BRONX COMMUNITY COLLEGE
Of the City University of New York
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

[bookmark: _GoBack]SYLLABUS:		CSI 11 Computer Science for Everyone				 3 credits / 4 hours
PREREQUISITE: 	MTH 5 or CUNY Elementary Algebra Proficiency, and ENG 2 and RDL 2, if required
TEXT: 			How to think like a computer scientist (Python 3) (free online textbook)
http://interactivepython.org/runestone/static/thinkcspy/index.html
ZyBooks: Computer Science for Everyone (online book)
https://learn.zybooks.com/

[bookmark: __DdeLink__401_373442205]Course Description: This course presents an introduction to computer science (CS) with an emphasis on problem-solving and computational and algorithmic thinking through “coding”. It aims to present computers as a tool for modeling and solving real-world problems. It will offer an introduction to programming, and students will be exposed to more advanced topics selected from the following partial list: artificial intelligence, robotics, cybersecurity, data science, networking, and neuroscience, conferring an advantage for students considering a CS major. Students majoring in any other discipline will learn how computers can be used to help solve problems in one’s area of expertise.

Course Goals/Objectives:
CSI 11 helps to answer questions like “What computer science is?”, “What is computational thinking?”, and “How they can be used to help solve problems?” by introducing students to basic principles of computational thinking.
In this course students will see the basic design of a computer system, how the information is represented and processed. Students will learn to analyze a given problem, design clear, step-by-step solution to the problem; translate this solution into a program; then test and debug it. By the end of the course students will understand the difference between an algorithm and a computer program, and will be able to use, where appropriate, functions; data structures; file and user input/output; decision structures; and loops.

Student Learning Outcomes (SLO’s):
· Students will be required to gather information from a variety of sources: the textbook, the internet, and discussion group. Through class discussions students will learn to interpret the collected data as it pertains to presented topic and will be guided to assess the applicability and quality of the data being acquired.
· Students will analyze problems, design an algorithmic solution, and implement that solution into a functioning program via the assigned coding exercises. Throughout the process, students will need to analyze and critique different proposed solutions to the given problems, and they will analyze anomalies (“bugs”) in the process of generating correct code.
· Students will be required to design algorithms and write the programs that implement them. A well written program contains detailed comments to document and justify the choices that students made in their algorithm. In addition, group projects are structured specifically so that students state and justify why a chosen algorithm solves the stated problem via a report or an in-class discussion.
· Students will explore and apply the fundamental concepts in computer science (principles of coding, information theory, artificial intelligence, robotics, data science, and cybersecurity), via coding exercises, group projects, and class discussions. Students will gather information, represent it meaningfully, and use it to solve a posed problem.
· Students will complete weekly group projects in which they will model and solve real-world problems from a variety of fields. They will analyze them using mathematical and formal techniques in order to find an algorithmic solution that can be implemented into a program.
· Students will participate in class discussions on topics from cybersecurity and cryptography, including the impact of digital technologies in issues of privacy, security, and the nature of social structures.

Grading Policy and Assessment:
Students will be given in-class quizzes or will be asked to submit in-class work (once a week); homework assignments and group project assignments will be given once a week each. All group projects are programming assignments with grading rubric provided for each of them and will be submitted as a program along with the accompanying documentation answering the posed question. All homeworks and group projects have a due date and must be submitted by the due date. In addition, there will be a Midterm Exam and a Final Exam.

Grading for the course will be based on:
· In-class work or in-class quizzes: 10%
· Homeworks: 20%
· Group projects: 20%
· Midterm Exam: 25%
· Final Exam: 25%

Attendance Policy: Attendance in class is essential to success in this course. If a student misses a class, it is the student’s responsibility to get the material covered in class and all the assignments. There are no make-ups for in-class work nor for in-class quizzes. A student may receive a failing grade for the course if absent more than 6 times (6 times are equivalent to 12 hours).

	Week
	Topic
	Reading

	1
	History and Basics

	ZyBooks: Computer Science for Everyone
Chapter 1 History and Basics
1.1 Brief history
1.2 Historical figures in computing
1.3 Computer programs
1.4 Computers all around us
1.5 Computing and careers

	
	Hardware and Software

	ZyBooks: Computer Science for Everyone
Chapter 2 Hardware and Software
2.1 Basic hardware
2.2 Cache, memory, drive
2.3 Types of computers
2.4 Common input devices
2.5 Common output devices

	
	Operating Systems
	ZyBooks: Computer Science for Everyone
Chapter 3 Operating Systems
3.1 OS basics
3.2 Common operating systems

	2
	Programming languages

	ZyBooks: Computer Science for Everyone
Chapter 2 Hardware and Software
2.8 Programming: Machine language
2.9 Programming: Assembly language
2.10 Programming: High-level language

	
	Basic Input and Output

	ZyBooks: Computer Science for Everyone
Chapter 4 Introduction to Python 3
4.1 Programming introduction
4.2 Computational thinking
4.3 The Python interactive interpreter
4.4 Programming in Python
4.5 Basic output
4.6 Basic input
4.7 Errors
4.8 Additional practice: Output art
4.9 Development environment

	3
	Variables and Expressions in Python

	ZyBooks: Computer Science for Everyone
Chapter 5 Variables and Expressions
5.1 Objects and variables
5.2 Assignments
5.3 More on objects
5.4 Names
5.5 Numeric types: Floating-point
5.6 Expressions
5.7 Module basics
5.8 Math module
5.9 Additional practice: Number games
5.10 Representing text

	4
	Number Representation

Types

	ZyBooks: Computer Science for Everyone
Chapter 6 Integer Properties
6.1 Representing information as bits
6.2 Number representation

ZyBooks: Computer Science for Everyone
Chapter 7 Types
7.1 String basics
7.2 Lists basics
7.3 Dictionary basics
7.4 Common data types summary
7.5 Additional practice: Grade calculation
7.6 Type conversions
7.7 String formatting
7.8 Numbers in binary
7.9 Additional practice: Health data

	5
	Propositional Logic

	ZyBooks: Computer Science for Everyone
Chapter 8 Logic
8.1 Propositions and logical operations
8.2 Evaluating compound propositions
8.3 Conditional statements
8.4 Logical equivalence
8.5 Laws of propositional logic
Logical Puzzles (Rosen, Discrete Mathematics)

	
	Branching

	ZyBooks: Computer Science for Everyone
Chapter 9 Branching
9.1 If-else statement
9.2 Relational and equality operators
9.3 Multiple if-else
9.4 Boolean operators and expressions

	6
	Branching

	Book: How To Think Like a Computer Scientist
7.1. Boolean Values and Boolean Expressions
7.2. Logical operators
7.3. Precedence of Operators
7.4. Conditional Execution: Binary Selection
7.5. Omitting the else Clause: Unary Selection
7.6. Nested conditionals
7.7. Chained conditionals
7.8. Boolean Functions

ZyBooks: Computer Science for Everyone
Chapter 9 Branching
9.5 Membership operators
9.6 Code blocks and indentation
9.7 Conditional expressions
9.8 Additional practice: Tweet decoderet decoder

	7
	Loops

	ZyBooks: Computer Science for Everyone
Chapter 10 Loops
10.1 Loops
10.2 While loops
10.3 More while examples
10.4 Counting
10.5 For loops
10.6 Counting using the range() function
10.7 While vs. for loops
10.8 Nested loops

	8
	Loops

Midterm Exam
	ZyBooks: Computer Science for Everyone
Chapter 10 Loops
10.9 Developing programs incrementally
10.10 Break and continue
10.11 Loop else
10.12 Getting both index and value when looping: enumerate()
10.13 Additional practice: Dice statistics

	9
	Functions

	ZyBooks: Computer Science for Everyone
Chapter 11 Functions
11.1 User-defined function basics
11.2 Function parameters
11.3 Returning values from functions
11.4 Dynamic typing
11.5 Reasons for defining functions
11.6 Function with branches/loops
11.7 Function stubs
11.8 Functions are objects
11.9 Functions: Common errors
11.10 Scope of variables and functions

	10
	Functions

	ZyBooks: Computer Science for Everyone
Chapter 11 Functions
11.11 Namespaces and scope resolution
11.12 Function arguments
11.13 Keyword arguments and default parameter values
11.14 Arbitrary argument lists
11.15 Multiple function outputs
11.16 Help! Using docstrings to document functions
11.17 Engineering examples

	11
	Strings

	ZyBooks: Computer Science for Everyone
20.1 String slicing
20.2 Advanced string formatting
20.3 String methods
20.4 Splitting and joining strings
20.5 The string format method

	12
	Lists and Dictionaries

	ZyBooks: Computer Science for Everyone
Chapter 12 Lists and Dictionaries
12.1 Lists
12.2 List methods
12.3 Iterating over a list
12.4 List games
12.5 List nesting
12.6 List slicing
12.7 Loops modifying lists
12.8 List comprehensions
12.9 Sorting lists
12.10 Command-line arguments
12.11 Additional practice: Engineering examples

	13
	Lists and Dictionaries
	ZyBooks: Computer Science for Everyone
Chapter 12 Lists and Dictionaries
12.12 Dictionaries
12.13 Dictionary methods
12.14 Iterating over a dictionary

	
	Files

	ZyBooks: Computer Science for Everyone
Chapter 13 Files
13.1 Reading files
13.2 Writing files

	14
	Plotting

	ZyBooks: Computer Science for Everyone
Chapter 14 Plotting
14.1 Introduction to plotting and visualizing data
14.2 Styling plots
14.3 Text and annotations
14.4 Numpy
14.5 Multiple plots

Academic Integrity
Academic dishonesty (such as plagiarism and cheating) is prohibited at Bronx Community College and is punishable by penalties, including failing grades, dismissal and expulsion. For additional information and the full policy on Academic Integrity, please consult the BCC College Catalog.

Accommodations/Disabilities
Bronx Community College respects and welcomes students of all backgrounds and abilities. In the event you encounter any barrier(s) to full participation in this course due to the impact of a disability, please contact the disAbility Services Office as soon as possible this semester. The disAbility Services specialists will meet with you to discuss the barriers you are experiencing and explain the eligibility process for establishing academic accommodations for this course. You can reach the disAbility Services Office at: disability.services@bcc.cuny.edu, Loew Hall, Room 211, (718) 289-5874.

Last updated 03/06/2019

