True/False

1) False
2) True
3) False
4) True (see page 6)
5) False (see page 7), it is vice versa: the syntax is its form, and semantics is its meaning
6) True (see page 11)
7) False,
programming environment is a program that specifically designed to help programmers write programs (has automatic color highlighting, and so forth)
8) True (see page 16)
9) False (see page 17),
a loop is a control sequence, which allows to perform the same sequence of statements multiple times.
10) False,
it can be computed by a computer. We've seen a few programs.

Multiple Choice

1. b)
2. d)
3. d)
4. a)
5. b)
6. b)
7. c)
8. b)
9. a)
10) d)

Discussion (5)

program:
def main():

```
print("....")
x = eval(input("..."))
for i in range(10):
    x=3.9 * x * (1-x)
        print(x)
```

main()
tracing through the program by hand using 0.15 as the input value (using calculator):
0.15 will be assigned to x
then we'll enter a loop:
$1^{\text {st }}$ iteration: $i=0, \quad x=3.9$ * $0.15^{*}(1-0.15)=0.49725, \quad$ display 0.49725
$2^{\text {nd }}$ iteration: $i=1, \quad x=3.9$ * 0.49725 * $(1-0.49725)=0.974970506, \quad$ display 0.974970506
3rd iteration: $\mathrm{i}=2, \quad \mathrm{x}=3.9^{*} 0.974970506$ * $(1-0.974970506)=0.09517177$, display 0.09517177
$4^{\text {th }}$ iteration: $\mathrm{i}=3, \quad \mathrm{x}=39^{*} 0.09517177$ * $(1-0.09517177)=0.335845009, \quad$ display 0.335845009
$5^{\text {th }}$ iteration: $i=4, \quad x=3.9$ * 0.335845009 * $(1-0.335845009)=0.869907241$, display 0.869907241
$6^{\text {th }}$ iteration: $i=5, \quad x=3.9^{*} 0.869907241$ * $(1-0.869907241)=0.441357668$, display 0.441357668
$7^{\text {th }}$ iteration: $i=6, \quad x=3.9$ * 0.441357668 * $(1-0.441357668)=0.961588199$, display 0.961588199
$8^{\text {th }}$ iteration: $i=7, \quad x=3.9$ * 0.961588199 * $(1-0.961588199)=0.144051704$, display 0.144051704
$9^{\text {th }}$ iteration: $i=8, \quad x=3.9$ * 0.144051704 * $(1-0.144051704)=0.480873161$, display 0.480873161
$10^{\text {th }}$ iteration: $\mathrm{i}=9, \quad \mathrm{x}=3.9$ * 0.480873161 * $(1-0.480873161)=0.97357324$, display 0.97357324
end of for loop

Here is what the Python's interpreter will produce:
0.49724999999999997
0.97497050625
0.09517177095121285
0.3358450093643686
0.8699072422927216
0.4413576651876355
0.9615881986142427
0.14405170611022783
0.48087316710014555
0.9735732406265619

As you can see, my results are slightly different to what the Python will produce.

