BRONX COMMUNITY COLLEGE

Of the City University of New York

 

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

 

SYLLABUS: CSI 35 DISCRETE MATHEMATICS II                       3 credits  4 hours

 

SYLLABUS:             CSI 35 Discrete Mathematics II

PREREQUISITE:     CSI 30 & MTH 31, and ENG 02 and RDL 02, if required.

TEXT:                       Discrete Mathematics and its Applications Seventh Edition, by

Kenneth H. Rosen, McGraw Hill, 2012

 

Objectives: A successful student in this course will learn to

 

1.  classify basic discrete structures,

2.  use graphs and trees as models and tools for studying computational complexity,

3.  analyze finite and infinite structures using mathematical reasoning and tools of first order logic,

4.  design and analyze algorithms, in particular those based on recursion and iteration,

5.  prove formal statements using mathematical induction,

6.  use mathematical induction in verification of program correctness.

 


 

Suggested in-class examples


 

Suggested Homework


 

Chapter 5: Induction and Recursion (4 weeks)

 


5.1     Mathematical Induction           Examples 1-6,

8, 10, 13-15


p. 329     1, 3, 4, 5, 7, 8, 9, 10,

18, 49, 56


5.2     Strong Induction and Well- Ordering


Examples 1-4       p. 341     1, 3, 4, 12,


5.3     Recursive definitions and structural induction


Examples 1-10,

12


p. 308     1-9 odd, 18, 23, 25, 34-

36, 44, 47, 48


5.4     Recursive Algorithms               Examples 1, 2,

Computer projects

p. 382

1, 4, 5, 8, 9, 11, 12, 13,

 

 

15

Computations and explorations

p. 383

1, 2, 3, 4, 7

 

 
3, 5-10

 

 

 

 

 

 


p. 370     1, 2, 3, 7, 21, 44, 45

 

 


 


 

 

 

9.1     Relations and their properties


Chapter 9 Relations (3 weeks)

 

Examples 1-22     p. 581    1, 3, 5, 10, 27, 33, 35,

42, 43, 44


9.2     n-ary relations and their applications


Examples 1-11     p. 589     1-9 odd, 19


9.3     Representing relations              All                        p. 596    1, 3, 13, 18, 20, 31, 32

9.5     Equivalence relations                All                        p. 615    1, 3, 9, 11-16, 21-24,

43, 46, 47

9.6     Partial orderings                       Examples 1-20     p. 630    1, 3, 4, 5, 9, 11, 13, 15,

19-21, 32, 36

Computer projects

p. 638

1, 2, 3, 4

Computations and explorations

p. 638

1, 2, 3, 6, 7

 

 

Chapter 10 Graphs (3 weeks)

 

   10.l    Graphs and graph models        All                        p. 649    1, 3-12 all

10.2   Graph terminology                   Examples 1-13     p. 665    1, 2, 3, 5, 7, 8, 9, 18-26 all


10.3   Representing Graphs and

Graph Isomorphism


Examples 1-11     p. 675     1-15 odd, 35-43 , odd,

57


10.4   Connectivity                            Examples 1, 2,

                                                           3, 5, 6,7, 13,14


p. 689     1-6, 20, 21


10.5   Euler and Hamilton paths        All                        p. 703    1-15 odd, 19-23 odd,

31, 33, 35

10.6   Shortest path problems            All                        p. 707    1-13 all

10.8   Graph Coloring                        Examples 1-4       p. 732    1-11 all, 13, 15

 

Computer projects

p. 742

1, 2, 3, 4, 5, 17

Computations and explorations

p. 743

1, 2, 3, 4, 8, 9, 10, 11

 

Chapter 11 Trees (4 weeks)

 

11.1

Introduction to Trees

All

p. 755

1-11 odd, 21, 23

11.2

Applications of Trees

All

p. 769

1, 3, 5, 19, 21, 23, 25,

 

 

 

 

37, 40, 42

11.3

Tree Traversal

All

p. 783

1-5, 7-15 all

11.4

Spanning Trees

All

p. 795

1-9 all, 13, 15, 23

11.5

Minimum spanning Trees

All

p. 802

1-9 all

 

Computer projects, computations and explorations for chapter 11: there are many relevant projects listed on page 808; choose those that correspond to the material covered and emphasized in class.

 

 

RK/2003; revised Nov 2003/AW; revised Jan 2007/NEA Updated Jan 2013/AT