

Lecture 23

Topics: Chapter 11. Data Collections

11.4 Designing with lists and classes
11.7 Non-sequential collections

Lists and classes taken together give us powerful tools for
structuring the data in our programs.

11.4 Designing with lists and classes

88 board with bi-color disks

Let’s write a program that will display an 8  8 board of disks that
are randomly colored into black and white. Upon a click on a disk, it
will change the color of the disk to opposite.

This is a first draft of the
Othello (Reversi) game.

11.4 Designing with lists and classes

11.4 Designing with lists and classes

Button

self.window
...

__init__(self,window,point,width,height,
message)
draw(self)
undraw(self)
move(self,dx,dy)
setText(self,newMessage)

Board

self.window
self.board = []
self.color = []

__init__(self,window)
changeDisk(self,point)

Think of two classes:

self.board
is a list of disks (circles)

self.color
is a corresponding list of
disk colors

run othello.py

Python provides a number of built-in data types for collections.

After lists, a collection type dictionary is probably the most widely
used.

Lists allow us to store and retrieve items from sequential collections
(recall indexing).

Nevertheless sometimes we need to retrieve the information by a
key (say student’s ID or a person’s SSN). A record (value) is
accessed by the key.

In programming terminology it is called a key-value pair.

11.7 Non-sequential collections

A collection that allows us to look up information associated with
arbitrary key is called mapping.

Python dictionaries are mappings.

Some other programming languages provide similar structures
called hashes or associative arrays.

11.7 Non-sequential collections

Python dictionaries

Examples (Python interpreter):

>>> records = {123:["Kevin",24],
234:["Andrew",78],756:["Janine",56]}
>>> records
{234: ['Andrew', 78], 123: ['Kevin', 24], 756:
['Janine', 56]}

11.7 Non-sequential collections

Python dictionaries

Examples (Python interpreter):

>>> records = {123:["Kevin",24],
234:["Andrew",78],756:["Janine",56]}
>>> records
{234: ['Andrew', 78], 123: ['Kevin', 24], 756:
['Janine', 56]}

11.7 Non-sequential collections

keys

Python dictionaries

Examples (Python interpreter):

>>> records = {123:["Kevin",24],
234:["Andrew",78],756:["Janine",56]}
>>> records
{234: ['Andrew', 78], 123: ['Kevin', 24], 756:
['Janine', 56]}

11.7 Non-sequential collections

keys (not mutable, i.e.
cannot be modified!)

Python dictionaries

Examples (Python interpreter):

>>> records = {123:["Kevin",24],
234:["Andrew",78],756:["Janine",56]}
>>> records
{234: ['Andrew', 78], 123: ['Kevin', 24], 756:
['Janine', 56]}

11.7 Non-sequential collections

values
(mutable, i.e. can be modified)

Python dictionaries

Examples (Python interpreter):

>>> records = {123:["Kevin",24],
234:["Andrew",78],756:["Janine",56]}
>>> records
{234: ['Andrew', 78], 123: ['Kevin', 24], 756:
['Janine', 56]}

>>> records[123]
['Kevin', 24]

>>> records[236]
Traceback (most recent call last):
 File "<pyshell#4>", line 1, in <module>
 records[236]
KeyError: 236

11.7 Non-sequential collections

Python dictionaries

Examples (Python interpreter):

>>> records = {123:["Kevin",24],
234:["Andrew",78],756:["Janine",56]}
>>> records
{234: ['Andrew', 78], 123: ['Kevin', 24], 756:
['Janine', 56]}

>>> records[456]=[“Alba”,27]
>>> records
{456: ['Alba', 27], 234: ['Andrew', 78], 123:
['Kevin', 24], 756: ['Janine', 56]}

11.7 Non-sequential collections

Python dictionaries’ methods

11.7 Non-sequential collections

method meaning
<key> in <dict> returns True if dictionary contains the

key, and false otherwise

<dict>[key]=value adds tuple <key>:<value> to the
dictionary

<dict>.keys() returns a sequence of keys
<dict>.values() returns a sequence of values
<dict>.items() returns a sequence of tuples

(key,value)
<dict>.get(<key>,<default>) if dictionary has key returns its value;

otherwise returns default
del <dict>[<key>] deletes the specified by the key entry
<dict>.clear() deletes all entries
for <var> in <dict> loops over the keys

Python dictionaries

Example:
Let’s write a program that will read students’ records from a file and
print a list of their names. Students have ids. A dictionary will be used
to store students records by their id number.

184758 Adams, Samantha 56 222.32
365853 Cole, Amanda 100 390
634649 Jack, Adam 140 490
747284 Katz, Mery 28 86.8
104755 Zenith, Kevin 135 459

11.7 Non-sequential collections

see studentsRecordsAsDictionary.py

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14

