left(\frac{13}{8}, \frac{3}{4}\right)$

9. A. 23 dimes and 16 quarters. B. The length is 19 cm; the width is 8 cm. C. $\frac{69}{4}$ and $\frac{231}{4}$ D. 9, 10 E. 16, 17, and 18

11.

- 12. A. $12x^2 + 11x 5$ B. $4x^2 12x + 9$ C. $2x^3 3x^2 + 5x 2$ D. $-y^2 4y + 10$ E. $x^4 4x^2 + 6x 10$
- 13. A. $4p^2q^3(q^2-3)$ B. (x-7)(x-8) C. (y+1)(2y-1) D. 4(x+3)(x-3) E. $(y+2)(y-2)(y^2+4)$ F. $x^3(2x+3)(3x-4)$ G. (5y+2)(2x-3y)
- 14. A. $5\sqrt{3}$ B. $3\sqrt[3]{2}$ C. 3i D. $2i\sqrt{3}$ E. $\frac{2}{3}$ F. $\frac{\sqrt{2}}{2}$
- 15. A. $-13\sqrt{2} + 6\sqrt{3}$ B. $\sqrt{21}$ C. 2
- 16. A. 5 and -2 B. 8 and -2 C. $\frac{3}{2} + \frac{i\sqrt{3}}{2}$ and $\frac{3}{2} \frac{i\sqrt{3}}{2}$ D. $\frac{-1 + \sqrt{5}}{4}$ and $\frac{-1 \sqrt{5}}{4}$ E. 1 and $\frac{3}{2}$ F. $1 + \sqrt{5}$ and $1 - \sqrt{5}$

- 18. A. 20 feet by 4 feet B. 9 inches by 12 inches. C. 6,7 or -5,-4