
  

Lecture 21

Topics: Chapter 10. Defining Classes
10.4 Data processing with class
10.5 Objects and encapsulation
10.6 Widgets



  

Example with dice from the previous meeting shows how useful a 
class can be for modeling a real world object with some behavior.

10.4 Data processing with class



  

Example with dice from the previous meeting shows how useful a 
class can be for modeling a real world object with some behavior.

Let’s consider college students and their grade point averages 
(GPA).

In a typical college/university, courses are measured in terms of 
credit hours, and GPAs are calculated on a 4-point scale, with “A+” 
and “A” being 4 points, “A-” being 3.7 points, “B+” being 3.3 points, 
“B” being 3 points, etc.

10.4 Data processing with class



  

Example with dice from the previous meeting shows how useful a 
class can be for modeling a real world object with some behavior.

Let’s consider college students and their grade point averages 
(GPA).

In a typical college/university, courses are measured in terms of 
credit hours, and GPAs are calculated on a 4-point scale, with “A+” 
and “A” being 4 points, “A-” being 3.7 points, “B+” being 3.3 points, 
“B” being 3 points, etc.

If a class is worth 3 credit hours and the students gets an “A,” then 
he/she earns 3*4 = 12 quality points

GPA = total quality points / number of credit hours

10.4 Data processing with class



  

The data about students can be recorded into a file:

Adams, Samantha  56  222.32
Cole, Amanda  100  390
Jack, Adam  140  490
Katz, Mery  28  86.8
Zenith, Kevin  135  459

We will write a program that reads through this file to find the 
student with best GPA and print out his/her name, credit hours, and 
GPA.

10.4 Data processing with class



  

Student class:

10.4 Data processing with class

Student

self.name
self.hours
self.qpoints

__init__(self, name, hours, qpoints)
getName (self)
getHours (self)
getQPoints(self)
getGPA(self)

class diagram



  

Student class:

10.4 Data processing with class

Student

self.name
self.hours
self.qpoints

__init__(self, name, hours, qpoints)
getName (self)
getHours (self)
getQPoints(self)
getGPA(self)

class diagram

Example of a Student instance:
personA = Student(“Stone, Amelia”,123,489.54)



  

Student class:

10.4 Data processing with class

Student

self.name
self.hours
self.qpoints

__init__(self, name, hours, qpoints)
getName (self)
getHours (self)
getQPoints(self)
getGPA(self)

class diagram

Example of a Student instance:
personA = Student(“Stone, Amelia”,123,489.54)

See program studentsGPA.py



  

Strategy: 

Identify useful objects → push the implementation details into a 
suitable class definition

Then we can write an algorithm using these objects.

10.5 Objects and encapsulation



  

Strategy: 

Identify useful objects → push the implementation details into a 
suitable class definition

Then we can write an algorithm using these objects.

This strategy gives us a separation of concerns (recall top-down 
design): we do not worry about object’s implementation details, all 
we need to know is what objects can do (not how can they do it)

This separation of concerns is called encapsulation. 

The implementation details of an object are encapsulated in the 
class definition.

10.5 Objects and encapsulation



  

Strategy: 

Identify useful objects → push the implementation details into a 
suitable class definition

Then we can write an algorithm using these objects.

This strategy gives us a separation of concerns (recall top-down 
design): we do not worry about object’s implementation details, all 
we need to know is what objects can do (not how can they do it)

This separation of concerns is called encapsulation. 

The implementation details of an object are encapsulated in the 
class definition.

It is not enforced in Python, it is only a convention.

10.5 Objects and encapsulation



  

Putting classes in modules

A well-defined class can be used in many different programs.

Hence it is good to put it into a separate file and add some 
documentation that describes how the class can be used !

10.5 Objects and encapsulation



  

Putting classes in modules

A well-defined class can be used in many different programs.

Hence it is good to put it into a separate file and add some 
documentation that describes how the class can be used !

Type the following in Python interpreter:
>>> import random
>>> print(random.random.__doc__)
random() -> x in the interval [0, 1).

and this:
>>> help(random.random)
Help on built-in function random:

random(...) method of random.Random instance
    random() -> x in the interval [0, 1).

10.5 Objects and encapsulation



  

def makeStudent(line):
  """ creates an instance of class Student;
  line is a line from the file formatted as
  LastName, FirstName  hours  qpoints """
  
  name, hours, qpoints = line.split("  ")

Docstrings are used to get help (brief description) about 
class/method/module.

10.5 Objects and encapsulation

docstring



  

Recall our MSDie class. Let’s play more with it!

- Put the definition of the MSDie class into 
a separate file (module) called die.py.

- The main function will be in the file program.py

- The die.py module will be imported in the program.py by
from die import *

- Let’s define a class for buttons: Button and save it in module 
button.py

- Let’s define a class for display the die: dieView and save it in 
module dieView.py

10.5 Objects and encapsulation



  

10.5 Objects and encapsulation

MSDie

self.sides                     self.value

__init__(self, sides)     roll (self)
getValue (self)   
setValue(self, value)

dieView

self.win                      self.sides
self.display

__init__(self, win, center)
show (self)                 hide (self)
setValue(self, value)

Button

self.win                self.br                   self.bt
self.x_min            self.x_max           self.y_min
self.y_max           self.active

__init__(self, win,center,width=70,height=40,label="EXIT")
activate (self)                    deactivate (self)
clicked(self, p)                   getLabel(self)

were 
added 
later on



  

GUI stands for Graphical User Interface

GUI is usually composed of visual interface objects, called widgets.

Entry object from graphics library is a widget.

DieView we defined, is a widget.

Button we defined, is also a widget.

10.6 Widgets


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17

