Lecture 22

Topics: Chapter 10. Defining Classes Chapter 11. Data Collections
More about classes
11.1 Example problem: simple statistics
11.2 Applying lists
11.3 Lists of records

More about classes

Let's consider defining a Target class and using it.

Target		
self.window	self.r	self.rings
self.anchor	self.n	
self.primary	self.secondary	
init_(self,_window, point,radius,rings,primary_color="black",		
secondary_color="white")		
show (self)		
hide (self)		
move(self,dx,dy)		

More about classes

```
targetClass.py
class Target:
```

import targetClass
def main():
see targetClass.py and usingTarget.py

More about classes

A convention

We mentioned that instance variables should only be accessed or modified through the interface methods of the class, i.e.

$$
\begin{aligned}
& \text { good: } \\
& \text { item }=\text { Thing(...) } \\
& \text { item.sett(10) }
\end{aligned}
$$

Therefore, it is convenient to mark the instance variables as "private" by using an underscore ($_$) to begin the instance variable name with.

Same convention for "private" methods of the class.

More about classes: A convention example

class Thing:
def __init__(se1f):
self._name = "my Name"
self._age = 28
self._phone = "(718) 465-3576"
def setName(se1f, newName):
self._name = newName
def getName(se1f):
return self._name
def setAge(self,newAge):
self._age = newAge
def getAge(se1f):
return self._age
def setPhone(self,newPhone):
self._phone = newPhone
print(person._name,person._age,person._phone)
print(person.getName(), person.getAge(), person.getPhone())
class Thing:
def __init__(se1f):
self._name = "my Name"
self._age $=28$
self._phone = "(718) 465-3576"
def setName(se1f, newName):
self._name = newName
def getName(se1f):
return self._name
def setAge(self,newAge):
se1f._age = newAge
def getAge(se1f):
return self._age
def setPhone(self,newPhone):
self._phone = newPhone

More about classes: A convention example

class Thing:
def __init__(se7f):

$$
\begin{aligned}
& \text { self._name }=\text { "my Name" } \\
& \text { self._age }=28 \text { "(718) 465-3576" } \\
& \text { self._phone = }
\end{aligned}
$$

def setName(self, newname):
self._name = newname
def getName(se1f):
return self._name
def setAge(self, newAge):
person._age $=70$
person.setAge(40) self._age = newAge
def getage(self):
return self._age
def setPhone(self, newPhone):
self._phone = newPhone

More about classes person._phone = "(718) 675-7684"

 person.setPhone("(718) 675-7685")class Thing:
def __init__(se1f):
self._name = "my Name"
self._age $=28$
self._phone = "(718) 465-3576"
def setName(se1f, newName):
self._name = newName
def getName(self):
return self._name
def setAge(self,newAge):
self._age = newAge
def getAge(se1f):
return self._age
def setPhone(self,newPhone):
self._phone = newPhone

11.1 Example problem: simple statistics

Classes alone are not enough to satisfy all of our data-handling needs.

Many real-world programs deal with large collections of similar information:

- Words in a document
- Students in a course
- Data from an experiment
- Customers of a business
- Cards in a deck

In Chapter 11 we learn techniques that help us manipulate collections like these.

11.1 Example problem: simple statistics

Simple Statistics Program

Let's write a program that will compute the average (mean), the median, and the standard deviation.

The sequence of numbers will be read from a file.

11.1 Example problem: simple statistics

Simple Statistics Program

Let's write a program that will compute the average (mean), the median, and the standard deviation.

The sequence of numbers will be read from a file.
[Def] The mean (average) of n values is their sum divided by n.
$1,4,7,9,12,10 \longrightarrow \frac{43}{6} \approx 7.27$

11.1 Example problem: simple statistics

Simple Statistics Program

Let's write a program that will compute the average (mean), the median, and the standard deviation.

The sequence of numbers will be read from a file.
[Def] The mean (average) of n values is their sum divided by n. $1,4,7,9,12,10 \longrightarrow \frac{43}{6} \approx 7.27$
[Def] The median of an ordered collection of values is the middle number. If there are two middle numbers then their average is taken.

$$
\begin{aligned}
& 1,4,7,9,10,12 \\
& 1,4,6,7,9,10,12 \longrightarrow \frac{7+9}{2}=8 \\
& \hline \quad 7
\end{aligned}
$$

11.1 Example problem: simple statistics

Simple Statistics Program

Let's write a program that will compute the average (mean), the median, and the standard deviation.

The sequence of numbers will be read from a file.
[Def] The standard deviation s, is defined as

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

Where \bar{x} is the mean, x_{i} represents the $t^{t h}$ data value, and n is the number of data values.

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

	x	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$
x_{1}	5		
x_{2}	3		
x_{3}	1		
x_{4}	6		
x_{5}	7		
x_{6}	9		
x_{7}	11		
SU	42		
M:			

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

$$
\begin{aligned}
& s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}} \\
& \bar{x}=\frac{42}{7}=6
\end{aligned}
$$

	x	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$
x_{1}	5		
x_{2}	3		
x_{3}	1		
x_{4}	6		
x_{5}	7		
x_{6}	9		
x_{7}	11		
SU	42		
M:			

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

	x	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$
x_{1}	5	$6-5=1$	
x_{2}	3		
x_{3}	1		
x_{4}	6		
x_{5}	7		
x_{6}	9		
x_{7}	11		
$S U$	42		
$M:$			

$$
\bar{x}=\frac{42}{7}=6
$$

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

	x	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$
x_{1}	5	$6-5=1$	
x_{2}	3	$6-3=3$	
x_{3}	1		
x_{4}	6		
x_{5}	7		
x_{6}	9		
x_{7}	11		
SU	42		
M:			

$$
\begin{aligned}
& s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}} \\
& \bar{x}=\frac{42}{7}=6
\end{aligned}
$$

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

	x	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$
x_{1}	5	$6-5=1$	
x_{2}	3	$6-3=3$	
x_{3}	1	$6-1=5$	
x_{4}	6		
x_{5}	7		
x_{6}	9		
x_{7}	11		
SU	42		
M:			

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

$$
\bar{x}=\frac{42}{7}=6
$$

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

	x	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$
x_{1}	5	$6-5=1$	
x_{2}	3	$6-3=3$	
x_{3}	1	$6-1=5$	
x_{4}	6	$6-6=0$	
x_{5}	7	$6-7=-1$	
x_{6}	9	$6-9=-3$	
x_{7}	11	$6-11=-5$	
SU	42		
$\mathbf{M}:$			

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

$$
\bar{x}=\frac{42}{7}=6
$$

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

	x	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$
x_{1}	5	$6-5=1$	1
x_{2}	3	$6-3=3$	9
x_{3}	1	$6-1=5$	25
x_{4}	6	$6-6=0$	0
x_{5}	7	$6-7=-1$	1
x_{6}	9	$6-9=-3$	9
x_{7}	11	$6-11=-5$	25
SU	42		
M:			

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

$$
\bar{x}=\frac{42}{7}=6
$$

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

	x	$\bar{x}-x_{i}$	$\left(\bar{x}-x_{i}\right)^{2}$
x_{1}	5	$6-5=1$	1
x_{2}	3	$6-3=3$	9
x_{3}	1	$6-1=5$	25
x_{4}	6	$6-6=0$	0
x_{5}	7	$6-7=-1$	1
x_{6}	9	$6-9=-3$	9
x_{7}	11	$6-11=-5$	25
$S U$	42		70
$M:$			

$$
\begin{aligned}
& \bar{x}=\frac{42}{7}=6 \\
& s=\sqrt{\frac{70}{6}} \approx 3.42
\end{aligned}
$$

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

11.1 Example problem: simple statistics

Simple Statistics Program
Example of calculations:

$$
s=\sqrt{\frac{\sum\left(\bar{x}-x_{i}\right)^{2}}{n-1}}
$$

	x	$\bar{x}-x_{i}$	$\left(\overline{\mathrm{x}}-\mathrm{x}_{\mathrm{i}}\right)^{2}$
x_{1}	5	$6-5=1$	1
x_{2}	3	$6-3=3$	9
x_{3}	1	$6-1=5$	25
x_{4}	6	$6-6=0$	0
x_{5}	7	$6-7=-1$	1
x_{6}	9	$6-9=-3$	9
x_{7}	11	$6-11=-5$	25
SU	42		70
M:			

$$
\begin{aligned}
& \bar{x}=\frac{42}{7}=6 \\
& s=\sqrt{\frac{70}{5}} \approx 3.42
\end{aligned}
$$

Answer:
mean $\bar{x}=6$ median is 6 standard deviation $s \approx 3.42$

11.2 Applying lists

Simple Statistics Program

Let's write a program that will compute the average (mean), the median, and the standard deviation.

The sequence of numbers will be read from a file.
Design / Outline of the program: get file name from the user, read data from file, return list of values (sorted), readData (fname) close the file, find the mean, find the median, find the standard deviation,

$$
\begin{array}{r}
\text { getMean(1istofValues) } \\
\text { getMedian(1istofvalues) } \\
\text { gets(1istofvalues) }
\end{array}
$$

11.2 Applying lists

Lists review

Python lists provide very flexible mechanism for handling arbitrarily large sequences of data.

- A list is a sequence of items stored in a single object
- Items in a list can be accessed by indexing, and sublists can be accessed by slicing (see page 367)
- Lists are mutable; individual items or entire slices can be replaced through assignments statements
-Lists support a number of convenient and frequently used methods (see page 369)
- Lists will grow and shrink as needed

11.3 Lists of records

Recall the constructor of the Target class:
self.rings = []
step $=$ round(self.r / self.n)
for i in range(self.n):
ring = Circle(self.anchor,self.r - i*step)
if $\mathrm{i} \% 2=0$:
ring.setFill(self.primary)
else:
ring.setFill(self.secondary)
self.rings.append(ring)
A list of circles is generated

11.3 Lists of records

We can also create a list of student's records and sort them by their GPA.

Let's write a program that will sort a file of students according to their GPA.

11.3 Lists of records

We can also create a list of student's records and sort them by their GPA.

Let's write a program that will sort a file of students according to their GPA.

Design / basic algorithm: get the file name read student information into a list sort the list by GPA
get the output file name write the sorted student information into a file

We will borrow the definition of the Student class and a standalone method makeStudent from studentsGPA.py (see Lecture 21)

11.3 Lists of records

sorting the list by GPA

records.sort(key = Student.getGPA)

list of objects of type Student
a way to specify based on what to order the elements (key must be a function that takes an item from the list records and returns a value)
built-in method
method of class Student that returns a float value

