
 1

CSI 31 Review and Practice

Topics:

1. Conditionals
2. Classes
3. Class diagrams

 2

Example 1

Assume that x, y and z are real numbers.
How would you write the following conditions in Python?

(a) the product of x and y is not more than 10 and z is less
than 7

(b) x is not a sum nor a difference of y and z

(c) negation of “x is not greater than y and x is not greater
than z”

 3

Example 2

Draw a class diagram for the following class:

class It:

 def __init__(self,a,b,c):

 self._f = a
 self._d = b
 self._g = c

 def operation(self,x):

 return self._f + x

 def getSum(self):

 return self._f + self._d + self._g

 def operation2(self,x):

 return self._f - y

 4

Example 3

What does the following code output?

class Pear:
 def __init__(self,a,b):
 self._n = 3*a
 self._s = b
 self._s.append(15)

 def getInfo(self):
 return self._n, self._s

from copy import copy

class Apple:
 def __init__(self,a,b):
 self._n = a + a
 self._s = copy(b)
 self._s.append(a)

 def getInfo(self):
 return self._n,self._s

def main():
 x, y = 10, [1,9,2]
 o = Apple(x,y)
 print("Apple object's info:",o.getInfo())
 print("x={0}, y={1}".format(x,y))
 m = Pear(x,y)
 print("Pear object's info:",m.getInfo())
 print("x={0}, y={1}".format(x,y))
main()

 5

Example 4

Given the definition of the class Me, which statements are correct
with respect to “it is a bad style to directly access an instance
variable outside a class definition” and which ones are not?

class Me:

 def __init__(self,a,b)
 self._name = a
 self._age = b

 def getAge(self):
 return self._age

 def getName(self):
 return self._name

 def setAge(self,value):
 self._age = value

 def setName(self,name):
 self._name = name

(a) p1 = Me("Alan",59)

(b) p1._age = 60

(c) p1.setAge(60)

(d) print(p1._name,
" is ", p1._age)

 6

Example 5

Find syntax errors and correct them (the program is 3 slides long).

class Thing:
 def __init__(a,b):

 self._n = a
 self._d = b

 def asString():

 return str(self._n) + ' / ' + str(self._d)

 def getNum():

 return self._n

 def getDen()

 return self._d

 7

Example 5

Find syntax errors and correct them.

def add(f1,f2):
 if type(f1) = type(f2) = Thing:
 num = f1.getNum * f2.getDen() +

f2.getNum() * f1.getDen()
 den = f1.getDen() * f2.getDen()
 return Thing(num,den)

 else:
 return False

 8

Example 5

Find syntax errors and correct them.

def main():
 f1 = Thing(1,2)
 f2 = Thing(2,3)

 print("let's create two fractions:)
 print(f1.asString(), end = "\t and \t")
 print(f2.asString())

 print("Their sum is {0:s}".
format(add(f1,f2).asString()))

main()

 9

Example 6
Create and test a Set class to represent a classical set. The sets
should support the following methods:

Set(elements)
creates a set (elements are initial elements in the set);
Also recall that sets don’t have duplicates

addElement(x) adds element to the set (if it doesn’t belong to it)

deleteElement(x) removes x from the set, if present
If x is not element of the set, the set is left unchanged

member(x) returns true if x is in the set and false otherwise

intersection(set2) returns a new set containing just those
elements that are common to this set and set2 (set  set2).

union(set2) returns a new set containing all the elements
that is in either of the sets (set  set2)

subtract(set2) returns set – set2, i.e. a new set containing all
the elements of this set that are not in set2.

 10

Example 6
Create and test a Set class to represent a classical set. The sets
should support the following methods:

Set(elements)
creates a set (elements are initial elements in the set);
Also recall that sets don’t have duplicates

addElement(x) adds element to the set (if it doesn’t belong to it)

deleteElement(x) removes x from the set, if present
If x is not element of the set, the set is left unchanged

member(x) returns true if x is in the set and false otherwise

intersection(set2) returns a new set containing just those
elements that are common to this set and set2 (set  set2).

union(set2) returns a new set containing all the elements
that is in either of the sets (set  set2)

subtract(set2) returns set – set2, i.e. a new set containing all
the elements of this set that are not in set2.

Set

_elements

__init__(elements)
addElement(x)
deleteElement(x)
member(x)
intersection(set2)
union(set2)
subtract(set2)

 11

Example 6
Create and test a Set class to represent a classical set. The sets
should support the following methods:

Write the definition of the Set class,
then use the program to test it: testingSet.py

 12

Example 7

Be ready to use a definition of a class to do something.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

