BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

SYLLABUS: CSI 31 Introduction to Computer Programming I. 3 credits/4 hours.

PREREQUISITE: CSI30 and MTH30, if required; and ENG2 and RDL 2, if required.

COREQUISITE: MTH31.

TEXT: Object-Oriented Programming in Python, 1-st Edition, by Goldwasser and Letscher, 2008. **Reference for UML:** Provided by Instructor. **Reference for TKInter (optional):** Provided by Instructor.

Content: Introduction to computer systems and computer logic; techniques of structured programming; data representation; basic algorithm design and implementation in a modern structured language; computer solutions to problems taken from engineering, science, physics, mathematics, business and other applications.

Objectives: By the end of this course the successful student will be able to work in the Python language to:

- (1) Use it comfortably as an Object-Oriented language;
- (2) To regard every variable as an object of some class, and to review the built-in types from this perspective;
- (3) USE OOD/OOP to design correctly and to implement web applications and event-driven GUI applications.

Day	Section	Topic	Assignments	Projects
1	1.1-1.2	Data and Types; Functions and Algo-	pg. 29: 1.5.16,1.10	
		rithms (UML activity diagram, i.e. flow		
		chart)		
2	1.3-1.5	Higher Level Languages; Objects and	pg. 29: 1.15, 1.19, 1.22,	
		Classes: OO Design (UML class dia-	1.25, 1.29, 1.31	
		gram, UML sequence diagram)		
3	2.2-2.5	Built-in Python classes (list, str) and nu-	pg. 82-84: 2.5, 2.8, 2.9,	pg. 86: 2.33
		meric types (int, long, float)	2.14, 2.18, 2.24(a-g)	
4	2.6-2.8	Expressions, Calling Functions	pg. 84: 2.24(j-r), 2.25,	
			2.27 (a-r)	
5	4.1, 4.4	Lists and Conditional statements for-	pg. 151-155: 4.5, 4.9,	
		loops	4.13, 4, 23, 4.27	
6	4.5	For loops	pg. 155: 4.34	pg. 156: 4.39
7		Exam 1		
8	5.1, 5.4	While loops, defining functions	pg. 195-199: 5.4, 5.5, 5.23	
9	6.4	Designing and implementing classes – a	pg. 233: 6.10	pg. 233: 6.18
		Fraction class		(or complex
				numbers)
10	5.5	Error checking and exceptions	pg. 200: 5.33, 5.34	
11	7.2, 7.4-	Design and Documentation	pg. 268: 7.4, 7.6, 7.8	
	7.6			
12	7.7	Modules and Unit Testing	pg. 269: 7.6, 7.8	
13	8.1-8.5	Input and Output; Files	pg. 293: 8.5, 8.13	pg. 296: 8.21-
				8.24
14		Exam 2		
15	3.1-3.3	Graphics (optional TKInter)	pg. 121: 3.5	pg.123: 3.17
16	9.1-9.4	Inheritance	pg. 328: 9.3, 9.6	
17	4.3, 11.1	Structural recursion – Drawing a pyra-	pg. 151: 4.7, 4.10, pg.390:	
		mid	11.4	
18	11.3, 11.4	Procedural recursion – Binary search	pg. 391: 11.6, pg. 395:	
			11.31	
19	12.1, 12.2	Container Classes (list vs. tuple; Dictio-	pg. 433: 12.5	pg. 434: 12.14
		nary)		
20		Exam 3		

Day	Section	Topic	Assignments	Projects
21	15.1	Event-driven programming (UML state	pg. 519: 15.1, 15.2	
		diagram)		
22	15.2-15.4	Event-handling	pg. 520: 15.6	pg. 520: 15.12
				(or other GUI
				Project)
23	16.1-16.2	(Optional topic) A Network Primer,	Modify fig.16.5	
		Basic Client		
24	16.3	(Optional topic) Basic Server	pg. 556: 16.1	
25	16.4	(Optional topic) A Chat Room		One of pg. 557:
				16.8-16.12
26		Review		
27		Review		
28		Review		

Academic Integrity: Academic dishonesty (such as plagiarism and cheating) is prohibited at Bronx Community College and is punishable by penalties, including failing grades, dismissal and expulsion. For additional information and the full policy on Academic Integrity, please consult the BCC College Catalog.

Accommodations/Disabilities Bronx Community College respects and welcomes students of all backgrounds and abilities. In the event you encounter any barrier(s) to full participation in this course due to the impact of a disability, please contact the disAbility Services Office as soon as possible this semester. The disAbility Services specialists will meet with you to discuss the barriers you are experiencing and explain the eligibility process for establishing academic accommodations for this course. You can reach the disAbility Services Office at: disability.services@bcc.cuny.edu, Loew Hall, Room 211, (718) 289-5874.